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0. Introduction. Let X1, --- , Xmand Y1, -+, Y, be two independent
samples from circular distributions. A common problem consists in deciding
whether the two samples have the same underlying distribution or not. In this
paper we are primarily interested in non-parametric tests for the detection of
rotation alternatives. Although there are ‘‘natural’” isomorphisms between the
circle and the interval [0, 27), the usual rank tests for detecting shift alterna-
tives applied to observations in [0, 27) are not satisfactory, partly because they
depend on an arbitrary cut-off point on the circle. Run tests can be adapted
very easily to the circular two-sample problem, but their large-sample efficiency
is zero for smooth families of distributions (Bahadur [1]). Kuiper [6] and Watson
[12] suggested suitable modifications for the Kolmogorov-Smirnov and Cramér-
von Mises tests. In this paper we use the invariance principle to derive a class
of test statistiecs which is closely related to the class of rank tests for distribu-
tions on the real line.

1. Notation and assumptions. We define the unit circle as the set C of complex
numbers of modulus 1. Then the natural isomorphism between [0, 27 ) and C is
given by the mapping z — e*. Under this isomorphism distributions and densities
on C can be represented by cdf’s and densities on [0, 2 ). For convenience we
extend densities f(-) to all of R by the periodicity requirement f(2kw + z) =
f(@) (b = %1, £2, ---).

In this paper we always assume that

(1.1) f(z) > 0 for almost all z, and not a constant.
(1.2) f'(z) exists and is continuous for all z.
(1.3) Jo [f (@)/f(2)f dz = inf (f) < =.

(14) m/(m+n) =l —X with 0<A<1, as N=m+n— o,

2. Transformation group and invariant tests. As our class 7' of transformations
of the sample space we take the set of all homeomorphisms of the circle onto
itself, i.e., all bicontinuous, one-to-one mappings of C onto C. Any element
te T can be written in the form: e — ¢'“*'® g &[0, 2x], where 0 < ¢ < 2r
and ¢(-) is a bicontinuous (monotone) one-to-one mapping of [0, 2x] onto
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[0, 27]. It follows from the definition of a homeomorphism that T has a group
structure if the composition of two such mappings is taken as group operation.

For the two-sample problem the set T of states of nature can be described as
the set of pairs (F, @) of continuous strictly increasing edf’s, such that F(0) =
G(0) = 0, F(2r) = G(2r) = 1.1t is easy to see that each element of the induced
group T is one-to-one and maps T onto T.

Let H (hypothesis) be the subset of pairs (F, G) such that F(-) = G(-).
Obviously, elements of T map H onto H, i.e., the hypothesis is invariant under
the induced group.

Hence the problem of testing H:F(-) = G(-) against K:F(-) # G(-) re-
mains invariant under transformations ¢ ¢ T, and it is therefore natural to restrict
attention to tests which are invariant under T' also.

It is convenient to introduce some terminology before we obtain a maximal
invariant under 7. For fixed m andn (N = m +n)lebZ = {(21, - -+ ,2x5)i2; =
Oor1, ) ¥z = m}. Let @ be the group of transformations, acting on members
of Z, spanned by rotations and inversions, where a rotation is some power

(g:)™ of

(2.1) gr2(21,22, - ,2xn) — (22,23, , 2y, 21)
and an inversion is defined by

(2.2) git(z1, 22, -+ ,2n) — (2w, 281, ** 5 21).

The transformation group G defines equivalence classes in Z in the usual way
and we may say that two elements z, 2 belonging to the same equivalence class
are cyclically equivalent. We call these equivalence classes “arrangements’; in
particular the arrangement of z is

(2.3) a(z) = {12 = gz, 9 G}.
Given two samples X;, -+, Xpn; Y1, -+, ¥, on C and an arbitrary cut-off

point and direction we can order the combined sample (linearly) and define the
statisties

(2.4) Z;, =1 if the 7th smallest element is an z,
=0 otherwise.

It is obvious that a(z) does not depend on the choice of the cut-off point and
direction. Hence there is a unique “arrangement of the samples X;, -+, X ;
Yy, -+, Y,.” Using standard arguments (see Lehmann [7], Chapter 6) it
follows easily that the arrangement of two samples is a maximal invariant under
T. Since all elements of H belong to the same orbit under T, any invariant test
is nonparametric.

