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ON PARTITIONING A SET OF NORMAL POPULATIONS BY THEIR
LOCATIONS WITH RESPECT TO A CONTROL'

By Yune Liane Tong

University of Nebraska

0. The problem and the approaches. This paper is concerned with a problem of
partitioning a set of normal populations into two subsets according to their loca-
tions with respect to a control population, based on indifference zone formulation.
Let Iy, Iy, - - -, I be (k + 1) normal populations with means wo , p1, * - , px
and a common variance ¢*; and let II, denote the standard or control population.
For arbitrary but fixed constants 8" and 3" such that 8, < 8", we define three
disjoint and exhaustive subsets Q5 , r and Q¢ of the set

(0.1) Q= (I, M, ---, M)

by
Q= (Witps < po + %)

(0.2) Qr = (Witpe + 6 < i < mo+ 32*)
Q¢ = (Witpi Z po + 87).

After observations have been taken, the set @ is partitioned into two disjoint
subsets Sz and Se .

DrrintTioN 0.1. A decision is a correct decision (CD) if 2 € Spand Q¢ C S¢ .

An equivalent definition to Definition 0.1 is that SB cC (QB uQ;)and S¢ &
(Q¢ U Q7). It is noted that the open interval (uo + 8:%, wo + 85" ) is considered as
the indifference zone and a correct decision puts no restrictions on those popula-
tions in the set Q; . With this consideration, it will be consistent to give the fol-
lowing

DeriniTioN 0.2. A population II; ¢ @ is misclassified if Tie (25 n Sg) U
(Qa n SB)

Let P* be an arbitrary but preassigned constant such that 27 < P* < 1. The
statistical problem is to find a procedure R which consists of a sampling pro-
cedure and a terminal decision rule such that the appropriate probability re-
quirement below is satisfied.

(1) When ¢” is known,

(0.3) P[CD | w, ¢°; Rl = P* ' for every mean vector u.
(2) When ¢” is unknown,
(04) PICD | u, &’ Rl = P*  for every u and every e > 0.
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The case of known ¢ is considered in Section 1. A single-stage procedure is
used there and the proposed decision rule is proved to be Bayes, minimax and
admissible among a class of translation invariant decision rules. It is clear that
when ¢” is unknown, there is no single-stage procedure that can solve this prob-
lem. A two-stage procedure originally proposed by Stein [16] is used in Section 2;
and a sequential procedure based on the idea of the random stopping rule de-
veloped by Chow and Robbins [3] is used in Section 3 to serve as an alternative to
the two-stage procedure.

The (expected) sample size required, the expected misclassification size, the
relative efficiency and their asymptotic behavior for the single-stage, two-stage
and sequential procedures are investigated and are shown to be functions of the
percentage points of a multivariate normal and a multivariate ¢ distribution.
Tables of these percentage points have been constructed and are attached with
this paper.

The following assumptions are made throughout this paper:

(1) thereis no a priori knowledge regarding the means of the populations;

(2) the observations are taken a vector at a time; and

(3) the observations are independent.

Unless mentioned otherwise, the following notations will be adopted:

(0.5) B(2) = [, (2m) %P de, —o <2< w;
(0.6) m = k/2 if k is even,
= (k 4+ 1)/2 if k is odd; .
(0.7) d = (&% + 8%)/2;
(0.8) a= (& —8%)/2; and
(0.9) A = o/a.

1. A single-stage procedure.

1.1  The Procedure and its PCD. Let
(1.1) {Xos, Xuj, -+, Xadbim
be a sequence of independent vector observations from the population with
joint density
(12) f(xo,xl, cct 3Tk oy MOy MLyt ,I"kQ‘TZ)

— HIZ-O (2,"_)—%0_—16—%“_2(:6{—#;)2

for — o < z; < « and with parameter spaces — o < p; < ©(¢=0,1, -+ , k).
Throughout this section, we assume that ¢ is a known constant.

The decision rule used is based on the differences of the sample means.

PrOCEDURE R, . Observe the sequence defined in (L1)forj=1,2,---, N,
where Ny is to be determined below. Compute X; = No * >3 X, for ¢ = 0,
1, -+ -, k, and use the decision rule:
(]..3) Sp = {Hi:Xi - Xo < d},

Se = {H,:Z X.‘ — Xo > d}
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To find the sample size Ny such that (0.3) is satisfied, we first give the follow-
ing

DEFINITION 1.1. A mean vector u* = (uo, p's -+ , w) is a least favorable
(LF) configuration under a procedure R if
(1.4) P[CD | ¢, o*; R] = inf P[CD |y, ¢’; R].
¥

It is clear that for a mean vector to be a LF configuration under R, , the set
Q; defined in (0.2) must be empty, all the populations in 25 must have a common
mean po + 8,%, and all the populations in ¢ must have a common mean po + 8.
Without loss of generality, let u’() be a configuration such that p; = po + 5F
and p; = po + 8,0 < i £ r,r < j < kfor some 7 such that 0 < r < k. Then
it follows from Definition 0.1 that

PICD | v'(r), o"; Ri]
=PXi—X<d,X;—X>d0<isrr<j=k)|e(r),d]
= P[Zi — Zo < AN\, Z; — Zo > —(ANo))/ANO < i S r,r < j £ k)]
= PIY: = (3No)'/AG = 1,2, -+, K)];

where Z; = (X; - [M)/(cr (2/No)§) for 7 = 0, 1, e ,k, Y, = Z;— Zo for
0<i=Zrand¥;=Zy— Ziforr < i = k. Hence if we define the (k X k)
covariance matrix E, = (o:;) by

gij=1 for ¢ =7
(1.5) = 1/2 for 1% # 7, and 0<4,j=<r or r<4,j=k
=—1/2 for 0<¢=r and r<j=k;
then

3N/
(1.6) PICD | v’(r), o"; Rl = f_w [

-00

(%No)!/)\... f(éNO);/)\

0

k
- (20) 2, [ exp (— 3y'2Y) g dyi .

Equation (1.6) gives the infimum of the PCD under R, for the set of all eon-
figurations such that there are r populations in @z and (k¥ — r) populations in
Q¢ . To find the LF configuration under R, it suffices to find the integer where the
rhs of (1.6) achieves a minimum over all 7(0 < r £ k).

LemMA 1.1. For every )\ and every Ny , the LF configuration under R, is given by
v = o’ such that

(1.7) pl = = = g = po+ 85
0 0 0 %
Pl = Pmiz = 0 = jr = po + 02,

where m s defined in (0.6).
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Proor. The proof of this lemma follows from a general theorem given in the
Appendix.

Now let ¥ = ¥, denote the (k X k) covariance matrix defined in (1.5)
for v =m i.e., ¥ has the following structure:

12---m{m+1---k

(1 % 1
- -1 2
(18) . 3 1 :
i= -l m
1 3| mtl
—3% , :
L 3 1) &

Let b = b(P, k) be the solution of the equation
(19) P= [t [l 20 @)™ 2 exp (—3y'27y) [Timrdys .
Then the sample size N required under R, is given by

TueoreMm 1.1. Let N be defined in (0.9) and b be the solution of (1.9) with
P = P*. If Ny is the smallest integer satisfying

(1.10) No = 22%°

then the probability requirement (0.3) <s satisfied.

Proor. For any mean vector w, it follows from b =< (iNo)!/\ that
P[CD |y, o’; Ri] = PICD | ¢, o*; Ri] 2 P*.

The solution b = b(P, k) of (1.9) is the equi-coordinate percentage point of a
k-dimensional multivariate normal distribution with mean vector 0 and the
covariance matrix ¥ given in (1.8). The values of b as a function of P and k¥ have
been tabulated in Table 1 for P = 0.50, 0.75, 0.90, 0.95, 0.975, 0.99 and k =
1(1)10(2)20. It should be noted that for k& = 1 the table reduces to the uni-
variate standard normal table. The numerical solution was obtained by first
changing (1.9) to a form of simple integral, this simple integral is then approxi-
mated by a Gaussian quadrature summation formula given in [17]. To be con-
servative, the entries in the table have all been rounded to the next higher value
(in the 7th decimal) and should be in error by at most one unit in the last digit
given.

