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CHARACTERIZATIONS OF THE LINEAR EXPONENTIAL FAMILY IN
A PARAMETER BY RECURRENCE RELATIONS FOR FUNCTIONS
OF CUMULANTS!

By D. C. Doss’
Unaversity of Saskaichewan

1. Introductlon. The hnear exponential family was characterized by a recur-
rence relation in cumulants by Patil [3] and by a recurrence relation in raw
moments by Wani [4]. In this paper we present a general approach of charac-
terizing the linear exponential family by a recurrence relation in functions of
cumulants under the assumption that cumulants can be in turn expressed as
functions of those occurring in the relation. Then, the characterization given by
Wani [4] becomes a particular instance of ours since the raw moments can be
expressed as functions of cumulants and vice versa.

2. The induced linear exponential family. A family ®. = {P,:we Q} of
probability distributions is said to be linear exponential in w over a Euclidean
sample space (X, B) if

(2.1) dP,(z) = {€*/f(w)} du(x)

where Q, is assumed to be the natural parameter space with a nonvoid interior.
It is understood by a natural parameter space that Q, consists of all parameter
points » for which

2.2) fw) = [ e duta)

is positive and finite. Moreover, f(w) is analytic in the interior of ©,. If & is
p-dimensional, then we further assume that 2, is a subset of a p-dimensional
Euclidean space so that wz can be interpreted as a scalar product of two vectors.
We may call P, a linear exponential distribution in w, but we bear in mind that
P, may involve some other parameter in which it may not be linear exponential.

We observe that f(w) is not unique; for any positive constant multiple of f(w)
gives rise to the same distribution P, . For example, given any interior point
£ of Q, we may write (2.1) as

(2.3) dPg:(z) = dP,(z) = {"/m (0, £)} dP;(x)

where 6 = w — £and m (6, £) = f(6 + £)/f(¢). We can readily see that m (9, £)
is the moment generating function (mgf) of P; with 6 as its parameter. Thus we
are led to define Pj; as an induced linear exponential distribution in 6 of the
distribution P;. In fact, we can extend this definition to any distribution, not
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1722 D. C. DOSS

necessarily linear exponential, which admits analytic characteristic function or
equivalently for which the mgf exists. So for a distribution P for which the mgf
m (0) exists in 6, with § = 0 as an interior point, we formally define the family
®* = {Py*:0 £ ©,} as the induced linear exponential family in 6 of P over the
same Euclidean sample space of P if

(24) dPy* (x) = {¢/m(6)} dP (z).

We call ®* briefly as the induced family of Py and P* an induced distribution of P.
If P has a parameter £, in which P need not be linear exponential, then we may
write its induced distribution as in (2.3). Of course, 8 should not be in P, but is
arbitrary.

ExampLE 2.1. A normal distribution P; with mean 0 and variance £ is not
linear exponential in £, However, its induced family ®* = {Pp;:0 ¢ (— », » )}
where '

dP5; = {¢*/exp (1/26%)} dP;
= (2nt)Fexp {— (v — 6£)*/2t} da,

is again normal with mean 6¢ and variance ¢£. We clearly see that P; is a member
of this family when 6 = 0 and, therefore, linear exponential in . Furthermore we
note that the collection of all normal distributions and the collection of their in-
duced distributions coincide.

From now on we assume all the distributions we consider possess the mgf’s.
We also assume that 6 denotes the parameter with 0 as an interior point in its
natural parameter space and ¢ denotes any interior point of its natural param-
eter space, and that 6 4 # is always to be taken as an interior point of the param-
eter space of £ for all § in some neighborhood of § = 0 which lies entirely in the
parameter space of 6.

One can immediately see from (2.3) that the induced family of P;, linear ex-
ponential in £, coincides with the linear exponential family in ¢ of P, of which
P is a member. Moreover, when we put § = 0in (2.4) Py* reduces to the distri-
bution P, i.e., P is a member of its own induced family. Then we arrive at a re-
markable conclusion.

TarOREM 2.1. Every distribution vs linear exponential at least in an arbitrary
parameter and, if it vs already linear exponential in &, then its linear exponential
Sfamily in £ coincides with that of its induced distributions.

An immediate and far reaching consequence of Theorem 2.1 is that all the prop-
erties, and relations in moments and cumulants of a linear exponential distribution
in a parameter £ can be easily deduced for any distribution and conversely. We
shall exploit this important observation to a great measure in what follows.

For the sake of simplicity and clarity we shall consider only univariate distri-
butions, and it is not difficult to extend the results to multivariate distributions
analogously. For a distribution P;, not necessarily linear exponential in £, we

“denote the moments about the origin, moments about the mean and cumulants
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of order r of its induced distribution Py ; by u, (0, £), .6, £) and «,(6, £) re-
spectively while we denote those of P; correspondingly by u,’ (0, £), 1 (0, £) and
Kr (07 E) .