3. Locally most powerful invariant tests against rotation alternatives. From
now on we restrict our attention to rotation alternatives, i.e., we assume that
under the natural isomorphism K consists of pairs (F(-), Fs(-)) such that
F(z) = [6f(t)dt, Fo(x) = [5f(t — 6)dt, for 0 < 6] < 6 and 0 < 6y < .
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Let VO, v, ..., V™ be the order statistics of a sample of size N from F(:),

and define VO™ = v® (p = 1,2, --., N). Then we get the following
TuroreM 3.1. Assuming conditions (1.1), (1.2) and (1.3), there exists a locally

most powerful (LMP) invariant test for testing H against K. It rejects H when

(38.1) Sy = 2% 2N DL Elp(VE)e(VI ™ )eizs > Conna
where
(3.2) o(z) = f()/f(=)

and the expectation is with respect to F(-).
Remark. The fact that the test is invariant under T implies that Sy does not
depend on the cut-off point and direction used in determining the indicators z; .
Proor. Using Scheffe’s Lemma ([4], Theorem I1.4.2) it is easy to show that

(3.3) limg.o [37 |071f(z + 6) — f(@)] — £ (£)| dz = 0.

An invariant test depends on the sample outcome only through the arrangement
of this outcome, since the arrangement is a maximal invariant. By the Neyman-
Pearson Lemma a (non-randomized) most powerful invariant test has critical
region

(34) Py(a)/Po(a) > const.,

where Ps(a) is the probability of arrangement a when 8 is the parameter value.
Since G has 2N members it follows easily from Hoeffding’s [5] result that

(35) Pu(a)/Po(a) = (2N) Touo BILL LV — 0)/f(VON,

where z is any member of a, and (g2); is the ¢th component of the vector gz.
Using the expansion

(3.6) f(@ + 0) = f(z) + 6f' (x) + R(z, 6)f(x)
we obtain
(3.7) limgo E |6 'R(x, 6)] = 0.

Expanding the product in (3.5) by using (3.6) and (3.7) we get
(3.8) 2NPy(a)/Po(a) = Lo ElL + Ki(g2)8 + Ka(g2)6" + Ki(g2)] + o(6),

where

(3.9) Ki(gz) = — 2% (g2)(V?),
(3.10) Ka(gz) = 2 Xini (92)i(92) (VO )(V?),
(3.11) Ki(gz) = 201 (g2):R(V?, —0).

Now it is easy to see that > see (g2)i = 2m (¢ = 1,---, N). Hence
(312) o EKi(g2) = 21 2mB¢(V?) = 2m 27 E¢(V:) = 0.
gsing (3.6) we obtain

(3.13) > e EKs(gz) = 2m D i= ER(V?®, —0) = 0.
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We now analyze the K,-term. For convenience we define zy,; = 2, so that
{z} as well as {V®} are periodic in % (period N). The group G consists of the
2N members (¢,)* (k = 1,---, N) and (g,)%: (k = 1, --- , N'), where g, and
gi are defined by (2.1), (2.2) respectively. Hence for 1 < 7,7 < N we get

20ea (92)3(02) 5 = 2= (9:2)i(9:"2) s + i (9:°9:2)i(9:0:2)
=2 Ziv=1 BN+ j—HEN+j'—k
Using this result and periodicity we obtain
(3.14)  Dpea 22801 214 Elg(V)6(VP)(g2)i(g2);
=2 2% 200 A Ble (Ve (V™ ez
Finally we note that the ‘“diagonal elements” (¢ = j) add up to the constant
(3.15) 2 200 2 Elg(V? Yletsn = 2mN [ [f' (2)*/f(2)] dz < « by (1.3).

Combining (3.8), (3.12), (3.13), (3.14) and (3.15) we see that there exists a
neighborhood U = {6: |6] < 6;} such that the test which maximizes the term in
(3.14) has maximum power among all invariant tests for all 8 £ U. This ends
our proof.

4. Asymptotic distribution of the LMP invariant test statistic Sy under H. In
this section we will show that, asymptotically, N °Sy — N inf (f) has the dis-
tribution of a weighted sum of independent x* random variables with 2 df. We
will obtain this result from

TarorEM 4.1. Let the following conditions be satisfied:

(i) Aw=m/N->\N0< A< 1lasN— =,

(ii) {hx(-)} 7s a sequence of step functions, defined on [—1,1], constant on
intervals (2k — 1)/N, (2k + 1)/N, satisfying the relations hy(—x) = hy(z) =
ha(l —z) for 0 < 2 < 1, and D iy hx(k/N) = 0.

