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1. Introduction and Summary. Common estimates of multivariate location
parameters have the property that each component of the parameter is esti-
mated using only the corresponding component of the observations. This is true
of the sample mean, sample median and the vector of medians of averages
(studied in [1]), as well as of the rank-order statistics often applied to testing for
location. In some cases, particularly the multivariate normal, such estimators
achieve asymptotic efficiency, but in general information is lost. This paper
presents three methods of estimating multivariate location parameters which
use more information than is available in the marginal distributions. These
classes of estimators are asymptotically nearly efficient (ANE), in the sense that
for every ¢ > 0 there is an estimator in the class with asymptotic efficiency
>1 — e (if efficiency is measured by a comparison of the asymptotic covariance
matrix to the inverse of the information matrix).

Our ANE estimators are motivated by those of Ogawa [6] for univariate loca-
tion parameters. Ogawa obtained the asymptotically minimum-variance asymp-
totically unbiased estimator (ABLUE) for location or scale from a chosen set of
sample quantiles. It was soon observed (Tischendorf [10]) that the reciprocal of
the asymptotic variance of Ogawa’s estimator (properly normalized) is essen-
tially a Riemann sum for the information integral for the parameter being
estimated. Thus under mild regularity conditions the ABLUE approaches
asymptotic efficiency as larger sets of more closely spaced quantiles are chosen
for use. Ogawa’s estimators are therefore ANE for univariate location parameters.

In the present paper we describe three classes of ANE estimators for multi-
variate location parameters. The first two consist of linear estimators, and repre-
sent multivariate generalizations of Ogawa’s ANE class. Our three classes are
as follows: (1) Choose a set of marginal sample quantiles in each direction from
a continuous r-variate location parameter distribution. These quantiles generate
a random partition of Euclidean r-space R,, and for r > 1 the observed cell
frequencies contain additional information. We obtain the ABLUE’s in terms
of the sample quantiles and the observed cell frequencies for »r = 2 and show
that they are ANE. (2) For all r > 1, linear ANE estimators are obtained by
choosing a single sample quantile in each direction and partitioning R, by mark-
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1810 D. 8. MOORE

ing off fixed distances from these. The ABLUE’s in terms of the r chosen quantiles
and the observed cell frequencies are ANE. These estimators have much simpler
coeflicients than do those of class (1). (38) Finally, ANE estimators can be ob-
tained by exploiting analytic properties of RBAN estimators (Neyman [5]) for
a sequence of multinomial problems related to the given location parameter
family. These estimators are usually not expressed in closed form.

Ogawa proceeded by applying least squares theory to the asymptotic distribu-
tion of his chosen set of sample quantiles. The ABLUE’s of classes (1) and (2)
are here derived by the same method, but establishing the joint asymptotic dis-
tribution of the marginal sample quantiles and the observed cell frequencies is
non-trivial. Our method is to reduce the problem to one involving the multi-
nomial distribution. A similar idea was used by Weiss [11] to obtain the joint
asymptotic distribution of the quantiles alone, but the present problem requires
more elaborate arguments.

Section 2 contains a preliminary result for the multinomial distribution. The
ANE classes (1) and (2) are discussed in Section 3, while Section 4 presents the
third class. Estimators of all three classes will require use of a computer if the
distribution function cannot be expressed in closed form, and may therefore be
of limited practical usefulness. Section 5, however, contains an example for which
estimators of classes (1) and (2) can be computed with relative ease. For this
example, a bivariate logistic distribution, the performance of our estimators is
compared with that of the sample mean and median and of Ogawa’s univariate
ANE estimators.

Throughout, K denotes a generic positive constant, £{X} is the probability
law of the random variable X, and £{X,} — £{X} designates convergence in
law. N(u, Z) is the normal law with mean u and covariance matrix ¥ (which
may be 1 X 1).

2. A Preliminary Lemma. We require a limit theorem for the conditional
distribution of multinomial random variables given certain linear restraints.
This result has often been used in the literature on conditional chi-square tests,
but that literature does not seem to contain a proof. The lemma below can be
shown to follow from the very general theorems of Section 2 of Steck [9], but
we will give a more direct proof based on the uniform local limit theorem.

Let {n::i = 0, -+, M} be multinomial random variables with parameters
(n, {P3}), where 0 < P; < 1 for all 4, and set Q; = nl(ni/n — P;). {Zs:i =
0, -- - , M} are random variables having the jointly normal asymptotic dlstnbu-
tion of the Q, {b} will denote the set of objects b; having indices in a stated
subset of {0, ---, M}.