1.2. An upper bound on the sample size required. We now give an upper bound
on the sample size Ny under R; based on‘the following

LemMa 1.2. For any given P €10, 1] and any two events A and B,

(1.11) P(A)4+ P(B)=14+P=PAnB) =P,

and the equality holds ¢ff P(A u B) = 1.
Proor. It is an immediate consequence of the inequality

P(AnB)=PA)+PB) —P(AuB)=14+P—-P(AuB) 2P,

and the equality holds iff P(4 u B) = 1.
For any real number ¢ and positive integer g, let

»
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TABLE 1

Egui-coordinate percentage points b of a multivariate normal distribution with mean vector 0
and covariance matriz 3

P
k
0.50 0.75 0.90 0.95 0.975 0.99

1 0.0000000  0.6744898 1.2815516 1.6448537 1.9599640  2.3263479
2 0.6423429 1.1462928 1.6445631 1.9599246  2.2413975  2.5758290
3 0.8370415 1.3192980 1.8003977  2.1057358  2.3786364  2.7033911
4 0.9938965 1.4528031 1.9162111  2.2121205  2.4775016  2.7942727
5 1.0890009 1.5389483 1.9950311 2.2865328  2.5480781  2.8604419
6 1.1742510 1.6140189  2.0620112  2.3489679  2.6067571 2.9149993
7 1.2356655 1.6702228  2.1138621 2.3981570  2.6536084  2.9591380
8 1.2928724 1.7214957  2.1602823  2.4417695  2.6948543 2.9977379
9 1.3376440 1.7627532  2.1985565 ~ 2.4781993  2.7296540  3.0306329

10 1.3801626 1.8012938  2.2337781 2.5114623  2.7612442  3.0603289
12 1.4486915 1.8643484  2.2921627  2.5669962  2.8142841 3.1104789
14 1.5048107 1.9162434  2.3404131  2.6130015  2.8583140  3.1522062
16 1.5521539 1.9601991 2.3814180  2.6521756  2.8958693 3.1878656
18 1.5929848 1.9982343 2.4169983  2.6862232  2.9285565  3.2189529
20 1.6288041 2.0316945  2.4483726  2.7162884  2.9574557  3.2464759

(1.12) Hy(e) = [% [Zw -+ [Z0 (2r) " |2[7 exp [—3y(2)7'y] [Tiady:

where the (¢ X ¢) covariance matrix " = (o:;) is such that

(1.13) oi; = 1 it ©=7; *
=3 if 2.

Let b be the solution of equation (1.9) and b’ be the solution of the equation
(1.14) H,(b') 4+ H_n(¥') =1+ P.

TaEOREM 1.2. For every P and every k, we have
(1.15) b > b.

Proor. Let (Y1, Y., -+, Y;) follow a multivariate normal distribution
with mean vector 0 and covariance matrix ¥, and let

A=[Y:2b (G=12---,m),

B=[Y:sb G=m+1,m+2 - ,k);

then Hp(b') + Hyn(d') =14+ P=PA nB)=P[Y: 2b'(:=1,2,--- ,k)]
> P. It follows that b’ > b and this completes the proof.
CoroLLARY. If Ny s the smallest integer satisfying

(1.16) No = 23%",
where b’ is the solution of (1.14) with P = P* then Ny = Ny.
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When & is even equation (1.14) reduces to
(1.17) Hix(d') = 3(1 + P);

the solution b of (1.17) is the percentage point of an equi-correlated multivariate
normal distribution. The numerical solutions have been tabulated by both
Gupta [6] and Milton [12] at several probability levels. Let v = v(P*, k) denote
the quantity (b'/b)* with P = P*, then

(1.18) No/No = v.

These v values have been computed for even & based on the b’ values given by
Milton and the b values given in Table 1 of this paper; an excerpt is given below.

Values of v for Selected Values of P* and &

k
2 4 6 8 12 16

P*

0.50 1.102597 1.040598 1.026127 1.019653 1.013570 1.010628
0.90 1.000353 1.000126 1.000071 1.000047 1.000027 1.000018
0.95 1.000040 1.000013 1.000007 1.000005 1.000002 1.000001

The computation shows the bound given in (1.16) is quite good for most
purposes since most of the v values are very close to 1. Of course, the value of
b'/b = ~* is even closer to one. It also appears that v(P*, k) is monotonically
decreasing both in P* and in k; however, the author has not tried to prove this
result.

1.3. Some optimal properties of the decision rule. We now prove some of the
optimal properties of the proposed decision rule specified in (1.3). Let X =
(Xo, X1, -+, X&) where X; is the sample mean from II;, 2 = 0, 1, --- , k.
Since X is a sufficient statistic, there is no loss in considering only decision rules
based on X. Consider a group G of translations where g ¢ G is defined by

(1.19) g(xo, 21, -+ ,2) = (To+ca1+c¢ -, 0+ ), —o < ¢ < w,
This group of translations in turn induces the group C_;‘ of translations on the
parameter space of (uo, p1, *** , m) With elements § ¢ G given by

(120) g(l"'07ﬂ17"'7ﬂk)=(“0+07ﬂ1+0;"',ﬂk+0), —wo < c< o,

Clearly, our problem remains invariant under G. It follows that (see [9: p. 216])
Z = (Zy, %2, ,2Z), where Z; = X; — Xo(¢ = 1,2, -+, k), is a maximal
invariant wrt G. Also, the distribution of Z depends only on (p1 — po, w2 — po,
coo e — o) = (61,0, -+, 6:) = 0 (say), which is the maximal invariant of
the induced group G, as it should according to [9: Theorem 3, p. 220] (here Z
has a multivariate normal distribution with mean vector 6 and known covariance
matrix ). Hence if we restrict our attention to the class of invariant decision rules
under G, those rules must be a function of Z (see [9: Theorem 1, p. 216]), and
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the probabilities under those decision rules depend on (uo, w1, --+, w) only
through 6.

In the following we show that the decision rule specified in (1.3) is Bayes,
minimax and admissible among the class of translation invariant decision rules.
Denote

(1.21) Y = {0:0 = (01, Og, -, 0};)}.

Following from the above discussion, it is sufficient to consider the only decision
rules based on Z and the induced parameter space ¥. We first formulate our
problem under the general framework of multiple decision problems developed
by Lehmann [8].

DeriniTioN 1.2. For¢ = 1,2, --- , k, let (¢:, D:, L;) be k component sta-
tistical decision problems where ¢; is the parameter space, D; is the decision
space and L;:y;XD; — (— ©, « ) is the loss function for the 7th component de-
cision problem. The decision problem (¢, D, L) is said to be the corresponding
product decision problem if

1) ¢y = XIZ=1|[/¢' =1{0 = (61,00, ,0k)i0:e¢i,2=1,2---, Kk} is the
product parameter space,

(2) D= XiaDi=1{a= (1,02, +,m)ia5eDs, 5 =1,2 -,k is the
product decision space, and

(3) L = L(6, a) is the loss function deﬁned ony x D,

ReEmARK. The problem of incompatibility of two component decision rules,
which was discussed by Lehmann, does not arise in our formulation; hence it is
ignored here. »

Nowfor¢ = 1,2, -+, k, let (¢s, D;, L;) be the component decision problem
dealing with the population mean of Z; (note that Z; has a normal distribution
with mean 6; and known variance). With the term “misclassification” defined
in Definition 0.2, we will consider the loss function for the product decision
problem to be the total number of populations misclassified; i.e., let

(1.22) Li0,a) = Li(6:,0a;) =1 if II; is misclassified,
=0 otherwise;
(1.23) r:(0:, @;) = EL:(8:, a;) = P[IL; is misclassified | 6; , a:]

fori = 1,2, --- , k (note that L;(0, a) depends on 6 and a only through 6; and
a:), then ‘

(1.24) L(6,a) = D 5aLi(6:i,as)
and the corresponding risk function
(1.25) r(0,a) = EL(G, a) = ZIE;I ri(0:, ai)

is the expected misclassification size. For & defined in (0.5) and b defined in (1.9)
with P = P*, we note the obvious
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Lemma 1.3. Under the procedure Ry ,

(1) r(0, Ry) = k[l — ®(b)] for every 0;

(2) the equality holds when 0; is etther 8,.* or 8,* for every <.

Now let ps = pi(6:) be an a priori distribution of ; (+ = 1,2, ---, k), and
let p = p(0) be the product probability measure defined on the product param-
eter space . We first observe the following lemma noted in [8]:

Lemma 14. Fori = 1,2, --- | k, let a; be a Bayes decision rule in D; for the ith
component decision problem wrt p; and loss function Li(0; , a:). If the loss function
for the product deciston problem has the form

(1.26) L(8,a) = D ficili(6i,a:), ¢ >0

then the product deciston rule a = (a1, a2, -+ , ax) is a Bayes decision rule in
D wrt p for the product decision problem.
Proor. Leta’ = (a;,ay, -+, ax ) be any other decision rule in D, then

[0, 0 )pi(6:) d6s = [ r:(6:, ai)pi(8:) d8:  for ¢ =1,2, -+, k;

hence the corresponding Bayes risks of a’ and a satisfy
B(p, a,) = ZIE=1 Cs fh‘((h , ai/)Pi(Gi) do;
= D fh'(@i , 6i)pi(0:) d6; = B(6, a).