(iii) Ay — h in Ly and hy(0) — h(0).

(iv) B(x) = Dt de™™, such that D s |di| < .

Define

(4~1) Ty = N_l Js‘v==1 ?;1 hN((i —j)/N)Z;Z;.

Then under H the characteristic function yry (t) of Tx converges to

(4.2) v(t) = Tl (1 — 2in(1 — \) dat) ™

: 1]’RO0F. This result follows immediately from Theorems 4.7 and 4.10 of Schach
10].

In this section it is more convenient to work with uniformly distributed ran-
dom variables Uy, - -+, Uy, rather than with V;, - -+, Vy (distributed accord-
ing to F(-)). We denote the corresponding order statistics by U®, -- -, U™,
Define

(4.3) Y() = (f/f)eF'(z) 0=z=1
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Then it is easy to see that (U ) and ¢(V') have the same distribution, and by
monotonicity of F the ordered elements correspond to each other.
Throughout this section we strengthen assumption (1.3) to

(44) Y(-) 1is continuous on [0, 1].
Let
aij = N7 20 Bp(USPW(U™)],  1=4,j <N,

where we use again the cyclical definition UY*® = U®. Obviously ai; = aji
and «;; depends only on ¢ — 5. On [—1, 1] we define

(4.5) hy'(z) = ai; for (2( —j) — 1)/2N < z < (2(¢ — j) + 1)/2N.

Then hy'(-) satisfies the relations

(4.6) hN,(‘— :v) = hN,(IL') = hN,(l - x).
It follows from the definition of &y (- ) that
(4.7) NSy = 20, DX /(5 —7)/N)ZiZ;.

Simple algebraic manipulations yield the result
(48) 281k (k/N) = N7E(2 34 ¢(Uh))* = EY(U)" = inf (f) = ¢ < .

The function

(4.9) hw(z) = ha'(z) — ¢/N

satisfies (ii) of the theorem above.

Obviously

(4.10) N78y — m'e/N = 220 2N ha((i — §)/N)ZZ; .
We now analyze the convergence behavior of {hy}.

(4.11) hy(0) = N7' X, By(UP)? — ¢/N

¢(l —1/N)—inf (f) as N — «.

Il

Define
(4.12) ax(z,y) = EW(UP W(UD)]
for (+—1)/N=2z2<1N,({F—1)/N =y <j/N.

Then we obtain
Lemma 4.1, 9x(z, y) — 1, ¥(2)¥(y), where Ly-convergence is with respect to
Lebesgue measure on the unit square.

Proor. Let fx(-,-;¢,7) be the joint density of U®, U? (i # 5) from a sample
of size N. Using [Nz] for the integral part of N2 we may write

5 (413) mn(z,y) = [o [(u)¥(u)fy(us, ue ; 1 + [Nzl, 1 + [Ny]) dus dus
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for (z, y) such that [Nz] = [Nyl. For z # y the distributions corresponding to
the densities fx(-,-;1 + [Nz], 1 + [Ny]) converge weakly to the distribution
having all its mass at (z, y), as N — . Since ¥(u1 )¥(uz) is continuous and
bounded we have (by the Helly-Bray Theorem)

(4.14) 7w (%, y) = Y(x)(y) ae.

Ly-convergence follows from the Lebesgue bounded convergence theorem since
na(+,+ ) is uniformly bounded.
Define ¢(1 + y) = ¢(y) for 0 < y = 1 and

(4.15) R(z) = [t + ) dt.
Then it follows easily that
(4.16) hy — h in L,-norm.

TaroreM 4.2. If the assumptions (1.1), (1.2), (1.4) and (4.4) are satisfied, the
test statistic NSy of the LMP invariant test has, under H, a limiting distribution
which s equal to the distribution of

N Do el + A = N) i e

where {x3; k = 1,2, - -} is a sequence of independent x* random variables and
{cx} are the Fourier coefficients of ¥.(+).

Proor. We use Theorem 4.1. (i), (ii), and (iii) are obviously satisfied. To
obtain (iv) note that by assumption (4.4) ¢ ¢ L, . Hence it has the expansion

(4:.17) ‘l,(x) — Z;r;-oo cke2m'ka:
and by the Parseval identity
(4.18) h(z) = [a(t(z + t) dt = 2 lale™™ ™.

