The Annals of Mathematical Statistics
1969, Vol. 40, No. 4, 1474-1476

NOTES

NOTE ON A THEOREM OF DYNKIN ON THE DIMENSION OF
SUFFICIENT STATISTICS'

By J. L. DENNY

The University of Arizona

1. Summary. We show that the existence of a continuous minimal sufficient
statistic not equivalent to the order statistics, for n = 2 independent observa-
tions, is not a sufficient condition for the family of densities, assumed to be
Lipschitz, to be an exponential family. This result is intended to be compared
with a theorem of Dynkin (p. 24 of [3]) which asserts that the existence of a
sufficient statistic not equivalent to the order statistics implies that the family
of densities is an exponential family, provided that the densities possess con-
tinuous derivatives.

2. Result. Let I C R be an interval and let {p(- ,0)} be a family of positive
probability densities defined on I. Following L. Brown (p. 1461 of [1]) we will
say that a sufficient statistic ¢:1" — R for n = 2 independent observations is
trivial if there is a nonempty open set U C I" and a Borel set B C U where the
Lebesgue measure \,(U ~ B) = 0 so that the restriction of ¢ to B is one-one.
A sufficient statistic ¢ is then said to be nontrivial if it is false that ¢ is trivial.
The definition of nontrivial involves local properties of ¢, and to say that a=*
sufficient statistic is nontrivial is to say that for each nonempty open set U < I"
the restriction of ¢ to U is not statistically equivalent to the restriction of the
order statistics to U. The following theorem of Dynkin [3], corrected by L.
Brown, appears on p. 1461 of [1]:

TueorEM. Let {p(-, 0)} be a family of probability densities on an interval I
such that for each 0, p (-, 0) s continuous on I, is bounded away from zero on I,
and is continuously differentiable on I. Suppose there is a mnontrivial sufficient
statistic ¢ for 0 on the basis of n independent observations. Then {p(-, 0)} is a
p-parameter exponential family where n > p.

Our purpose is to show that Dynkin’s theorem depends on the assumption that
the densities possess continuous derivatives, in the sense that Dynkin’s theorem
does not generalize to densities which are Lipschitz. As noted by a referee, the
definition of Lipschitz function is not standardized and the following definition
is included: a function f:I — R is Lipschitz if there is a finite constant K so
that foreach z, y e I, [f () — f(y)| £ K|z — y|. It may be helpful to recall that if
fis Lipschitz then the derivative f’ exists and is bounded almost everywhere ()
and, moreover, if a function g:I — R possesses a finite derivative g (z) for each
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x ¢ I then g is Lipschitz if and only if ¢’ is a bounded function. The construction
in the following theorem depends on the fact that Lipschitz functions may have
pleasant measure-theoretic properties and yet be nowhere locally one-one with
a nonvanishing derivative almost everywhere, unlike continuously differentiable
functions.

TaroreM. Let I C R be a bounded interval. There exists a family of probability
densities {p (-, 0): 0 £ O} such that (i) for each 6 ¢ @ p (-, 8) is bounded away from
zero and vs Lipschitz; (ii) for each Borel set B C I such that My (B) > 0, {p (-, 6)}
s not representable as an exponential family when resiricted to B; (iii) for each
integer n = 2 there is a continuous Euclidean-valued nontrivial minimal sufficient
statistic ¢ for the famaly. Moreover, for each n ¢ may be taken to be of the form
S, - Yn) = Dorma bin(y:), where the ¢i, are real-valued continuous functions
on (—1, 1) and the y; are defined below.