REMARK. It is clear that if a; is the unique Bayes decision rule wrt p; in D;
forevery ¢ = 1, 2, - - - , k, then a is the unique Bayes decision rule wrt p in D.
Nowforz = 1,2, - -- , k, let the a priori distribution of p; be

(1.27) pi(6:) = % for 6; = 8 or & '
=0 otherwise

and

(1.28) p(8) =27% if 6, iseithers* or &%, i=1,2 .-,k
=0 otherwise.

We have

TurorEM 1.3. The decision rule a specified in (1.3) is (a) minimaz, (b) ad-
massible and (c) unique Bayes wrt p among the class of G invariant decision rules.

Proor. The assertion that a is minimax among the class of G translation
invariant rules can be proved by a lemma of Lehmann [11: p. 4-19], and the con-
ditions of that lemma are justified by Lemma 1.3. Since the admissibility follows
from the fact that a unique Bayes rule is admissible, it suffices to show that the
rule a specified in (1.3) is unique Bayes wrt p among the class of G translation
invariant rules. In view of Lemma 1.4 and the fact that any G translation in-
variant rule is a function of Z, it in turn suffices to show that the ¢th component
decision rule

(1.29)  “ai(Z) =0 if Zi=(Xi— Xo) <d =3+ 8%)
1 if Z;>d

]
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(here II; £ Sp iff a; = 1) is the unique Bayes decision rule wrt p; among the class
of all decision rules based on Z; with the loss function L;(6; , a;) given in (1.22).

We first observe a well-known result in testing hypothesis problems: if Z; is
any random variable with density f(z); under the hypotheses H,:f(z) = fi(z)
and H;:f(z) = fo(2), H: is accepted iff Z; ¢ W for some region W. Then the sum
of the two types of errors (o + ) is minimized iff W is taken to be (except on a
set of probability measure zero)

(1.30) Wy = {z:f2(2)/f2(2) > 1}.
If Z; has a normal distribution with mean 6; and variance oo, and the correspond-
ing hypotheses are H:6; = 8.%, Hy:0, = 8., then W, in (1.30) reduces to
(1.31) Wo = {z:2 > d).
which does not depend on oo’
Now let a;’ (Z;) be any decision rule about 6; based on Z; , i.e., we put II; into

Sg iff Z; ¢ W for some region W specified by a;’. For the a priori distribution
0:(0;) defined in (1.27), its corresponding Bayes risk is

(1.32) B(8:,0a’) = H{PZie W |0; = 6] + PlZi g W | 0: = &}

The infimum on the rhs of (1.32) is achieved iff W = W, given in (1.31). This
implies that the decision rule a; defined in (1.29) is the unique Bayes rule wrt
p: among the class of decision rules based on Z; . This completes the proof of the
theorem.

2. A two-stage procedure In this section a two-stage procedure is given for
the problem when " is unknown. It is specified in the following
PROCEDURE R . (1) Let no = 2 be a preass1gned positive integer. We observe

the sequence defined in (1.1) forj = 1,2, - -+ , no . Compute
(2.1) 82 v I:_o Za—l [Xn - —1 (Za—l Xw)
withy = (K + 1)(no — 1).
(2) Observe the sequence defined in (1.1) forj = (no + 1), (no +2), -+ , N

where N is to be determined below.
(3) Compute the (k 4+ 1) overall sample means

(2.2) Xi=N'2YV,Xi; for i=0,1,---,k
and apply the decision rule defined in (1.3).

To determine the sa,mple size N in the above procedure, we first observe that
the LF configuration u’ given in (1.7) does not depend on o and N. Hence to
satisfy the probability requirement (0.4) we can again restrict our attention to
u’. We first note that
P[CD | ¢, o*; Ril

=PX—X<dX,—X>d1l2ismm<j=<k)|, o]
= P[YVy/U, < (N/2)%/S, (s =1,2,--- , k)

Plti = (N/2)'a/S, (i = 1,2, -+, k)]

Il
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where (Y1, Y,, -+, V) follows a multivariate normal distribution with mean
vector 0 and covariance matrix ¥ given in (1.8), »U,? follows a chi-square dis-
tribution with » degrees of freedom and U,? is independent of (¥y, Y, -+, ¥});
ti=Yy/U, (¢ =1,2, --- | k) are Student’s ¢ variables with » degrees of freedom
each, and they are correlated with correlation matrix 2. It can be seen from [4]
that the joint distribution of (t ,4,, - -, t) follows a multivariate ¢ distribution
with joint density function

(23) ferz(ti, by o0, 1)
= TG+ )™ [ZFTGI™ 1L + 57 2 e

fortie (—w,0),i=1,2, -+, L.
Let h, be the solution of the equation

(2.4) Po= [Y [P [P fons(t, by o ) [Toe dis

Then the sample size N can be determined in the following
TurEoREM 2.1. If N is the smallest integer satisfying

(2.5) N = max {no, 2h,°8,*/a’,

where h, is the solution of (2.4) with P = P* and a is defined in (0.8), then the
probability requirement (0.4) is satisfied.
Proor.

P[CD | u, o"; Rs] 2 P[CD | ', o% Ry »
= Plt: = (N/2)%a/8, (1 = 1,2, --- , k)] = P*

where the last inequality follows from the fact that for any observed S, in the
first stage, we have (N/2)*a/S, = h, from (2.5).

The values of 4, have been computed and tabulated in Table 2 for P = 0.50,
0.75, 0.90, 0.95, 0.975 and 0.99; & = 2(1)6(2)12(4)20; and » = 5(1)10(2)20(4)-
60(30)120. For every fixed P and k, , converges to the corresponding b value
given in Table 1 when » is large, and those b values are repeated there under
v = o Table 2 is obtained by a double summation based on Gaussian quadrature
formula given in [17]. To be conservative, the entries have all been rounded to
the next higher value (in the 5th decimal) and should be in error by at most
one unit in the last digit given. ,

2.1 The expected sample size and relative efficiency. Let N be the random sample
size defined in (2.5). It is easily seen that

PIN=n]=0 for n < n,
(2.6) = P[2h,’8,'/d* < m for n = ng,
=Pn — 1< 21’8 a*<n] for n=m+ 1.

Let
(2.7) 0 = (23,7



TABLE 2

Equi-coordinate percentage poinis h of a multivariate ¢ distribution with correlation matriz I for
P = 0.50, 0.75, 0.90, 0.95, 0.975, 0.99;

k= 2(1)6(2)12(4)20; and
» = 5(1)10(2)20(4)60(30)120.
B
]