Hence h(-) has an absolutely convergent Fourier sequence. By (4.10)
NSy — N’m’c has the form of the statistic Ty defined in (4.1). Hence the
result follows, since ¢ = inf (f) = 2 |af”

6. Efficiency of the LMP invariant test. Before we compute the desired effi-
ciency we need some auxiliary results. We will obtain these results under an
additional assumption:

(5.1) ¥(-) has a bounded derivative,

where ¢(-) is defined by (4.3).
Lemma 5.1. Under assumption (5.1) h(-) has a continuous second derivative.
Proor. By definition h(z) = [i¢(u)y(u + z)du. A well-known theorem
(e.g. [8], page 126) allows us to differentiate under the integral sign, hence

(5.2) Kz) = [sy(ul (v + @) du = [19(u — 2} (u) du
by %eriodicity of ¢(-). Using the same argument again we get
(53) K'(2) = — [i¥'(u—aW () du =~ [0/ (ul¥ (v + 2) du.
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To show continuity of 2" (-) we use the Schwarz inequality to get
" (z) — b (z + A)|| < [fov' (w)du [3 (¥ (w+2) — ¢ (u+ 2z + 4)) dul®
= WO =’ (Ol

where ya'(z) = ¢/(z + A). Since the shift operator in L, is continuous, this
proves the lemma.

Let

(54) (@, 1 +y) = (2, y), 0=zy=1
and

(5.5) gn(z) = [onw(t, z + t) dt.

Then we get

Lemma 5.2. Under assumption (5.1) gn(x) — h(z) uniformly in .

Proor. The functions {gy} are continuous and piecewise linear. A straight-
forward calculation shows that the slopes of the pieces are uniformly bounded.
Hence the sequence {gy} is uniformly equicontinuous. Since it is also uniformly
bounded, it is conditionally compact in C[0, 1] by the Arzel4-Ascoli Theorem.
Since {gn} converges in L,[0, 1], the limit of subsequences is unique. Hence
{gn} converges in C[0, 1].

Since little seems to be known about the probabilities of large deviations for
statistics of the form (4.1), we use a method proposed by Bahadur [1] to get an
approximate measure of the efficiency of the LMP invariant test relative to the
most powerful parametric test. This method is an approximation since it replaces
the actual tail probabilitites by the tail of the limiting distribution. We use the
terminology of Gleser [3], Sections 3 and 4.

Under his assumptions the (approximate) ARE for tests with critical regions
Tx? = Cy) is given by

(5.6) e(Tx?, Tx® | 0) = are™(8)/ (a¢2(0)),

where 0 ¢ K is the parameter value of the alternative. Since we are interested in
alternatives close to the hypothesis we will restrict ourselves to evaluating the
limit

(5.7) limg.o e(Tx"", Ta®/0) = e(Tx™, Tx®),

where 6 is the rotation parameter.

Let Tx™ be the sequence of test statistics NSy, where Sy is defined by
(3.1). Then the tests Tx™ = C§» are LMP invariant by Theorem (3.1).

Lemma 5.3. If (5.1) s satisfied, the sequence { Ty} satisfies assumptions 3.1,
4.1 and 4.2 of [3] for 6 in a neighborhood of 0.

Proor. Under H {Tx™} has a limiting distribution F> by Theorem 4.2. By
taking out a x*-component from (4.2) it is seen that F” can be obtained as a
convolution with a continuous factor. Hence F® is itself continuous. This es-
*tablishes assumption 3.1.
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It follows from Va,rberg [11 Corollary 3] that assumption 4.1 is satisfied with
= M1 — )) max; |a|'T, #, = 1. To obtain (4.2) let 5®(z) = z. Using (4.7)
we obtaln
(5.8) TwP/bP(N) = N7 30, >0 h((5 — J)/N)ZZ; .