LEMMA. Let Qin, *** 5 Qmn be constants such that a;, — a; foreach 1 < 1 £ m
and

P[ZAlQi = Uiny * ZA,,,Qi = amn] >0
for all n, where Ay, -+, An are subsets of the index set {0, , M}. Denote by



MULTIVARIATE LOCATION PARAMETERS 1811

{Q4¥ a set of M — m Qs which have a non-degenerate distribution given the m
specified linear restraints. Then

(2~1) £{{Qa}*[ 241 Qi = Qiny ZA,,, Qi = am,,}
'—)"B{{Z':}*l ZAIZ': =0, ZAmZi = am}-

Proor. For the sake of notational simplicity we give the proof for the case of
a single linear restraint, ) o Q; = @, , where a, — a. {Q.}* will be chosen to be
{Q1, - -+, Qu}. It is well known that the multinomial n; have the distribution
of M + 1 independent Poisson random variables with means nP;, conditional
on 2y n; = n. Regarding the n; as Poisson allows the use of a univariate local
limit theorem. We must find the limit of

L{QI™ 200 Qi = an, 2280 Qi = 0} = £{{Q47| R}

where R denotes the linear restraints.

Let po(z), -+, pu(z) be the probability functions of the @;, and
nm(x), - -, nu(x) the densities of the limiting N (0, P;) distributions. The re-
sults we use, describing the convergence of 7¥pi(z) to n«(z) as n — « and also
2 — oo, are familiar for the binomial case (see Feller [2], Chapter VII). They
are proved for more general random variables in Richter [7].

First, for fixed g1, *++ , qu—1,

Pl{Q4}* = {¢}* and R]

= po(@n — D1 @) - 135" 9i(qs) -pu(—an — 258551 ¢0)

~ 0 — D) TS na(qs) ma(—a — D355 q0).

Let nowr = n*for 0 < e < %, so that r — o but r = o(n"*

D,- in Ry_.l by

). Define the square

Di=f{zi—r=z;8r,0=1,---, M — 1}.
Then by the local limit theorem,
P[{Q}* £ D)) = 215 PlQi g [—r, 1]
~ K(1 —&(r))

where @ is a normal df. The last expression tends to 0 exponentially as n — o
by a standard estimate for the tails of the normal distribution (Feller [2], page
166) . Therefore

P[R] = 210 PlQJ™ = {¢4* and R]
~ 25, Pl{Q}* = {¢g}* and R]
~ n—}(u+1) ZD, {no(a - EIZ==1 %‘) : Hgi—ll ni(Qi) 'nM( —a — Ei‘i;il Qz)}

# Again as a consequence of the uniform local limit theorem, n times the last



1812 D. S. MOORE

expression above is asymptotic to
f cet fn, no(a — l:'=1 2;) - HiM=—il ni(2:) “nu(—a — Efl:k-li-l 2;) day -+ - dema,

which converges to the corresponding integral (say P[R]) over Ry_; as n — .
So nP[R] ~ P.[R].

Combining these results, we have for the probability function of {Q;}* condi-
tional on R that uniformly in |g;] < n° (by Theorem 3 of [7])

M VPUQI* = {¢)* and R]/PIR]
(2.2) ~nola — Dk q:) - TS ni(qe)
nu(—a — D855 @) /Po[R).

The right side of (2.2) is the density of Z:*, - - - , Z_1 given the linear restraints
k0 Z" =aand D0 Z" = 0, where Zo*, - -+, Zy" are independent N (0, P;)
random variables. But the conditional distribution of Zy*, -+, Zy" given
D M,Z* = 0 is the distribution of Zy, - -+, Zy . Therefore the right side of
(2.2) is the density of the right side of (2.1) for m = 1, and (2.2) implies (2.1).

3. Two linear ANE estimators. A natural r-variate analog of Ogawa’s esti-
mator is the ABLUE from chosen sets of sample quantiles in each direction and
the observed cell frequencies of the partition of R, generated by the quantiles.
Unfortunately, the coefficients of these linear estimators are very complicated.
Theorem 1 is therefore stated only for the bivariate case.

