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0. Summary. The paper studies Wald’s minimax risk (M.R.) criterion and
Lehmann’s unbiasedness condition for a very general class of Type I problems
(Section 2) which contains nearly all nonsequential multiple decision problems
(m.d.p.’s) from parametric statistics (at least when no reasonable a priori knowl-
edge is available—apart from knowledge restricting the parameter space in, for
example, one-sided problems or in trend situations—and provided that the prob-
lems can be formulated by means of a loss function which is constant for the various
kinds of error.)

Type I problems turn out to behave in a degenerate way. Generally the M.R.
procedure is not unique (Situation 1, see Theorem 3.1 and the Sections 5, 11, 12);
when a unique M.R. procedure exists, then this is trivial and useless (Situation 2,
see Corollary 3.1 and Sections 6, - - -, 10).

We try to remedy this by applying Lehmann’s unbiasedness condition (Sec-
tion 4). This has to be done cautiously for the unbiasedness condition might be
too restrictive: sometimes the class W of all unbiased procedures is so small
(Corollary 4.1) that W = & (Theorem 8.1(i)) or such that W contains only
poor and useless procedures (Theorem 8.1 (iii) and Section 12).

Fortunately we can show for some problems in Situation 1 that W < M where
M denotes the class of all M.R. procedures (cf. Theorem 4.1; the unbiasedness
restriction seems to be very attractive when the sufficient conditions of Lemma
4.2 are satisfied, see Theorem 5.1 where W = M, Lemma 7.1(ii) and Theorem
11.1; in Section 12 we also have W C M but nevertheless the unbiasedness re-
striction is not attractive).

For problems in Situation 2 the unique M.R. procedure 8™ is trivial and useless.
Nevertheless we regard it as an advantage of the unbiasedness restriction when
8" ¢ W (Sections 6, - - - , 10), whereas 8* 2 W is regarded as an indication that W
might be too small (Theorem 8.1 (iv), Remark 8.1 and Lemma 10.1).

We always try to obtain the procedure with ‘“the most attractive appropriate
optimum property.” As shown by Lehmann ordinary two-decision testing prob-
lems (Section 5) and products of such problems (Section 11) do not present exten-
sive difficulties because the unbiasedness restriction is attractive (Theorems 5.1 and
11.1) and reduces our m.d.p.’s to problems in the Neyman-Pearson formulation.
Many three-decision two-sided problems are solved (Section 6) though we have

Received 19 December 1967; revised 10 February 1969.

1 This investigation was supported in part by a research grant (No. GM-10525) from the
National Institute of Health, U. S. Public Health Service. The revision was written while
the author was working in Berkeley, partially supported by a NATO-grant supplied by the
Netherlands Organization for the Advancement of Pure Research Z.W.O.

1684

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access

The Annals of Mathematical Statistics. RIKGIS ®

www.jstor.org



MULTIPLE DECISION PROBLEMS 1685

to be content with criterions which are not very compelling. Similar results are
obtained for some slippage problems (Sections 7, ..., 9) where the “optimum”
procedure turns out to be not of the ‘“natural” form considered in literature.
For many m.d.p.’s of Type I (except for those in Sections 5, 6 and 11) the actual
construction of the “optimum” procedure is forbidding and we have to content
ourselves with results relating the classes W and M (cf. Sections 7, ..., 10, 12;
the problems can be solved only in very simple special cases).

1. Introduction. Interest in m.d.p.’s was excited by statisticians who proposed
m.d. procedures for ranking the means in an analysis of variance with one-way
classification and where sufficient evidence is required for stating that one mean
is (significantly) smaller than another (Fisher (1935), Newman (1939), Keuls
(1952), Tukey (1953), Scheffé (1953), Duncan (1955); reviews are given in
Miller [22] and David [8]). In Sections 11 and 12 we shall try to solve simplifi-
cations of these problems.

In 1948 Mosteller [23] considered slippage problems where in the analysis of
variance k-sample situation, £ 4 1 decisions are possible; decision d, stating
that there exists no sufficient evidence for inhomogeneity, and decisions d; stating
that the 7th mean has slipped to the right (is the best, or an outlier) (: =1, - - - , k).
Paulson [26] and others ([9], [16] and [33]) proved that a “natural’”’ procedure has
certain optimum properties. In Section 9 we shall see that this result is lost when
we consider the ‘“‘most beautiful” decision theoretical formulation of the problem.

Related to slippage problems are the problems (i) for selecting the best or
largest mean (decision dy is no longer permitted, see [2], [12], [30]); (ii) for select-
ing the ¢ best populations ([1], [4], [5]); (iii) for selecting a subset of arbitrary size
containing the best ([2], [13], [21], [24], [29] and [31]; in Example 10.2 we shall give
a decision theoretical formulation of this problem); (iv) for selecting (a subset
containing ) the best when several treatments have been compared with a control
or standard situation which is not to be rejected unless sufficient evidence is
available for stating that one of the new treatments is better (Paulson [25] and
others). In 1950 Bahadur [2] proved for certain formulations of some of these
problems, that the “best” procedure is the “natural” one which selects the subset
{u:} consisting of the ¢th expectation, if and only if the ¢th sample mean is the
largest.

In 1957 Lehmann [19] gave a general decision theoretical formulation for large
classes of m.d.p.’s by defining loss functions which are constant, for the various -
different kinds of error and over the subsets of the parameter space Q in which
this is naturally partitioned. Lehmann applied his unbiasedness condition, con-
structed uniformly minimum risk unbiased procedures and showed for certain
problems that the class W of unbiased procedures is a subclass of the class M, of
all ML.R. procedures.