To illustrate the usefulness of Theorem 1, consider, for example, the recurrence
relation in cumulants for a linear exponential distribution in 6 obtained by
Khatri [1] and Patil [3] among others

96, £) ,> L

(2~5) Kr+1(0) E) = FY) ) =

The existence of higher order partial derivatives of the cumulants of Pj; can be
easily established from the analyticity of the mgf and, moreover, we can show
(Patil [3])

(2.6) ke (6, £) = 9" log m(6, £) , r= 1.
a6"

Then, if we put 6 = 0in (2.5) and (2.6) we obtain the result,

(2'7) KH.]_(O, S) — [61&(0, E)] , r g 1

a0 90

and the well-known result of the cumulant generating function,

(2.8) k-(0, £) = [M] , r>1
aer 0=0

respectively. If P; is linear exponential in £, then we again have

(29) ka0, §) = 200 O re L

0f ’
From (2.7) and (2.8) we obtain an important property of P; being linear ex-
ponential in £ namely,

9, (6, £) _ 9.0, 8)
(2.10) [ = :Lno = FE r 2 1,

In fact, we can generalize the relation (2.10) to a function of cumulants as in
Theorem 2, which needs the following lemma.

LemMa 2.1, Let g be a function of the functions B1(6, £), - -+, Ba (8, £) with par-
tial continuous derivatives dg/dB1, ---, 09/0B. tn a meighborhood of the point
(ﬁl (0) E), ity Ba (O, ‘E)) of ts domain. Assume [98- (0) 5)/60](1»0 and 3B, (O, E)/ag
exist for allr = 1, - - -, m. Then g is a function of 0 and & and

les(6,8) ] _ 98:(0,8) =1 .-
(211) [ 60 ]0=0 - T ’ (T - 17 ’ ’I'L),

implies

[6_9(0_,2_)] _ 9g(0, %)

(212) a6 R
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Proor. The proof of the lemma is easily seen by applying the chain rule of
composite funetions of a real variable to both the sides of (2.12) separately and
observing them to be equal by virtue of (2.11).

Now we are ready to deduce from Lemma 2.1 with 8,6, £) = «.(6, £),r = 1,
and ¢ = a, the following theorem.

TueoREM 2.2. Let a be a function of the cumulants k1 (8, £), « -+, k. (8, £) with
partial continuous derivatives da/dky, - -+, da/k, 1N a neighborhood of the point
(k1 (0, £), -+, ka(0, £)) of its domain. Then, a s a function of 0 and &, and for a
P, linear exponential in &, we get

[601(0, g)] _ 9a(0, £) -
9=

(2.13) % T

From Theorem 2.2 we can easily see that (2.13) is true when a stands for a
moment of any order about an arbitrary origin, or a factorial moment or cumu-
lant of a discrete distribution, since a moment or a factorial moment or cumulant
can be expressed as a polynomial in cumulants which satisfy the conditions of the
theorem. In the next section, we show that recurrence relations in the form of
(2.13) characterize a linear exponential distribution in £.

Instead of choosing the recurrence relation (2.5), we could have alternatively
considered for any P

/ o (0, £) ’ p
(214 wa(0,0) = | 2091 40,0000
=0

given by Noack [2] and, if P is linear exponential in ¢, we would have arrived
at a theorem essentially the same as Theorem 2.2. Incidentally, we have pointed
out in (2.7) and (2.14) how a recurrence relation true for a distribution linear
exponential in £ can be so modified to be still true for any distribution by means
of its induced family.

Before concluding this section we shall point out that m (9, £) of (2.3) which is
the mgf of P; is usually called the generating function of P, since its functional
form characterizes a particular family ®,. As we have seen already that the
generating function of P, is not unique, then all the properties of the mgf hold
good for a subelass of generating functions of the family ®,. However, the prop-
erties of the mgf which are invariant under a translation of the coordinate axes
of the parameter space and a positive constant multiplication of the mgf hold
good for all the generating functions. For example, as the mgf is a convex func-
tion, so is every generating function. On the other hand, the property that the
mgf has a Fourier integral in some neighborhood of zero cannot be simply ex-
tended to all generating functions because zero may not be an interior point of the
argument of the generating function. However, a generating function can have a
Fourier integral in some neighborhood of an interior point of the domain.

3. Characterizations. We need the following lemma extracted, simplified, and
generalized from the proof of Patil’s main theorem in [3] before we present the
important theorem of this paper.
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LremMa 3.1. Let g(8, &) be analytic in 0 in a neighborhood of 0 = 0 and in & in
some netghborhood of £. Then g (0, £) = ¢(0, 0 4+ £) #f and only if

a'g (6, s)] _ [a’g(o, 5)]
[ 0" o = ———-agr— ) f07' all r = 0.