For 0 < ey < -+ < ar < 1, denote by &,¢ = 1, -+, L, the sample a;-
quantiles based on the z-components of n independent observations from a
population with continuous bivariate location parameter edf F(z — 6,,y — 65).
The corresponding marginal population quantiles are z; = u; + 6, where u;
is the population ea;-quantile for 6, = 0. For given 0 < 8 < -+ < By < 1,
the sample and population quantiles from the y-component are denoted by
$1, - ,¢mand yr, -+, yu . Here y; = v; + 6, where v; is the marginal popu-
lation 8;-quantile for §: = 0. The LM sample quantiles partition the plane into
(L 4+ 1) (M + 1) cells. Let N;; denote the number of observations falling in the
open cell with “northeast corner” (&;, ¢;). (The cells not indexed by this scheme
are redundant when the sample quantiles are given.) Definefors =1, --- ,L + 1
andj = 1, ---, M + 1 the probabilities

(31)  Pij=F(ui,v;) — F(ui,va) — F(uia,0;) + F(uio1, v)
with the conventions
(3.2) Uy = Vg = — @0, ULl = Uy = + 0.

We abbreviate (3.1) as P;; = A;;F, thereby defining difference operators A;; .

The P;; can be thought of as asymptotic cell probabilities. Theorem 1 states
that the ABLUE’s in terms of the sample quantiles and the Q;; = N;;/n — Ps;
are ANE. We first introduce some notation.
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Let F; and F, denote the first partial derivatives of F(zx, y) with respect to z
and y, respectively, and define the quantities

0i; = Fr(ui, v;) — Fi(ui, v50), k5 = Fa(us, v;) — Fa(uio1, ;)

@i = D351 8:j(AiiFy/Pi; — Aija, Fy/Piy,;)
by = D2 kii(AiiFo/Pi; — A, i1Fa/Pi11)
e = D35 (8ijuii/Pij — 84 jvaii/ Pi i1

_5ii"i+l,j/Pi+l,j + 6i.j+1Ki+1,j/Pi+1, j+1)
d; = 2 ia (summand as in ¢;)

Sij = —‘A*Fl, Ty = —A*Fz

— Ain _ Ai.M+1H _ AL+1,jH + AL+1,M+1H

*
A"H
P;; Py Pry; Priiun

Any term above containing a factor 1/P,, for P, = 0 is interperted to be 0. Note
that the conventions (3.2) give F1(%z41,¥y) = 0, Fo(ury1,y) = fr(y) (the mar-
ginal det;sity of Y), and Fi(uo,y) = Fa(uo,y) = 0, ete. Define the 2 X 2 matrix
I'* = |I}| by

Iy = 22000 20050 (AuiFa) (AuiFy) /P
I = |I},| will denote the information matrix,

L = [Z0 [Zo (=, 9)fo(=, y) /f(, y)] da dy.
Finally, let
mo= Dk —ws) + 205 di(;—v) + 2 Dt siQus
o= Doimci(ki —ws) + 2o bi(5— ) + 2k 2l riQis
and define (6;%, 6,")" = (I)™(u1, u2)’, where prime denotes transpose.
TrEOREM 1. Suppose that the density f(x, y) of F(z, y) is continuous in the

plane. Then (8,%, 6,") are the ABLUE’s for (8y, 6,) in terms of the sample quanti-
ties and the N ;; . If (01, 02) 1s true,

£{ni (6" — ), 0 (6" — )} — N(0, (I 7).
I* is the information matriz for (61, 65) from the joint asymptotic distribution of
{n%(si - xi); n%(fj - yj)a anij:i =1 Land] =1, M}'

If the information integrals Iy, are finite and the derivatives f and f» of f are con-
tinuous in the plane, each In, can be made as close as desied to I, by choosing oy
and By sufficiently near 0, oy, and Bu sufficiently near 1 and L, M sufficiently large
with max; |o; — ai1| and max; |8; — 81| sufficiently small.

The proof differs only in detail from that of Theorem 2 below. Since it is com-
putationally more complicated, we omit it.
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Let now F(z; — 61, - -+, 2 — 6,) be a continuous r-variate location parameter
family. For j = 1, - - -, r, denote by £; the sample a;-quantile from the jth com-
ponents of » independent observations on F. Partition the x; — axis into M; + 2
intervals by marking off known distances from £;. These intervals are indexed
0, ---, M; + 1, with those indexed 0 and M ; + 1 being the half-infinite intervals
at the tail, and those indexed 0, ---, K; lying to the left of £;. The Cartesian
product of these partitions is a partition of Euclidean r-space E, . We index the
cells of this partition by attaching index (41, - -+, %) to the product of the ¢;th
interval in the z; direction, forj = 1, - - -, r. Usually we use ¢ as an abbreviation
for (41, - -+, %,). Denote by N, the number of n independent observations on F
falling in the oth cell. We take all cells to be open.