Proor. We assume for notational convenience that the closure of I is [0, 1].
Let © be a family of bounded real-valued continuous functions on (—1, 1) such
that (i) 0 ¢ ® implies the derivative of 8 exists and is continuous on (—1, 1);
(i) if C < (—1, 1) is a Borel set of positive measure and if @ (C) is the family
of functions which are the restrictions to C of the members of ® then the smallest
real linear space containing ©® (C) is not finite-dimensional (as a referee ob-
served, the family of functions {z":n = 0, 1, - - -} meets the requirements on ©;
a proof of this fact may be given by choosing a compact C' < C of positive
measure, noticing that the smallest linear space containing {2"} restricted to
C’ is an algebra which separates points of €', and using the Stone-Weierstrass
theorem ). Let continuous f:I — (—1, 1) satisfy the following: (i) fis Lipschitz”
and lim f(z) = O as z | 0; (ii) for almost every x eI |f (z)| = 1; (iii) f is
nowhere locally monotone (the canonical construction of such functions is as
follows: let A < I be a Borel set such that for each nonempty open
Uc[0,1IM(AnTU) >0, M(A°n U) > 0, and define f(x) = [§ (T4 — L4¢) d\
where I, is the indicator function of the set C).

For each 0¢®, x¢I define p(x, 0) = c(6)expd(f(x)) where c(f) is the
normalizing constant. Then p (-, 8) is Lipschitz and bounded away from zero.
To say that {p(-, 8)} is not representable as an exponential family when re-
stricted to B is to say that there do not exist m < o Borel functions g1, - - - , gm
defined on B so that for each 6 ¢ © there is Borel B(#) C Bwith (B~ B(0)) =0
and 0(f(x)) = D_mici(8)g:(x) for each e B(f) and real constants c;(6).
Suppose for some such Borel B with M\ (B) > 0 the g; exist. Then there is compact
C < B with M(C) > 0 so that each g; restricted to C is continuous. Choose a
Borel set D C C such that each point of D is a point of density of D. Then
0(f(x)) = Xraci(0)gi(z) for each 2 ¢ D and the family of functions 8(f(-)),
6 ¢ ©, on D generates a finite-dimensional vector space. This leads to a contradic-
tion since M(D) > O implies M(F(D)) > 0. Now T(x1, -+, z,) =
(f(x1), -+, f(®a)) is a sufficient statistic and it is easy to verify that
F(xi, -+ ,%.) = (W1, -+, Yn), Where y; is the sth smallest f(z;), is a minimal
sufficient statistic. To prove F is nontrivial it suffices to prove that 7' is nontrivial
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and to prove that 7' is nontrivial it suffices to prove: if C C I is a compact non-
degenerate interval and Borel £ C C satisfies M (C ~ E) = 0 then it is false that
the restriction of f to £ is one-one. Suppose on the contrary for some such C and
E,fisone-oneon E.Let A; = {z:f (z) = 1} nE and A, = {2:f (x) = —1} n E.
Then a computation yields M (f(41 U 42)) = M(C) and thus there is 2o and ¥
in C so that f(xo) — f(yo) = M(C). We assume yo < o, for the other case is
analagous. Also f(#o) — f(ye) = M ([yo, o] n A1)) = M([go, @] n 41) <
< M([go, ®a]) = M(C) where the first inequality follows from Theorem 6.6 on
p. 280 of [5]. This is the contradiction.

Finally, if C; € f(I) and M(C1) = M) then M(F(C1)) = M) since
If' ()| = 1 almost everywhere. Then by Fubini’s theorem, if B; C F (I") satisfies
M(F(I") ~ By) = 0 then \y(F*(B1)) = M\ (I™). Let continuous ¢:F (I") — R
have the property that there is Borel By C F (I") such that A\, (B1) = M (F ™))
and the restriction of ¢ to B; is one-one. Then ¢ o F' is the claimed real-valued
continuous nontrivial minimal sufficient statistic. In particular let ¢ (y1, «++ , ¥s)
= > %1 ¢m(y:) be one of the functions used by A. N. Kolmogorov in [4]. Such
functions are almost everywhere one-one (see p. 103 of [6], and for another
example of almost everywhere one-one functions see [2]). This completes the
proof.
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