2 3 4 | 5 6 | 8 10 12 [ 16 ] 20

P = 050
5| .68057 | 89079 | 1.06270 | 1.16737 | 1.26195 | 1.30388 | 1.49125 | 1.56779 | 1.68341 | 1.76005
6| .67397 | .88145 | 1.05075 | 1.15380 | 1.24685 | 1.37666 | 1.47249 | 1.54784 | 1.66173 | 1.74613
7| .66931 | .87488 | 1.04234 | 1.14425 | 1.23620 | 1.36449 | 1.45921 | 1.53371 | 1.64633 | 1.72982
8| .66584 | .87000 | 1.03610 | 1.13716 | 1.22829 | 1.35544 | 1.44031 | 1.52315 | 1.63480 | 1.71760
9| .66317 | .86623 | 1.03120 | 1.13168 | 1.22218 | 1.34843 | 1.44163 | 1.51495 | 1.62583 | 1.70807
0| .66104 | .86324 | 1.02746 | 1.12733 | 1.21731 | 1.34284 | 1.43551 | 1.50840 | 1.61865 | 1.70043
2| .65786 | .85878 | 1.02176 | 1.12084 | 1.21005 | 1.33449 | 1.42633 | 1.49857 | 1.60784 | 1.68892
14 | .65561 | .85562 | 1.01771 | 1.11623 | 1.20489 | 1.32854 | 1.41978 | 1.49154 | 1.60009 | 1.68064
16| .65303 | .85326 | 1.01470 | 1.11279 | 1.20103 | 1.32408 | 1.41486 | 1.48626 | 1.59425 | 1.67438
8 | .65263 | .85143 | 1.01236 | 1.11012 | 1.19804 | 1.32061 | 1.41104 | 1.48214 | 1.58969 | 1.66949
0| .65150 | .84998 | 1.01049 | 1.10799 | 1.19565 | 1.31784 | 1.40797 | 1.47884 | 1.58602 | 1.66555
| .65003 | .84780 | 1.00770 | 1.10480 | 1.19207 | 1.31369 | 1.40337 | 1.47388 | 1.58050 | 1.65961
18 | .64802 | .84625 | 1.00571 | 1.10253 | 1.18952 | 1.31072 | 1.40008 | 1.47032 | 1.57653 | 1.65532
12 | .64810 | .84500 | 1.00423 | 1.10083 | 1.18760 | 1.30850 | 1.39761 | 1.46765 | 1.57354 | 1.6520
36 | .64745 | .84419 | 1.00307 | 1.09951 | 1.18612 | 1.30677 | 1.39568 | 1.46557 | 1.57120 | 1.64956
10| .64604 | .84347 | 1.00215 | 1.09846 | 1.18493 | 1.30538 | 1.39414 | 1.46389 | 1.56033 | 1.64753
14| .64652 | .84288 | 1.00140 | 1.09760 | 1.18396 | 1.30424 | 1.39288 | 1.46253 | 1.56779 | 1.64586
18 | .64617 | .84239 | 1.00077 | 1.09688 | 1.18315 | 1.30330 | 1.30182 | 1.46138 | 1.56651 | 1.64447
s2 | .64588 | .84108 | 1.00024 | 1.09627 | 1.18246 | 1.30250 | 1.30093 | 1.46041 | 1.56542 | 1.64328
6 | .64562 | .84163 | 0.99979 | 1.09575 | 1.18188 | 1.30181 | 1.39017 | 1.45958 | 1.56448 | 1.64227
50 | .64540 | .84132 | 0.99939 | 1.09530 | 1.18137 | 1.30122 | 1.38050 | 1.45886 | 1.56367 | 1.64138
0 | .64438 | .83089 | 0.99756 | 1.09320 | 1.17900 | 1.20844 | 1.38640 | 1.45549 | 1.55086 | 1.63723
0 | .64387 | .83918 | 0.99664 | 1.00215 | 1.17781 | 1.29705 | 1.38485 | 1.45380 | 1.55795 | 1.63515
w | .64235 | .83705 | 0.99390 | 1.08901 | 1.17426 | 1.29288 | 1.38017 | 1.44870 | 1.55216 | 1.62881

P =075
5| 1.28547 | 1.49020 | 1.67149 | 1.78273 | 1.88216 | 2.02501 | 2.13209 | 2.21722 | 2.34734 | 2.44484
6 | 1.26035 | 1.46657 | 1.63178 | 1.73848 | 1.83356 | 1.97019 | 2.07255 | 2.15393 | 2.27832 | 2.37156
7 | 1.24291 | 1.44395 | 1.60427 | 1.70782 | 1.79988 | 1.93216 | 2.03122 | 2.10004 | 2.23027 | 2.32047
8 | 1.23000 | 1.42735 | 1.58400 | 1.68534 | 1.77517 | 1.90423 | 2.00083 | 2.07757 | 2.19487 | 2.28279
9 | 1.22027 | 1.41465 | 1.56866 | 1.66814 | 1.75626 | 1.88285 | 1.97754 | 2.05276 | 2.16769 | 2.25384
10 | 1.21251 | 1.40463 | 1.55647 | 1.65455 | 1.74132 | 1.86594 | 1.95913 | 2.03312 | 2.14617 | 2.23088
12 | 1.20102 | 1.38080 | 1.53845 | 1.63447 | 1.71923 | 1.84093 | 1.93185 | 2.00402 | 2.11422 | 2.19678
14 | 1.19293 | 1.37936 | 1.52577 | 1.62033 | 1.70367 | 1.82330 | 1.91262 | 1.98348 | 2.00165 | 2.17266
16 | 1.18693 | 1.37161 | 1.51636 | 1.60984 | 1.69212 | 1.81020 | 1.89832 | 1.06821 | 2.07484 | 2.15469
18 | 1.18220 | 1.36564 | 1.50910 | 1.60174 | 1.68321 | 1.80010 | 1.88728 | 1.95640 | 2.06185 | 2.14078
20 | 1.17860 | 1.36089 | 1.50333 | 1.50531 | 1.67612 | 1.79205 | 1.87850 | 1.94701 | 2.05150 | 2.12969
24 | 1.17311 | 1.35381 | 1.49473 | 1.58572 | 1.66556 | 1.78007 | 1.86540 | 1.93300 | 2.03605 | 2.11313
28 | 1.16921 | 1.34879 | 1.48864 | 1.57892 | 1.65807 | 1.77157 | 1.85610 | 1.92305 | 2.02507 | 2.10136
32 | 1.16631 | 1.34505 | 1.48400 | 1.57385 | 1.65248 | 1.76522 | 1.84915 | 1.91561 | 2.01687 | 2.09256
36 | 1.16405 | 1.34215 | 1.48056 | 1.56092 | 1.64815 | 1.76030 | 1.84377 | 1.90985 | 2.01050 | 2.08573
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TABLE 2 (continued)

k

5|6ls

10

12

16

20

P = 0.75 (continued)

.16226
.16079
.15957
. 15854
.15766
.15689
.15334
.15158
.14630

[ T SR S g

1.33983
1.33795
1.33638
1.33505
1.33392
1.33293
1.32837
1.32609
1.31930

1.47775
1.47546
1.47355
1.47194
1.47056
1.46937
1.46382
1.46106
1.45281

1.56678 | 1.64470 | 1.75637
1.56422 | 1.64188 | 1.75317
1.56210 | 1.63954 | 1.75051
1.56030 | 1.63755 | 1.74825
1.55876 | 1.63586 | 1.74633
1.55743 | 1.63439 | 1.74466
1.55124 | 1.62757 | 1.73690
1.54815 | 1.62417 | 1.73304
1.53895 | 1.61402 | 1.72150

1.83948
1.83597
1.833056
1.83059
1.82848
1.82666
1.81816
1.81393
1.80130

1.90525
1.90150
1.89838
1.89574
1.89348
1.89152
1.88242
1.87789
1.86435

2.00543
2.00128
1.99783
1.99491
1.99241
1.99025
1.98019
1.97518
1.96020

2.08028
2.07583
2.07212
2.06899
2.06631
2.06399
2.05318
2.04779
2.03170

P = 0.90

© 00O L

10

14
16
18
20

28
32
36
40
44
48
52
56
60

120

2.00771
1.93795
1.89059
1.85635
1.83046
1.81019
1.78053
1.75987
1.74465
1.73298
1.72375
1.71006
1.70041
1.69324
1.68770
1.68329
1.67970
1.67672
1.67420
1.67205
1.67019
1.66157
1.65729
1.64457

2.24189
2.15646
2.09861
2.05686
2.02534
2.00070
1.96468
1.93963
1.92120
1.90707
1.89590
1.87936
1.86770
1.85904
1.85236
1.84704
1.84271
1.83911
1.83608
1.83349
1.83125
1.82086
1.81571
1.80040

2.42873
2.32910
2.26174
2.21320
2.17657
2.14796
2.10617
2.07713
2.05578
2.03943
2.02650
2.00737
1.99389
1.98388
1.97616
1.97002
1.96502
1.96087
1.95737
1.95438
1.95179
1.93980
1.93386
1.91622

2.55442 | 2.66588 | 2.82937
2.44550 | 2.54818 | 2.69895
2.37189 | 2.46867 | 2.61082
2.31886 | 2.41140 | 2.54735
2.27887 | 2.36821 | 2.49948
2.24764 | 2.33449 | 2.46210
2.20203 | 2.28526 | 2.40754
2.17035 | 2.25106 | 2.36964
2.14707 | 2.22594 | 2.34180
2.12924 | 2.20670 | 2.32048
2.11514 | 2.19149 | 2.30364
2.09429 | 2.16900 | 2.27872
2.07961 | 2.15316 | 2.26118
2.06870 | 2.14141 | 2.24816
2.06029 | 2.13233 | 2.23811
2.05360 | 2.12512 | 2.23013
2.04815 | 2.11925 | 2.22363
2.04364 | 2.11438 | 2.21823
2.03982 | 2.11027 | 2.21369
2.03657 | 2.10676 | 2.20980
2.03375 | 2.10373 | 2.20644
2.02070 | 2.08967 | 2.19088
2.01423 | 2.08270 | 2.18316
1.99504 | 2.06202 | 2.16029