Let »; be the 6 = 0 population «;-quantile in the x; direction, and mark off the
given set of fixed distances from »; . This scheme yields a nonrandom partition
of R, . The probability when 6 = 0 of an observation on F falling in the oth cell
of this partition is P, = A,F, which defines the difference operator A, . (Explicit
definitions may be found in many texts.) We also need the r X r information
matrices I and I* having entries

Ika = ffw ffoo [fk(xly ) xr)ft(xla Ty xr)/f(xlr Ty xr)]dxl e day
I, = 220 (AcFy) - (AF) /P,

fork,s = 1, ---, r, where F;, = dF/dx , ete. In the definition of 1 re , terms for
which P, = 0 are regarded as themselves being 0. The same convention applies
to the cx, defined below.

The cells of the partition are linearly dependent when the sample quantiles are
given. We therefore omit as redundant the following r + 1 cells: those indexed
(My+1, -+ M5+ 1,0,M;, + 1, -+, M, + 1) forj = 1, ---, r and that
indexed (M, + 1, M, + 1, -+, M, + 1).2_* will denote summation over all in-
dices except those of the omitted cells. Denote by Ax,...x, the collection of in-
dices ¢ = (4, - -+, 1) such that all ¢; > K; except 4, < Ki, form = 1,---, s.
Ay is the collection of indices with all 1, > K, . A;* and P;* will denote A, and P,
for that ¢ with all 2; = M; + 1 except % = 0, and A* and P* the corresponding
quantities for ¢ = (M1 + 1, --+, M, + 1). Finally, let £ be the r X 1 vector
with jth component &, — »;,7 =1, -+, 7.

With this considerable weight of notation, we can define a vector 6" of esti-
mators of (81, - -+, 6,) = 6 by 6™ = £ — (I")7'Q where Q is the r X 1 vector
with jth component > *¢i(Ny/n — P,) and the coefficients ¢i,, -+, ¢ are
given by
cje = AF;/Py — A'F,;/P* o4

= AF /Py — D omed AL Fi/Pi 4 (s —1)AYF;/P¥, ceApn,s =1,

TueoreM 2. Let F(xy — 61, -+, . — 0,) be a continuous location parameter
family with continuous density f(zy — 61, -+, & — 6:). Then the components of
0%* are the ABLUE’s of (61, - -+, 0,) in terms of the &; and the N, . When 0 s true,

Lnt (6™ — )} - N(0, (I") 7).
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I* is the information matriz for 0 from the asymptotic distribution of
{n}(¢; — v; — 6;), BX(N./n — P,):all j and o}.

If the information integrals Ix, are finite and the derivatives fi, - - -, f» are con-
tinuous, each I, may be made as close as desired to It, by appropriately choosing the
set of fixed distances used in defining the estimators.

Proor. For notational convenience, we give the proof for the bivariate case,
r = 2. Write (z, y) and (L, M) for (z1, z.) and (M, M,), and let (u., v,) be
the vertices of the partition of the plane obtained by marking off the given dis-
tances from the § = 0 population quantiles (v, ».). Then P;; = A;;F is given
by (3.1), with the conventions that u_; = v_; = — o and Up41 = Varys = .

Form a non-random partition of the plane by marking off the given fixed dis-
tances from the point (v + 6, + u/n*, 2 + 6, 4+ v/n*). The probability of an
observation on F(x — 6,,y — 6.) falling in the (¢, 7)th open cell of this partition
if P; , where P7; is independent of (6;, 6:) and P}; — P;;jas n— .

Consider first the conditional distribution
(33) £{{n%(N.,/n — P,;j}* In*(& — V1 — 01) = U, ’I’I}(EQ — Vg — 02) = 1)}
where {B;;}* denotes the set of all quantities B, except those having the omitted
indices (0, M 4+ 1), (L 4+ 1,0) and (L + 1, M 4+ 1). Under the conditions of
(3.3) define 71 = 0 if the z-component of the observation on the line y = v, + 6
+ u/n§ is=n—+ 6+ u/n*, and 7; = 1 otherwise. Similarly, set 7, = 0 if the y-
component of the observation on ¢ = » + 6; + w/ntis = vo + 6, + v/n}, and
72 = 1 otherwise.