Let Fru(-), G.(-), Hy(-) be the empirical cdf of the X-sample, Y-sample, and
combined sample, respectively.
Obviously

(5.9) N2 20 2 m/((G — J)/N)ZZ;
= mN_2 o o hN (HN(-’B) - HN(y))dFm(x) dFm(y) = UN7 say.

hy' (+) can be replaced by gv in (5.9) since iy (I/N) = gy(I/N) and hence Uy
can be split up into three parts, Uy1, Uys, Uys,

where
(5.10) Uni = N o [§"h(H(z) — H(y)) dF n(z) dF m(y),
(5.11) Uwe = M [3" [T {gn(H () — H(y)) — h(H(z) — H(y))}
 dFw(z) dFm(y),
and
(5.12) Uwms =\ [0 [07 {gn(Hy(z) — Hy(y)) — gn(H(z) — H(y))}
" dFn(z) dFm(y),
and where
(5.13) H(z) = \F(z) + (1 — \)G(=).
By the Glivenko-Cantelli Lemma and the Helly-Bray Theorem
(5.14) U — N[5 [0 h(H(z) — H(y)) dF (z) dF(y) a.s.

By Lemma 5.3 the integrand in Uy, is uniformly small for N sufficiently large.
Hence

(5.15) UN2 — 0 a.s.

Finally, using the Glivenko-Cantelli Lemma again, sup, |Hy(z) — H(z)| — 0
a.s. and hence the integrand in Uy; is a.s. uniformly small for N sufficiently
large on account of Lemma 5.2.

Combining these results we get

(5.16) Tx/bP(N) = c(8) = N [37 [ h(H(z) — H(y)) dF(z) dF (y) as.

All that remains to be shown is that ¢;(6) is positive for 6 close to 0, and this
will follow from the expansion

(5.17) a(6) = b6 + o(6%), b > 0.
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We have
(5.18) H(z) = NF(z) + (1 —N)(F(x —0) — F(—9)).
Inserting this expression in (5.16), a straightforward calculation, using Lemma
5.1, shows that ¢;,” () exists and is continuous, that ¢;(0) = ¢,'(0) = 0 and that
(5.19) 2b = ¢"(0) = 22%(1 — \)* [sh(z — y W (eW(y) dz dy

=21 — A)’ D e/ > 0.
This ends the proof of the lemma.

The term s (8) = aic;'(6) is called the asymptotic slope of the sequence of
test statistics. A standard argument shows that under our regularity conditions
the likelihood ratio test has maximum slope among all tests of H vs. K, that it
satisfies assumption 4.1 of [3] with & = 1, @z = 1, b®(N) = N, and that its
slope is
(5.20) s?(0) = N1 — A) inf ()6 + o(6%).

(See Chernoff and Savage [2] and Bahadur [1].) Hence it is reasonable to use

the likelihood ratio test as standard for comparison of non-parametric com-

petitors, and we obtain
TrEOREM 5.1. Under assumptions (1.1), (1.2), (1.4) and (5.1) the (approximate)
local ARE of the LMP invariant test is given by

(5.21) eff (Ty, besttest |f) = (Dore— |e|*)(max;|c: P D ia |a®) ™,

where {cx} are the Fourier coefficients of ¢( - ).
Proor. Using the results of the previous lemma we obtain

(5.22) s%(8) = aer™(8) = M1 — ) 2 |al*6*(max; |ei*) ™ + o(6°).

By (5.20)

(5.23) s®(6) = M1 — N)inf (f) 68 + 0(6°) = A(1 — ) D |al’6® + o(6%).
Assumption 4.3 of [3] is obviously satisfied, and hence, as § — 0

(5.24) lim s°(6)/s®(0) = {22 |al'} /maxy |ed] 22 |aal}-

6. Applications. There seems to exist no ‘“‘nice” parametric class of circular
distributions for which the A function and the numerical value of the efficiency
term in (5.21) are readily obtainable. In particular, for the class of von Mises-
distributions given by

(6.1) | feo(z) = C(k)e>® k20, —7 <=,
the evaluation of the (- ) function (which depends now on «) and of its Fourier

series requires numerical integrations which we have not carried out.
For values of « close to zero the test statistic

(6.2) Tww = N7 DX > Vicos 2n((i — 7)/N)Z:Z;
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has asymptotic efficiency close to 1 in the case of a von Mises-distribution. For
more details see Schach [9].

The test statistic Tww is of the form (4.1) if hy is the step function corre-
sponding to the cosine function, i.e., hx(2/N) = cos 27i/N. However, it is easy
to see that this A(:) does not correspond to a density satisfying our regularity
conditions.

The test with critical region T'ww = Cy,, was proposed by Wheeler and Wat-
son [13] on intuitive grounds as a non-parametric test for the two-sample circu-
lar distribution problem.
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