2.95328
2.81313
2.71840
2.65015
2.59867
2.55846
2.49977
2.45899
2.42904
2.40610
2.38798
2.36117
2.34229
2.32828
2.31748
2.30889
2.30190
2.29610
2.29121
2.28703
2.28342
2.26668
2.25838
2.23378

3.05255
2.90461
2.80455
2.73244
2.67803
2.63554
2.57348
2.53036
2.49868
2.47442
2.45525
2.42689
2.40693
2.39211
2.38068
2.37160
2.36420
2.35807
2.35289
2.34847
2.34465
2.32695
2.31818
2.29217

3.20554
3.04560
2.93732
2.85922
2.80026
2.75419
2.68688
2.64009
2.60570
2.57936
2.55854
2.52775
2.50606
2.48997
2.47756
2.46769
2.45966
2.45299
2.44737
2.44257
2.43842
2.41920
2.40967
2.38142

3.32111
3.15216
3.03766
2.95502
2.89261
2.84381
2.77248
2.72288
2.68640
2.65846
263637
2.60369
2.58068
2.56360
2.55042
2.53995
2.53142
2.52435
2.51838
2.51329
2.50888
2.48847
2.47836
2.44838

P =095

DO ©0oTo W

[ureyry

2.56513
2.44344
2.36222
2.30424
2.26079
2.22705
2.17806

2.82213
2.67692
2.58029
2.51145
2.45996
2.42002
2.36212

3.02640
2.86038
2.75012
2.67169
2.61310
2.56770
2.50195

3.16640 | 3.29014 | 3.47342
2.98658 | 3.09743 | 3.26186
2.86724 | 2.96961 | 3.12161
2.78241 | 2.87879 | 3.02198
2.71907 | 2.81101 | 2.94764
2.67001 | 2.75851 | 2.89008
2.59900 | 2.68257 | 2.80684

3.61302
3.38705
3.23724
3.13082
3.05142
2.98995
2.90105

3.72530
3.48772
3.33021
3.21829
3.13479
3.07013
2.97663

3.89898
3.64352
3.47406
3.35361
3.26370
3.19408
3.09338

4.03064
3.76174
3.58324
3.45629
3.36150
3.28809
3.18186
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TABLE 2 (continued)

k

6

8

10

12

16

20

P

= 0.95 (continued)

14
16
18
20
24
28
32
36
40

48
52
56
60

120

2.14423
2.11947
2.10056
2.08566
2.06367
2.04822
2.03678
2.02796
2.02095
2.01526
2.01053
2.00655
2.00315
2.00021
1.98661
1.97987
1.95993

2.32220
2.29301
2.27075
2.25322
2.22736
2.20921
2.19577
2.18542
2.17721
2.17053
.16499
.16032
.15634
.15289
.13696
.12908
.10574

BN NN

2.45668
2.42361
2.39840
2.37856
2.34932
2.32881
2.31363
2.30195
2.29267
2.28514
2.27889
2.27362
2.26913
2.26525
2.24729
2.23840
2.21213

2.55011
2.51443
2.48723
2.46583
2.43430
2.41220
2.39584
2.38325
2.37326
2.36514
2.35841
2.35274
2.34790
2.34372
2.32438
2.31482
2.28654

2.63031
2.59218
2.56313
2.54027
2.50660
2.48300
2.46554
2.45211
2.44145
2.43278
2.42560
2.41956
2.41439
2.40993
2.38931
2.37912
2.34897

2.74958
2.70781
2.67600
2.65097
2.61412
2.58829
2.56919
2.55450
2.54284
2.53337
2.52552
2.51891
2.51326
2.50839
2.48585
2.47470
2.44177

2.83991
2.79531
2.76134
2.73463
2.69529
2.66774
2.64736
2.63168
2.61924
2.60914
2.60077
2.59371
2.58769
2.58250
2.55846
2.54658
2.51147

2.91232
2.86541
2.82970
2.80160
2.76024
2.73126
2.70984
2.69335
2.68028
2.66966
2.66085
2.65344
2.64711
2.64165
2.61638
2.60390
2.56700

3.02410
2.97357
2.93509
2.90483
2.86027
2.82906
2.80598
2.78823
2.77415
2.76271
2.75323
2.74525
2.73843
2.73255
2.70534
2.69190
2.65218

3.10878
3.05546
3.01485
2.98291
2.93589
2.90295
2.87860
2.85986
2.84500
2.83293
2.82292
2.81450
2.80731
2.80110
2.77239
2.75820
2.71629

P = 0.975

© 00 S WL

10

14
16
18
20
24
28
32
36

48
52

60
90
120

3.15876
2.96601
2.83955
2.75037
2.68419
3.63315
2.55965
2.50931
2.47269
2.44487
2.42301
2.39088
2.36840
2.35179
2.33903
2.32891
2.32069
2.31388
2.30815
2.30326
2.29903
2.27951
2.26987
2.24140

3.44437
3.21856
3.07086
2.96695
2.88996
2.83069
2.74547
2.68721
2.64487
2.61273
2.58751
2.55046
2.52457
2.50545
2.49076
2.47912
2.46967
2.46184
2.45525
2.44963
2.44478
2.42236
2.41129
2.37864

3.67090
3.41633
3.25020
3.13355
3.04725
2.98088
2.88560
2.82053
2.77332
2.73750
2.70941
2.66818
2.63939
2.61814
2.60183
2.58890
2.57841
2.56972
2.56241
2.55618
2.55079
2.52594
2.51367
2.47751

3.82816
3.55432
3.37579
3.25053
3.15792
3.08673
2.98458
2.91488
2.86432
2.82598
2.79591
2.75181
2.72102
2.69831
2.68087
2.66705
2.65584
2.64656
2.63875
2.63209
2.62634
2.59979
2.58669
2.54808

3.96687
3.67516
3.48516
3.35193
3.25348
3.17784
3.06935
2.99537
2.94172
2.90106
2.86018
2.82244
2.78081
2.76575
2.74728
2.73265
2.72078
2.71096
2.70269
2.60564
2.68955
2.66146
2.64760
2.60676

4.17376
3.85575
3.64884
3.50382
3.39672
3.31446
3.19655
3.11618
3.05793
3.01379
2.97921
2.92850
2.89312
2.86704
2.84702
2.83117
2.81831
2.80766
2.79871
2.79107
2.78448
2.75406
2.73905
2.69486

4.33198
3.99376
3.77385
3.61976
3.50597
3.41859
3.29337
3.20804
3.14622
3.09938
3.06268
3.00889
2.97137
2.94372
2.92249
2.90569
2.89206
2.88077
2.87128
2.86319
2.85620
2.82396
2.80807
2.76125

4.45962
4.10505
3.87465
3.71320
3.59398
3.50245
3.37128
3.28191
3.21717
3.16813
3.12971
3.07340
3.03413
3.00519
2.98297
2.96539
2.95112
2.93932
2.92939
2.92092
2.91361
2.87988
2.86326
2.81429

4.65777
4.27776
4.03111
3.85821
3.73053
3.63250
3.49201
3.39631
3.32699
3.27448
3.23335
3.17307
3.13104
3.10007
3.07630
3.05749
3.04223
3.02960
3.01897
3.00991
3.00209
2.96602
2.94824
2.89587

1.80857
4.40917
4.15022
3.96860
3.83445
3.73145
3.58382
3.48325
3.41040
3.35522
3.31200
3.24866
3.20450
3.17196
3.14699
3.12722
3.11119
3.00792
3.08676
3.07724
3.06903
3.03114
3.01246
2.95746




PARTITIONING A SET OF NORMAL POPULATIONS

TABLE 2 (concluded)

1313

10

12

16

20

.99

© 00~ O;

10

14
16
18
20
24
28
32
36
40
44

52
56
60

120

4.02790 | 4.36051
3.70523 | 3.98906

4.62385
4.21075

3.49824 | 3.75150 | 3.94718

3.35462 | 3.58711

3.76519

3.24933 | 3.46683 | 3.63226

3.16892 | 3.37513

3.53105

3.05435 | 3.24470 | 3.38732
2.97673 | 3.15650 | 3.29029

2.92071 | 3.09293

3.22044

2.87839 | 3.04496 | 3.16779
2.84531 | 3.00748 | 3.12669
2.79692 | 2.95274 | 3.06669
2.76325 | 2.91467 | 3.02501