There remain n — 2 observations falling into the open cells (n — 1 if & and
£ come from the same observation). The key to the proof is the observation that
when (6, , 6,) is true,

SUN Y [ = m+ 60+ w/nd, & = v+ 6 + v/n), 71}
is the same as
(3.4) S{{nmid ™ | 228 2205 s = [nen] — 7,

2 X = [na] — o,
where {7;;} are multinomial with parameters n — 2 (or n — 1) and P7;. This
plausible fact is easily verified by calculations on the model of Siddiqui [8], who
displays the joint density of &, &, 71, 72 and the N,; for the case L = M =
0 (4 cells). Setting Q;; = n}(nij/n — P¥), Taylor’s theorem shows that the con-
dition of (3.4) is

R:21Qi; = an, 22 Qs = Db,

where X; and X; denote the summations appearing in (3.4) and a, = —fx(v1)u
+ o(1), by = —fr(w)v + o(1).
If Qi; = n}(nj/n — Ps;), then by Taylor’s theorem

Qi = Qi + (AuF)u + (AuFa)v + o(1).
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If {Z,;}} are a set of random variables having the asymptotic distribution N (0, X)
of the Q;; (omitting Qr41.41), then the limit of £{{Q!}* | R} is

(35) J3{{Z“ + l.h‘j}* I Zl Zij = _fx(Vl)u, ZZ Z'ij = _fY(V2)”}
where p;; = (Ai;F1) u + (AF2)v. This is true because inspection of the expan-
sion of p;(z) given by the local limit theorem shows that the proof of the Lemma
of Section 2 is unchanged if the n; have parameters P;” with P,” — P; . Since this
holds for all values of 71 and 72, (3.5) is the limit of the distribution (3.3).
Let e = —1/fx(») and ¢; = —1/f¥(»2). Then it is easy to show by the method

of Weiss [11] that when (6, , 6,) is true,

Sint(l — n — 6)), W (& — vo — B)} — Ller 21 Zij, €0 Do Zii)
Combining these results, we have that the asymptotic joint distribution of

e —n—6), n(k—n—06), @WNun— P
when (6; , 6;) is true is just the joint distribution of
1 Zl Zij ’ Co Zz Zij ) {Zij + Cl(AijFl) Zl Zrs + Cz(Aisz) Zz st} *-

If n (-) is the density of the normal distribution with means u;; and covariance
3, these last random variables can be computed to have density & given by

h(u, v, {qid™) = n({qid ™, — 208 i qi, — Doizo 252 ¢is),
where the last two entries are in the (0, M 4 1) and (L + 1, 0) places, respec-

tively.
Since the inverse of X is well known, it is a matter of routine arithmetic to es-
tablish that h = Ke_és, where

S = I’fluz + 12:21)2 + ZITZ’W) + 2 Z* Cc1:iqsu + 2 Z* C2i 4445V
+ terms not containing u or o.
Standard least squares theory now shows that (6:**, 6,**) are the least squares
estimators from this distribution, and hence the minimum-variance linear un-
biased estimators. That (I*)™" is the asymptotic covariance matrix of these esti-
mators also follows from least squares theory.
It remains to show that I* approximates I for appropriate choice of the set of

fixed distances used in defining the estimators. Let D,; be the (7, j)th cell of the
partition with vertices { (ux , v5)}. First notice that by Schwarz’s inequality,

It = Z” (DiiF)Y Pii = 2iilf [oi; fi(z,y) de dyl/ [ [o; f(2, y) dz dy
< i [ [ou; ile, 0)F/f(z,y) dedy = In.

Let D denote a compact set which is a union of closures of bounded cells D;; in
which f(z, y) is bounded away from zero, and which is such that

In — { [olfi(z, )V /f(z,y) dody < e
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By choosing ug , v , %, and vy appropriately and making the cells containing points
at which f = 0 sufficiently small, such a D can be obtained for any given ¢ > 0.
Let D' = {(4,7):D;; < D}.

If A;;is the area of D;;, the mean value theorem for integrals implies that

2o (BiF)*/Pi; = 2o ([ [oi; fu(e, y) de dyl’/ [ [o.; f(x, y) dw dy
2o G v Al /™, y™) Al
for some (z*, ¥*) and (2™, y**) in D;; . By Taylor’s theorem this is

2o [fiuis, via)Aij + R?j]z/[f(ui_l, via)di; + RE

where RY; = [fi(z¥, ¥*) — filuir, v;0)]Ai; = 0(Ay;) as max; [us — uia| — 0
and max; [v; — v;| — 0, since fi(z, y) is continuous. Similarly, R = o(4sj),
and by compactness of D both of these are uniform in (7, j) ¢ D’. It is now easy to
show that )

2o (8iF)*/Pi; = 2o Asilfi(uii, 0=l /f(wics, 050) + o(1)
as maxp (|us — iy, [v; — v;—1]) — 0. The sum on the right is a Riemann sum
for

I [0 UfiCz, ) P/f (=, y) de dy.