Proor. The proof follows from Taylor’s expansions

00, = % [6’9;3; E’JH o/r!

and

00,0 + &) = 22008 gy
r=0 65’

TurorEM 3.1. Let P; and Py ; denote a distribution and its induced distribution
respectively. Let 11 (0, £), k20, £) + - - denote the cumulants of P4¢ as before. Let
an,n = 1,2, -+ be a function of k1 (0, £), -+, k. (0, £) with continuous partial
derivatives in a neighborhood of the point (k1 (0, £), -+, k- (0, £)) such that «,,
n=1,2, .- can be in turn expressed as a function of a1 (8, £), -+, @, (0, £) with
continuous partial derivatives dk,/dcn , -+ , Ok./da, tn a neighborhood of the
pont (a1 (0, £), ++-, a,(0, £)). Then, P; ts linearly exponential in ¢ if and
only if any one of the following statements is true:

(a) Pi: = Py forall &,

(b) k10, &) = k(0,0 + £),
6"1‘(0, E) _ [a"r(07 S)]

(e) 9t LT a0 o’ rel,
aar(O; E) _ I:aar(oi E)]

() % L 90 =’ rzl.

Proor. (a) The necessity is proved in (2.3) and the sufficiency obviously fol-
lows from the fact that P, ; linear exponential in 6 for all ¢ (being interior points
in a neighborhood of 6 = 0) implies P¢ is linear exponential in £.

(b) For any distribution P; we note from (2.6)

8 log m(6, &)

(3.1) k1(6, £) = e

where m (6, £) is the mgf of P;. The necessity is easily verified when we recall
m@, £) = f(6 + £)/f(¢) from (2.3). The sufficiency is established by letting
f k(0,0 4+ £) df = g(0 + £) and then applying the inversion of the Fourier trans-
form to m (it, £) where logm 6, &) = g0 + £) — g(¢).

(¢) The necessity is already proved in (2.10). The sufficiency is established as
follows: from (2.7) and part (c) we get

aKr(Oy E)
9%

<
v
fa—y

Kr+l<0; £) =
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which can be written as

a1‘1‘1(07 E) r > 1

(3.2) "1'+1(0y 5) = oF" )

while from (2.6) and part (c)

8"k1(6, s)]
00" =0

We complete the proof of part (¢) by observing that (3.2) and (3.3) imply part
(b) by Lemma 3.1.

(d) This part is proved when we observe that it is equivalent to the part (c)
by Lemma 2.1 in which 8,(6, £) plays roles of «.(f, £) as in Theorem 2.1 and
a, (0, £) to obtain the converse of Theorem 2.1. This completes the proof of Theo-
rem 3.1. ’

From (2.7) and part (¢) of Theorem 3.1 we deduce

CoROLLARY 3.1. (Patil [3]) P; 7s a lénear exponential in ¢ if and only if

9, (0, &)
Fr r= 1.

From (2.14) and part (d) of Theorem 3.1 we deduce
CoROLLARY 3.2. (Wani [4]) P ¢s linear exponential in & if and only if

(33) sa(0, £) = [

(3.4) kr41(0, ) =

v

(3.5) w0, 8) = 208 o (0, 8), re L

(3

At first sight (8.5) may look different from the recurrence relation Wani [4]
employed to characterize a linear exponential family in £, but his form is equiva-
lent to (3.5) with ' (0, £) = df (£)/dk.

By Theorem 3.1 and corollaries one can prove that all the recurrence relations
given by Khatri [1] and Noack [2] except the one which we consider in the next
section characterize a linear exponential family in a parameter. One can relax
the conditions on the functions of & in Theorem 3.1 as long as parts (¢) and (d)
of the theorem are equivalent.

4. Discussion. The recurrence relation in the moments about the mean given
by Noack [2],

(41) a0, 8) = 228 10, 4000, 0,
of a linear exponential P; in £ gives rise to
a0, ) _ [am(o, s)]
(4.2) 3% = 20 o’ r= 1.

Since p1 (6, £) = 0, k1 (6, £) cannot be expressed as a function of the moments about
the mean. Therefore, by Theorem 3.1, (4.2) alone cannot characterize a linear
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exponential family in £ but we need one more relation

aus’ (0,
(43) w(0,8) = 2198
£
If (4.3) is not given, one may wonder what family of distributions (4.2) alone
can characterize. In order to discover this family let us assume the mean of a
member to be a. Denoting a particular solution of the equation

W' (0,8) _
3%

by &' (0, £), we get a general solution of (4.4) as u’ (0, £) + ¢ where c is an arbi-
trary constant. Then, m (9, ¢), the mgf of the distribution of the family in ques-
tion, can be composed as

4.5) m(@, &) = m' (6 + £)é

where m’ (6 + £) is the mgf of a distribution P, linear exponential in £, with the
mean y’ (0, £) and the moments about the mean given by the recurrence relation
(4.2),and b(¢) = a — 4’ (0, £). Note, b (¢) is an arbitrary point since a is arbitrary.
Then we conclude that (4.2) alone characterizes a family of all distri-
butions each of which is obtained by a convolution of a member of ®, linear ex-
ponential in £ and an arbitrary point distribution. In other words, (4.2) charac-
terizes a family of all distributions which can be made linear exponential in ¢ by
a translation of the coordinate axes of the sample space.

(4.4) u2(0, £)
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