2.73848 | 2.88669

2.99439

2.71948 | 2.86524 | 2.97093

2.70446 | 2.84829

2.95240

2.69228 | 2.83455 | 2.93738

2.68221 | 2.82318
2.67374 | 2.81363
2.66651 | 2.80549
2.66029 | 2.79847
2.63157 | 2.76612
2.61743 | 2.75019
2.57583 | 2.70340

2.92497
2.91453
2.90564
2.89798
2.86267
2.84529
2.79428

4.80875
4.36746
4.08617
3.89213
3.75052
3.64276
3.48983
3.38666
3.31244
3.25651
3.21287
3.14918
3.10497
3.07248
3.04761
3.02796
3.01204
2.99888
2.98783
2.97841
2.97028
2.93287
2.91447
2.86045

4.97154
4.50437
4.20682
4.00177
3.85222
3.73848
3.57717
3.46843
3.39023
3.33134
3.28540
3.21839
3.17188
3.13773
3.11158
3.09093
3.07420
3.06037
3.04875
3.03886
3.03032
2.99103
2.97171
2.91500

5.21579
4.71040
4.38875
4.16733
4.00594
3.88327
3.70941
3.59230
3.50814
3.44478
3.39538
3.32335
3.27338
3.23669
3.20862
3.18644
3.16848
3.15364
3.14118
3.13056
3.12140
3.07925
3.05853
2.99774

5.40324
4.86846
4.52823
4.29419
4.12366
3.99408
3.81051
3.68690
3.59811
3.53128
3.47919
3.40325
3.35058
3.31193
3.28235
3.25899
3.24008
3.22445
3.21132
3.20014
3.19049
3.14612
3.12430
3.06033

5.55485
4.99628
4.64100
4.39675
4.21879
4.08360
3.89211
3.76322
3.67065
3.60099
3.54669
3.46756
3.41270
3.37243
3.34162
3.31730
3.29760
3.28133
3.26766
3.25601
3.24597
3.19977
3.17706
3.11048

5.79095
5.19528
4.81657
4.55641
4.36687
4.22289
4.01901
3.88182
3.78331
3.70920
3.65144
3.56729
3.50896
3.46616
3.43341
3.40756
3.38663
3.36933
3.35481
3.34244
3.33177
3.28269
3.25857
3.18787

5.97127
5.34717
4.95059
4.67835
4.47994
4.32923
4.11584
3.97227
3.86019
3.79165
3.73122
3.64320
3.58219
3.53742
3.50318
3.47614
3.45425
3.43617
3.42099
3.40805
3.39690
3.34550
3.32038
3.24648

Since »8,’/4” is a chi-square variable with » degrees of freedom, (2.6) can be
rewritten as

PIN =n]=0
=P [sz = OVnO]

= Plov(n — 1) < x,° £ 6vn]

(2.8)

Hence

(29) EN

(2.10)

noP[N = no] + Z:=-’IL0+1 nP[N = n]

for n < ng,

for n

for n

P < Omo] + D2nengs1n[2°T(v/2)]

Consider any fixed summand in the second term on the rhs of (2.9). Since for
Ov(n — 1) < y < 6vn n satisfies

y/0v = n < y/ov + 1,

=n07

= no + 1.

Ovn

oy(n—1) Y

2—1 —y/2
YR .
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using the first inequality in (2.10), the second term @ on the rhs of (2.9) can be
bounded by
(211) QZ 2o 27T (/27 [laon (69) 7y %" dy
= §7'Plx12 > vno);
similarly, by the second inequality in (2.10) @ is upper bounded by
(2.12) Q = 07'Pllie > 0o + Pl > 6vmo).
Combining (2.9), (2.11) and (2.12), we have
(213) EN = noPlx’ < vmo] + 67Plxte > 0vmo] + rPho? > 0vmo]

for some r ¢ (0, 1).

The expected sample size EN given in (2.13) is a function of P*, k, no and \,
and it depends on P* only through 4, .

LemMa 2.1. For every P*, k and first-stage sample size ng ,

(2.14) EN = 2\ for every A,
(2.15) limy-o EN/(2MR}F) = 1.
Proor. By (2.5),
EN = E max {n, 2h,°8,*/d%} = E 2h,°S,%/a’ = 2\7R,%,

this proves (2.14). The proof of (2.15) follows from (2.13).

Let No be the sample size required under the single-stage procedure for the LF
configuration, the following theorem investigates the asymptotic relative effi-
ciency of the two-stage procedure wrt the single-stage procedure.

TueoreM 2.2. For every P*, k and first-stage sample size no .

2
(2.16) , %]—V = (%”) for every X\,
0
. EN (nY\
(2.17) im Ny = (3) :

Proor. The proof of this theorem follows from (1.10) and Lemma 2.1, if we
disregard the fact that Ny has to be an integer.

2.2 The expected misclassification size. Let EM, denote the expected misclassifi-
cation size under the procedure R, when u = w’, then it is easily seen that EM,
is the supremum of the expected misclassification size over all mean vectors u.
Due to the difficulty that the sample size N is a chance variable, the exact mathe-
matical expression for EM, can not be obtained. However, both lower and upper
bounds on EM, can be derived and the asymptotic behavior of EM, (as A — )
can be examined based on those bounds.

LevMA 2.2. Let EN be the expected sample size under R, , then

(2.18) EM, = k[l — ®((REN)/N)]  for every \.
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Proor. It is clear that
EM, = Ek[1 — &((3N)}/))]

where the expectation is taken over N space. Consider g(N) = 1 — ®((ZN)*/»)
as a function of N. Since for A > 0

(&/dN")g(N) = (8\) (aN) T IN "' + (2\) T exp (— N/(4\") > 0

g(N) is a convex function of N. It follows from Jensen inequality that Eg(N) =
g(EN ), which completes the proof.

To establish an upper bound on EM, , we need the following inequality which
is given in [5: p. 166].

LemMma 2.3. (Feller-Laplace). For every z > 0,

(2.19) (2r)F (27 — 2% exp (—7Y/2)< Iz (2r)F exp (—2%/2) dx
< (2r) 2 exp (—4Y/2).
When z is not too small, we can write the approximation
(2.20) 7 (2r) Fexp (—2%/2) dx ~ (2r)F 27 exp (—2%/2).
LEMMA 2.4. For every A > 0 and the first-stage sample size no .
(2.21) EM, < k{[1 — ®&((3n0)*/N\)|Plx,” < 0vnol
+ (v + B — DB £(B)Phia > 0vno(l + B*/v))}

where f,(-) is the density function of Student’s t-distribution with v degrees of
freedom and 6 is defined in (2.7).
Proor:

EM, = k{[1 — ((3n0)/M)IPIN = no]
+ D [1 = 2((30)/NIPIN = n}}
= E{[1 — &((3n0)/N)IPIx,” £ Ovmi]
+ Domengra [1 — ®((3n)}/N)IPlov(n — 1) < x,° < 6vn])
=aet k{11 + I}.

To find an upper bound on I;, using Lemma (2.3) and the first inequality in
(2.10) we have

I £ 2acnern 28@2m) Fexp (—n/(4N")) [0in—n (27T (v/2)) 7y e dy
< s (/2T (/2R [ty 117 exp (—3(1 + hY/v)y) dy
= (v + B ((r — DB) (k) Plxs-1 > 6mo(1 + h'/v)),

which yields the desired result.
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TuEOREM 2.3. For every P*, k and first-stage sample size n ,
(2.22) k[l — &(h)] £ limyew EMy < k(v + B2)(v — 1)h) 7 (hy)

where f,(-) s the density funciion of Student’s t-distribution with v degrees of
freedom.

Proor. The lower bound follows from Lemma 2.2 and (2.15), the upper
bound follows from Lemma 2.4.

When » is fairly large, the ratio (v 4 h,*)/(» — 1) is approximately 1, f,(h,)
is approximately ¢(h,) where ¢(-) is the standard normal density function.
Applying (2.20), the upper bound in (2.22) is approximately k[1 — &(h,)].
Hence limy., EM, is approximately k[1 — ®(h,)].