This establishes that I1; can be approached as closely as desired by first choosing
D, then refining the partition.

The proof for I ¥, is similar. For I3, use Schwarz’s inequality as follows (where
Cisthesetof (7,7) gD’):

(3¢ DiiFy- DiiFo/Pij)* < [ ¢ (BiF1)?/Pi-[22¢ (Bii2)*/Pij).

Tt is a consequence of the proofs for I7; and I 52 that the right side may be made as
small as desired by choosing an appropriate D. The sum over (4, j) € D’ is then
treated as in the other cases. This completes the proof of Theorem 2.

4. Use of RBAN estimators. Our third ANE method of estimation for multi-
variate location parameters is based on Neyman’s [5] theory of regular best
asymptotically normal (RBAN) estimators for multinomial problems. Suppose
My, -+, Nm are multinomial random variables with parameters n and {P}. If
P; = =;(6), where =; is a known function and § = (6, ---, 6,) is an unknown
parameter, we can estimate 6 from the n; . If ¢; = n:/n are the observed cell fre-
quencies, a function ¢;(g1, - -, gm) is 8 RBAN estimator for §; if ¢; is continu-
ously differentiable with respect to each ¢; and n%(qai — 0;) is asymptotically
normal with mean zero and variance equal to the Cramér-Rao lower bound.

Neyman presents three methods of obtaining such estimators, including the
maximum likelihood method, but we will be concerned only with certain analytic
properties of the functions ¢, . Let G be the r X r matrix with entries

Gur = i 1 0m; Om:

=i 90, 90,
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Neyman shows that any function ¢; such that ¢;(q1, -, ¢m) is RBAN must
satisfy

(4.1) ei(m(0), -+, Ta(0)) = 6;
and
(4.2) O _ 3 e L om

aqk fas}=frs) s=1 mk 00,

where |G| = G

Suppose F(z; — 6,, - -+, 2, — 6,) is a continuous r-variate location parameter
family. For 0 < an < -+ < aa; < landi =1, - - -, r, denote by &;; the margi-
nal sample a;;~quantile in the z,—direction. These quantiles partition R, into cells
which weindex by ¢ = (41, - - -, 7). Let N, be the number of observations falling
in the oth open cell, and ¢, = N,/n. For given observed values z;; of the £;; the
partition is non-random. Let 7, ({z;; — 6.}) be the probability that an observation
on F(xy — 61, ---, 2, — 6,) falls in the oth cell of this partition. For example, if
r = 2, m, is defined by

mrs({2:; — 0:}) = F(ew — 61,20 — 02) — F(2u — 01, 22,61 — 02)
— F(z1p—1 — 01,20 — 05) + F(21,6—1 — 01, 22,6-1 — 0O2)

fork=1,---,M;+ lands =1, ---, M, + 1 with conventions that z;p = — «
and ZiMi+1 = 0.

The proposed methof of estimation is as follows: for the observed values z;; of
the £;; the functions m.({z;; — 6;}) may be taken as cell probabilities for a multi-
nomial problem to which Neyman’s theory applies. Let ¢x({z:3}, {-}) be a RBAN
estimator for 6; in this multinomial problem. We will estimate the location
parameter 6 by ¢r({£}, {¢;}), where ¢, are the observed cell frequencies from
the random partition formed by the &;; .

Let P," = w.({£:; — 6;}) where the &;; arise from n independent observations
on F. Clearly

P." — P, = m,({ris})
aP,"
90

in probability, where »;; are the § = 0 population quantiles. These limits are inde-
pendent of 6: Define r X r matrices G, and Gx by

1 3P," aP,"
- P,» 36, 96,

— i, (say)

(G'n)ks =

— QpoQso
( G* ) ks z‘r: Pa-

go that G« is the limit in probability of G, .
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We have supposed that the RBAN estimators for the multinomial scheme
wme({2:; — 0i}) could be written as fixed functions ¢; of the z;; and the g, . This is
not unreasonable, since RBAN estimators are typically defined implicitly as
solutions of systems of equations in the =, and ¢, . Existence of solutions ¢
having the properties required by theorem 3 will typically be guaranteed by the
implicit function theorem. For the three RBAN methods discussed by Neyman,
this is the case if G, is non-singular. This in turn is shown by him to be a conse-
quence of an assumption that the parameters 6,, - - -, 8, are not dependent for
the multinomial problem. Thus our assumptions on the functional form of ¢
are essentially the requirement that we use the same RBAN method of estima-
tion for each of the sequence of multinomial schemes presented by the observed
values of the £;;asn — .

TuroreM 3. Let the density f(xz1 — 61, -+, . — 0,) be continuous. Suppose
there exist functions ox({2is}, {qs}), continuous in each z:; and continuously differen-
tiable in each q, , such that ox({2:3}, {-}) s a RBAN estimator for 6, from the multi-
nomial problem with cell probabilities w,({z:; — 0:}). Let ¢ = (e1({&i}, {g0}), -+
er({&:i}, (o)) ) - If G is non-singular for n sufficiently large, then when 0 is true

eint(e — 8)} — N (0, Gx™).

If the partial derivatives f1 , - - -, f» of f are continuous and the information integrals
I, exist, each (Gx)re can be made as close as desired to I, by choosing a sufficient
number of sufficiently closely spaced quantiles in each direction.

ProoF. Abbreviate m.({z;; — 6;}) by m, and let 7, be the r X 1 vector with
kth component () d7,/86; . Then from (4.1) and (4.2) it follows that for any
fixed {z;;} the Taylor’s series about {g,} = {m.} is

o({zii}, {gs}) = 0 + Ev (G_lfv) (¢ — m) + B({g}, {md})
where the kth component of R is

= (%

[2 aqu

_ Yo
<1¢‘ anr

) (g0 — )

for some ¢," between ¢, and =, . If therefore ¢, are the observed cell frequencies
from the random partition and p., is the r X 1 vector with kth component
(P,™)™" 8P,"/d6;, , we have that

e — 0) = 2 (G 'pae)n*(¢e — P.") + n'R({q.}, {P."}).
Now {n}(¢. — P,™)} is asymptotically N (0, T), where
Yoo =Pl —P,), 2= —P,P,, o T

This important result is proved by arguments which differ only in detail from
those used in the proof of Theorem 2. From this result and the continuity proper-
ties of ¢ it is immediate that n*R({g.}, {P."}) — 0 in probability. Thus n}(¢ — 6)
is asymptotically distributed as

("’4“3) Zv (G*_ 0)Zs

Ta



1820 D. S. MOORE

where {Z,} are N (0, £) and p, has kth component a;,/P, . That the r random vari-
ables (4.3) have distribution N (0, G+") follows after some calculation.

The final statement of the theorem follows as in Theorem 2, after writing the
axs as difference operators acting on the derivative F .

As was remarked above, RBAN estimators are usually implicitly defined by
systems of equations which can only rarely be explicitly solved. There is a large
literature on methods for obtaining RBAN estimators (iteratively or otherwise)
for multinomial problems. See Ferguson [3] for reference to some such methods.
Since our ¢ are obtained from RBAN estimators for certain multinomial schemes,
the problem of computing them should be approached by reference to this liter-
ature.

5. Example: The bivariate logistic distribution. In this section we apply the
estimators 6" and 6™ to the problem of estimating the parameters of a bivariate
logistic distribution. This is a bivariate location parameter family with

Fla,y) =1 +e*+ " —o <z,y< »

described in detail by Gumbel [4]. The marginal distributions of F are logistic,
and we have the relation F(zx, y) = F(y, £) which simplifies many of the calcu-
lations below.

We compare the performance of our estimators with that of the vector X of
sample means and the vector M of sample medians. The asymptotic distributions
of (X — 6) and n%(M — 0) are bivariate normal with zero means and covari-
ances given by Theorem 3.1 of [1]. For the bivariate logistic case, n'(X — ) has
asymptotic covariance matrix ¢ with entries

2 2
on = op = 7/3, o1p = gy = 7/6

and n’}(M — 6) has asymptotic covariance matrix r with entries

— — —_— —_ 4
™ = T2 = 4, TI2 = Ta = %

One could also estimate the bivariate location parameter 6 by using Ogawa’s
univariate estimators to estimate each component of 6 from the corresponding
components of the observations. Call the resulting estimator 8. We expect 6*
to attain greater asymptotic efficiency than § using the same set of quantiles,
since 6* utilizes additional information from the cell frequencies.

We will measure the asymptotic efficiency of an estimator 7' such that

L{n'(T — 9)} — N(0, §)
by
e(T) = (II7/18I)*

where I is the information matrix and ||«| is the determinant of the matrix a.
This means that the relative asymptotic efficiency of two estimators is the in-
verse ratio of the sample sizes required to reach equal “generalized variance”
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(see section 4 of [1]). The information matrix for the bivariate logistic family is

I11 = I22 = %, 112 = 121 = _%

with |I7Y|| = %2. We have therefore that ¢(X) =".810 and (M) = .612.