3. A sequential procedure. The relative efficiency of the two-stage procedure
based on the idea of Stein [16] was investigated in Section 2. It can be seen that
the relative efficiency, No/EN, is uniformly less than 1 (for all values of ¢ and
the first-stage sample size 7o), and it can be explained as (at least partly) due
to the fact that the information of the observations in the second stage is not
utilized in estimating the unknown parameter o°. This gives the idea of perform-
ing the experiment so that ¢” can be estimated sequentially. A sequential pro-
cedure based on the idea of the random stopping rule developed by Chow and
Robbins [3] is then considered in this section to serve as an alternative to the
two-stage procedure. It should be pointed out that this sequential procedure
provides only an “asymptotic” solution to our problem, and the PCD under this
procegure may be slightly less than P* for some values of the unknown param-
eter o, *

3.1 The procedure and its asymptotic relative efficiency.

PrOCEDURE R .

(1) We observe the sequence X; = {Xo;, X15, -+, Xij} defined in (1.1),
one vector at a time, stop with Xy where
(3.1) N is the first integer n = 2 such that 8," < na’/(2h"),
a is defined in (0.8), » = (k 4+ 1)(n — 1), h, satisfies (2.4) with P = P* and
(3.2) 87 = v Xy Xoim Xy — 07 (i Xip)T

(2) Let the observed N value in (1) be n. Compute
(3.3) Xi=n"D2 70Xy for 4=0,1,---,k

and apply the decision rule defined in (1.3).
LemMA 3.1. For every w and every o,

(3.4) PIN < = |y, d"; Rs] = 1.
Proor. By the strong law of large numbers, lim,.., S,> = ¢° a.s. Hence
PN = = |y, % Bs] = P{N2=18/n > a’/(21")}} = 0.

The following theorem states a relationship between the sample sizes required



PARTITIONING A SET OF NORMAL POPULATIONS 1317

for the two-stage procedure and the sequential procedure. Let N, and N, denote
the sample size required under R, and R; , respectively, then
THEOREM 3.1. For every first-stage sample size no in Ry , we have

(3.5) [N: =mn) C [N, £ NJ.

Proor. Let ¥ = {w:w = (%1, Xz, - - - )} be the sample space. Since for every
w & X we have Ni(w) = ny, it suffices to show that [N, = ng] € [N, £ ny).
Let {B.} and {C,} denote the terminal sets for R, and R;, respectively; i.e.,

B, ={wiwe¥, N, =n} for n=mng,mo+1, -,
{wiweX, N,=n} for n=2,3-.-
Then for v = (k 4 1)(no — 1), it follows from (2.5) that
w & Bay & 8% (w) = no d®/(2h1).

this implies that either there exists an n < ng such that w € C, or w € C,, . Hence
w & Uz, C, or equivalently, w & [N, < ng).
CoroLLARY. Forv = (k + 1)(ny — 1),

(3.6) PIN, £ N 2 P[N, = ng] = P[X,’ £ wno/(2\R,1)].

In particular, limy.o P[N; < N,] = 1 for every no = 2.

In the following we give the bounds on the cdf of the random sample size N
under the procedure R3 . We first observe that for every n = 2 and S,? given in
(3.2), »8,}/d” is distributed as V3 + Vi + -+ 4+ Va_y where the V’s are inde-
pendently identically distributed chi-square chance variables with (¢ + 1)*
degrees of freedom each (in fact, the V’s can be obtained by using Helmert
transformation ). Let the sequence of real numbers {q;}7 be such that

(B7) qi =1k + 1)/CIG + 1)/Fasn; — (G — 1)j/B e -]
for 7=1,2,--.

where ho = 0 and hq.11) ; satisfies (2.4) with P = P*forj = 1, then
TrEOREM 3.2. For every fixred n = 2,

(3.8) % (m/(2Nh°)) = PIN =] = 1 — JI55H 11 — xaean(g5)]

where v = (kK + 1)(n — 1).
Proor. Itfollowsfrom (3.1) that

N >n] = A= [k + DG — 10~ Saimin > (& + 1) — 1)j/(2N°m")]
=[Vi>q,25aV,> Ziagq, -, 25 Vi> 2l
Since
(225 V> 2 el
DIVi>q, 25 Vi> 2iaas, -, L= Vi> 2 gl
DNV > gl
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it follows that
(39) 1 —=x'(m/(2h%)) = PIN > n] = [T 11 — xesn(2)],

and the theorem is proved by taking complements.
CoROLLARY. For every fized n = 2,

(3.10) limy,o PIN = n] = 1,
(3.11) limy, P[N = 2] =0

In particular, the cdf of N converges to a degenerate distribution as A — 0; i.e.,
(3.12) limy,o P[N = 2] = 1.

RemArk. (3.11) implies that as A — «, N — « in probability, which is also
implied by [3], see (3.14) in Lemma 3.2 below.

For large values of A\, we first state the following lemmas which are due to
Chow and Robbins [3]:

Lemma 3.2. Let yo(n = 1,2, ---) be any sequence of random variables such
that y, > 0 a.s., liMyse yn = 1 a.s., let f(n) be any sequence of constants such that
f(n) > 0,limn.e f(n) = o, lim,,.f(n)/f(n — 1) = 1, and for each ¢ > 0, define

(3.13) N = N(t) = smallest n = 1 such that y, < f(n)/t.

then N s well defined and nondecreasing as a function of t,

(3.14) limpew N = © as., lim;,e EN = o

and ’
(3.15) lim,,o f(N)/t = 1 a.s.

Lemwma 3.3. If the conditions of Lemma 3.2. hold and if also E(sup,y,) < =,
then

(3.16) limg, Ef(N)/t = 1.

Let N, be the sample size required under the single-stage procedure for the LF
configuration, the following theorem investigates the asymptotic relative effi-
ciency of the sequential procedure wrt the single-stage procedure.

TuaroreM 3.3. Let Ny be defined in (1.10) and N be the random sample size de-
Jfined in (3.1). Then

(3.17) limy,o N/Ny = 1 a.s.;
(3.18) limy,eo EN/Ny = 1

Using the terminology in [3], it follows from (3.18) that the procedure R; is
asymptotically relatively efficient.
Proor. Forv = (k + 1)(n — 1), set

Yn = 82/6% f(n) = n(b/h,)’ and ¢ = 2A%% /
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Since y, is distributed as[(k + 1)(n — ) (Vi+ Vot -+ + Va-1) where the
V’s are i.i.d. chi-square chance variables each with (k + 1) degrees of freedom, it
follows from the strong law of large numbers that lim,,. 3, = 1 a.s. Since %, —
b, the rest of the conditions in Lemma 3.2 are easily seen to be satisfied. Hence
(3.17) is proved.

To prove (3.18), by Lemma 3.3 it suffices to show that E(sup, ¥») < «. Let
¢ > 1 be any real number. Then

Plsupn yn > ] = P{Uao1 [[(k + 1n]7 220V, > ol

< 20 P2 V> (k4 L)ne
2 P25 Vi— (b + 1)n| > (b + Dn(ec — 1)]
2 B2 Vi — (b4 Dnl'/{l(k + nl'(c — 1)4

where the last inequality follows from Markov Inequality. By elementary calcu-
lations it is easily seen that the fourth central moment of a chi-square chance
variable with  degrees of freedom is 12r(r + 4). Hence

ER 34 Vi— (k+ nl' = 12(k + Un[(k + 1)n + 4] < 60(k + 1)%°
which implies that for every ¢ > 1,
(3.19) Plsup, yn > ¢l S 60(k + 1) 2(c — 1) * X% 0™ = M(c — 1)~
for some finite number M that does not depend on ¢. Thus
E(supayn) £ 2+ 254 (2 4+ J)P2 + 5 — 1 < supayn < 2 + j]
2242750 (2 4+ §)Psupays > 2 +j — 1]
S2+ 2L MEA)T S 2480 X5 < w

which completes the proof of (3.18).

3.2 The PCD function and its asymptotic behavior.

The sequential procedure provides only an “asymptotic’ solution to our prob-
lem in the sense that the PCD under this procedure may be slightly less than P*
for some values of the unknown parameter o*, or equivalently, A. In the following
we examine the PCD function and its asymptotic behavior as a function of \.

For the covariance matrix Z specified in (1.8), we first define

(3.20) B((%n)é/k) — f_(_%;»)’/xf(_%;)’/x . ’ . J‘(_é;»)*/x (21‘_)—k/2 Izl—i

exp (—3y' 2 'V IT%, dy:

(note that 8 depends on # and \ only through the ratio (3n)}/)). Then it is easily
seen that for any mean vector u, the conditional PCD given N = n is lower
bounded by

PICD |y, \, N =n] 2 P[CD |y’ \, N = n] = 8((3n)}/))

IIA

IA
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for every n, where u’ is the LF configuration given in (1.7). Hence it follows that
(321)  P[CD |y, \ Rs] 2 P[CD | ¢, A; Bs] = EB((3N)}/\)

where the expectation is taken over N space (it should be observed from (3.1)
that the distribution of N here depends on the parameter )).
THEOREM 3.4. For every mean vector w,

(3.22) limp,o P[CD | u, \; R3] = 1,
(3.23) limy, P[CD | u, \; Rs] = P*.