Our three types of ANE estimators in the bivariate case involve random parti-
tions of the plane. In 6* and ¢ the partition is formed by a set of sample quantiles
in each direction, while in §** it arises from a single quantile in each direction
with fixed distances marked off from it. These random partitions converge in
probability to a fixed limiting partition as the sample size n — o. (These limit-
ing partitions were used in the proofs of Theorems 1, 2 and 3.) Inspection of the
asymptotic covariance matrices of 6%, 6** and ¢ yields the important observation
that when the limiting partitions are the same, all three estimators have the same
asymptotic distribution. For a given set of sample quantiles (or their equivalent
fixed distances in 6**) the estimators have identical dsymptotic efficiency, and the
choice among them may be made on the basis of computational convenience.

Let us compute 6** for the case of 16 cells obtained by marking off =1 from
the sample median in each component. The limiting partition is formed by par-
titioning each axis at —1, 0, +1. The difference operators A;; refer to the cells of
this partition. Values of F(z, y) are given in Table 1 of [4]. Computation of
P;; = AyF is simplified by the fact that P;; = Pj; . From Fi(z, y) = Fiy(y, x)
we have A;;F1 = AjF., again reducing the required computations. We obtain

Iy* = I, = 04028, Ip* = I,* = —0.1674,

so |(I*)7Y = 7.452 and e(6**) = .846. Thus 6** for 16 cells is already more
efficient than the sample mean. The estimator itself is

0. = & 4+ 3.06g00 + 4.71q10 — 0.44g2 + 2.30qn:
+ 4.22g1 — 0.37¢s + 0.58¢s1 + 0.20go:
+ 2.15¢12 — 2.08¢22 — 0.62¢32 + 1.95¢s3
— 1.97¢5 — 1.04
where ¢;; = N;j/n and & is the sample median from the 2-component. Similariy
0, = £ + 3.06g0 + 2.30g10 + 0.20gz0 + 4.71gn
+ 4.22¢1; + 2.15¢ + 1.95gs1 — 0.44q02
— 0.37q1s — 2.08¢s2 — 1.97¢s + 0.58q1s
— 0.62¢; — 1.04.

Estimators 6° with the same performance are obtained by choosing the
(1 + ¢ %and (1 + ¢ )" sample quantiles in each direction (so the 6 = 0
population quantiles are —1, 0, 4-1). The estimators 6™ are much more laborious
‘o compute, even though in this example we have a; = b;, ¢; = d; and ki; = §ji .
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The results are (in the notation of Theorem 1)
6,* = 0.36¢, + 0.36& + 0.28% — 0.06¢1 + 0.02¢2 + 0.04¢3
4+ 3.06qu + 2.76qu + 1.54¢s + 1.72¢12 + 1.69¢2
+ 1.02¢3 + 0.83g1s + 0.82gs + 0.52g5 — 1.07,
6" = —0.06& + 0.01£ — 0.04% + 0.36¢; + 0.36¢2 + 0.28¢3
+ 3.06qu + 1.72¢1 + 0.83¢s1 + 2.76q12 + 1.69¢22
+ 0.82gs + 1.54gs; + 1.02gs5 + 0.52g5 — 1.07.

The estimators ¢ are defined implicitly and are therefore not useful in this
example, where 6% and 6™* can be obtained routinely. In cases where F(z, y) and
its derivatives cannot be obtained in closed form, numerical solution of the equa-
tions defining ¢ offers an alternative to computation of A;;F by numerical inte-
gration of the density.

Increasing the number of cells used increases the efficiency of these estimators
in accordance with our Theorems. In this example, estimators with a limiting
partition of 100 cells divided at the integers from —4 to 4 in each direction have
asymptotic efficiency e = .944.

Ogawa’s estimators, calculated using the same sample quantiles as in 6, are

6; = 0.315& + 0.370% + 0.315%
6, = 0.315¢; + 0.370¢: + 0.315¢;

by (5.3) of [6] (K5 = 0 by symmetry). The asymptotic variance of each com-
ponent of n}(6 — 6) is 3.205, and the asymptotic covariance is 1.388, so that
e() = .799. This compares with e = .846 for any of 6%, 6**, ¢. The result illus-
trates the additional information contained in the cell frequencies.
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