Proor. By (3.21), we can restrict our attention to w = u’ and work
on EB((3N)'/A).

Since g is continuous and monotonically increasing and N = 2 a.8., it follows
that B((3N)*/A) = B(1/)) a.s. and

(8.24) limy.o EB((3N)}/A) = limy.o BB(1/M) = lima.o B(1/2) = 1.

This proves (3.22).

To prove (3.23), let {\;}7 be an arbitrary but fixed monotonically increasing
sequence such that lim;,, \; = . By (3.17), lim;,. N/(2\’b*) = 1 a.s. where
b is such that 8(b) = P*. Since a.s. convergence is preserved by continuous
mapping, it follows
(3.25) lim.. B((3N)Y/N;) = B(b) ass.
Let F;(-) and F(-) be the cdf of ((3N)¥/\;)(j = 1,2, ---) and 8(b) respec-
tively. Then it follows from (3.25) that
(3.26) Fi(-) —aF(-).
But the sequence of chance variables {8( (3N )*/ A;)} is uniformly bounded by 0
and 1 and B(b) is a degenerate variable, so F;(0) = F(0) = 0 and F;(1) =
F(1) = 1(j = 1,2, ---). Applying Helly-Bray Lemma,

limyow BB((3N)Y/N;) = limyow [3 ydFi(y) = [3ydF(y) = P*.

Since the sequence {\;} is arbitrarily chosen, the proof of (3.23) is completed.

3.3 The expected misclassification size. Let EM, be the expected misclassifica-

tion size under B; when y = y°, we first give a lower bound on EM, for all \.
Lemma 3.4. Let EN be the expected sample size under Rs , then

(3.27) EMo = k[l — ®((3EN)'/\)]  for every \.

Proor. The proof of this lemma is similar to that of Lemma 2.2.

The following theorem shows that for extreme values of A, EM, under the se-
quential procedure is the same as that under the single-stage procedure.

THEOREM 3.5. Let b be defined in (1.9) with P = P,

(328) lim)ﬁo EMO = 0,
(3.29) limy, EMo = Kk[1 — &(b)].
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PROO?. The proof of this theorem is similar to that of Theorem 3.4 with
B(GGN)!/N) = KL — S((BN)/M)].
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APPENDIX

ON A PROPERTY OF CERTAIN MULTIVARIATE
NORMAL DISTRIBUTIONS

For arbitrary but fixed positive integers k and 7(0 = r < k), let the (k X k)
positive definite covariance matrix ¥, = (os;) be such that

@ if i=7

oij
= po¢ if isj and ¢,je{l,2,---,1 or
(A.1) L,je{fr+1,r+2 ---,Fk},
= —ps® if ief{l,2,---,7r and
jefr+1L,r+2, ---,k};

where p € (0, 1) and ¢ > 0. Let the multivariate normal probability integral P(r)
be defined by

(A2) P(r) = P, (r)
= [ [ oo [%e (207 207 exp (—3y' 27T dys

for ¢ e(— =, ). It should be observed that for either r = 0 or r = k, P(r) is
the probability integral of an equi-correlated multivariate normal distribution.
Let [z] denote the largest integer <x. The purpose of this appendix is to prove
the following

THEOREM. For every positive integer k, p € (0, 1), c e (—w, ©) and o® > 0,
we have

(A.3) P(r)=Pk—1r) for r=0,1,---,k;
(A4) P(r+ 1) < P(r) for r= 0,1---,[3k — 2).

ReEMARK. It follows immediately from this theorem that

()P(r+1)>P(r)forr =k — 1,k —2,---,[3(k 4+ 1)];and

(2) P(r) achieves an unique minimum at r = k/2 when k is even and a com-
mon minimum atr = 3(k — 1) and r = £(k + 1) when k is odd.

CoroLLARIES. (1) Let (Uy, Us, -+, Uy) have the joint distribution N (0, E.)
and let (Vy, Vs, - - -, Vi) have the joint distribution N (0, Z,). Let U = maxi<i<x Us,
V = maxic.<i Vi If [r — k/2| < |s — k/2|, then U is stochastically larger than V.

(2) Let (Uy, Uy, ---, Ux) and (Vi, Vo, -+, Vi) follow multivariate ¢ dis-
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tributions with common degrees of freedom v and correlation matrices . and s,
respectively. Let U = maxicicy Ui, V = maxigici Vi If |r — k/?] <l|s—k/2],
then U 1s stochastically larger than V.

Before we prove this theorem we first prove a lemma dealing with symmetric
functions. Let f(2) and G(z) be two real functions defined for z ¢ (— ®, » ) such
that f(z) = 0, ffwf(z) dz < © and 0 < G(z) £ M for some M > 0. For arbi-
trary but fixed real numbers 7 € (0, « ), s ¢ (— ©, » ) and any positive integer
k, we define
(A5) B(r) = [®uG(nz+ )G (—ne + s)f(z) dz, for r=0,1,---,k
and its first difference
(A6) AB(r) = B(r + 1) —B(r), for r=20,1,---,k— L

Lemma. If f(z) = f(—2) and G(z) is monotonically increasing, then for every
ne (0, ©»)andse (—», ®),

(A7) 6(7‘) = B(k - 7') fOT r=0,1,---, k7
(A.8) AB(r) =0 for r=0,1,---,[%(k — 2)].
Proor. Property (A.7) follows immediately by setting v = —z in the integral

on the rhs of (A.5).
To prove (A.8), first let

(A9) H(z) =[Gz +s) — G(—nmz+s)f(z) for ze(—w,);

then it is easily seen that

(A.10) H(z) = —H(—2) for ze (—w, ©),
and since 7 > 0,
(A.11) H(z) 2 0 for ze (0, »).

For every fixed r < 3(k — 1),
(A12) AB(r) = [5G (nz + )G (—nz + s)H(z) dz
+ [la G (nz + )G —ne + s)H(z) de.

Consider the second integral I, on the rhs of the above expression. Setting
u = —z and applying (A.10), we have

L= — [0 (nu + )G (—nu + s)H(u) du.
Substituting this in (A.12) gives
(A13) AB(r) = [0 G (nz + s)G (—nz + $)H (2)
G (e + 8) — G (nz + 8)] de.
Since by (A.11) G"(nz + s)G"(—nz 4+ s)H(2) = 0and G(—nz + s) = G(nz + s)
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for ze(0, « ), it follows that AB(r) = Ofor k — 2r — 1 > 0 or equivalently, for
r < [k — 2)];and AB(r) = Oforr = 3(k — 1). This proves (A.8).

ReMark. If the function G(z) is strictly increasing in (— «, ), then every
inequality in the proof of the above lemma will be a strict inequality hence (A.8)
will be a strict inequality.

Proor oF THE THEOREM. Without loss of generality, we assume ¢” = 1.

Let Zo, Zy, ---, Zi be independent standard normal chance variables, ¢(-)
and ®(-) be the density function and edf, respectively, of the standard normal
distribution. For arbitrary but fixed p £ (0, 1) and c e (— %, » ), let > 0 satisfy
p=n/(n"+1)andlets = c(n’ + 1)%.

For fixed (0 = r = k), we define

(A14) Yi= (Zi —nZ)/(n* + 1)} for i=1,2, ---,r;
=(77Z0_Zi)/(772+1)% for e=r4+1,r+2,---,k.

Then (Y, Yo, -+, Y}) follows a multivariate normal distribution with mean
vector 0 and covariance matrix ¥, defined in (A.1) for o> = 1. Hence

P(r)y=PlZ;=nZo+s8,4;>nZy—s;1 S1=rr<j= k]
JZo @ (n2 + $)8" 7 (—nz + 8)o(2) de.

The rest of the argument follows from the lemma. This completes the proof.

ExampLE. We consider the special case k = 2 and ¢ = 0. It is well-known that
if (U, Us) follows a bivariate normal distribution with means 0, a common but
arbitrary variance ¢° and correlation coefficient p, then

g(p) = P[U, £0,U, £0] =14 (2r) " are sin p.
If p > 0, then ¢g(p) > g(—p). Our result agrees with this statement because

g(p) corresponds to P(r) for either »r = 0 orr = 2 and g( —p) corresponds to P(r)
forr = 1.

It
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