Our paper starts from a similar point of view. The dissimilarity to Lehmann’s
results may be best demonstrated by considering the interesting three-decision
problem that describes the basic situation occurring when the result of a two-
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sided test has to be interpreted. Lehmann [19] (see also [18] and [32]) defined the
loss for all 8 € @ and constructed uniformly minimum risk unbiased procedures. In
our opinion ([27] Chapter 3) a more attractive formulation is obtained when we
do not define the loss for all 6 ¢ Q. By adopting this better formulation we have to
content ourselves with less compelling but not less reasonable criterions (see Re-
mark 6.1).

2. The general formulation of a class of multiple decision problems. It will
be shown in Sections 5, ..., 12 that the following problems are of interest in
many situations where the experimenter tries to draw scientific conclusions from
his observations. (In many industrial applications one will have doubts about
the adequacy of the loss function.)

On the basis of an observation z in the sample space X of a random observable
X, we have to choose a decision d out of the finite space D = {do, - - -, dn} of all
interesting decisions (see [6] Chapter 7). It is known that X has a pdf (Radon-
Nikodym derivative) ps out of the class ® = {ps; 0 ¢ @} of admitted pdf’s with
respect to some o-finite measure u over (a o-field @ of measurable subsets of ) .

The parameter space @ is partitioned into m + 1 mutually exclusive subsets
Q= Qu - uQ, where Q is an indefiniteness zone (2 = ¢ is permitted). Let
Q' = Q — Qo and the loss function L:2" X D — [0, « ) be defined by L (9, d) = w;;
ford =d;and all0 e,z =1, ---,m;j =0, ---, n). So for d fixed, the loss
function is constant over each Q; while no loss is defined for 8 € Q.

The statistician has to construct a (possibly) randomized decision procedure
& or equivalently (see [6] page 172) an (n + 1)-tuple (g0, * -, ¢.) of test func-
tions satisfying Y7 ¢;(x) = 1forall z ¢ X. A function ¢:% — [0, 1] is said to be
a test function if and only if ¢ is (u)-measurable. The procedure d = 6(¢0, - , @x)
preseribes that if z € & has been observed, a random experiment has to be per-
formed providing decision d; with probability ¢;(x)(j = 0, - -+, n). The risk of
this procedure 8 in ¢ ¢ Q; is determined by

(2.1) R(8,8) = EiL{, 6(X)}] = 2 -0 wiiBole; (X))}
(¢ =1,---,m) and a procedure 5* has minimax risk if
(2.2) supecar R (8, 8%) = infs supear R (8, 8).

Many problems from actual practice satisfy the following definition which éx-
presses that @i, - - -, @, have common boundary points.

DeriniTION. A multiple decision problem is said to be of Type I if the param-
eter space Q is a subset of the Euclidean space R’ such that (i) Eefe(X)} is a
continuous function of 8 (6 £ Q) for each test function ¢ and (i) [Z]ln -+ - n [Qn] =
& # I

Here [ ] denotes the closure of a set and the notation Qo is used because for a
number of important applications we have Q = Q.

SoME BAsIic NOTIONS FOR Type I proBLEMS. Many properties for Type I
problems will turn out to be (almost ) completely characterized by them X (n + 1)
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matrix (w;;). It is of interest to characterize this matrix by a convex set S in the
Euclidean space R™ of points w = (u1, - -, Un), with inner product (u, v) =
> r i uwi, norm |Ju| = (u, u)! and metric d(u, ») = |lu — v||. For that purpose
let S be the convex envelope in R™ of the n + 1 points w.; = (wij, -, Wm;)
(=0, --,n). Hence

(2:3) S = {viv = X2 opabs, p; 2 0, 2 50p; = 1].

We say that w* is a minimaz point of S if (1) w* ¢ S and (i) if
w* = (w™, -+, wn")thenforeachv = (v1, - - - ,vm) &S wehave maxv; = maxw;”.
If on the other hand w* ¢ S is such that for each v ¢ S we have min »; < min w,*,
then w* is said to be a maximin point of S.

Thus the geometric picture corresponds with that used in the theory for the
game with matrix (w;;), where w;;is the pay-off of Player II to Player I when the
maximizing Player I uses the pure strategy (row) ¢ while the minimizing Player
IT uses strategy 7. The point w* = > 7y p;*w.; is a minimax point of S if and
only if (po*, - -+, p.*) is a minimax (mixed) strategy for Player I (see Karlin
[15] Section 1.4).

3. Minimizing the maximum risk. For Type I problems, much can be said
about the M.R. procedures if we know the class of all minimax strategies for
Player II in the related game with pay-off matrix (w;;).

TueoreM 3.1. For Type I problems the following holds.

Q) If (po*, -+, pa”) s a minimax strategy for Player II then the constant
procedure 8, = (0™, -+, 0n ®) with 0; P (x) = p;*(G = 0, ---, n) for all
x & X, has minimazx risk.

(i) If 8% = 8(oo™, -+, @n”) s an MLR. procedure then for each 8, & Qo we have
that (po*(60), -+, Pn” (o)) is @ minimaz strategy for Player II when p,;*(8,) =
Eole* X G =0, ---,n).

Proor. (i) w* = D i pifw.,; = (wn*, -+, wn") is a minimax point of the
convex set S. Let @ = max w.*. The problem is of Type I. Hence there exists a
sequence (6 ¥ 9, ...) of points in Q; such that 6, % 5 9, for some 6y € Qo
k — (@ =1, ---, m). The risk R(6:”, 8) for the arbirtary procedure
3(¢o, -+, ¢a) is given in (2.1) and converges to D j— wi;p; as k — o where
p;i = Eale;(X)}. Obviously D> j— pw.; € S. But w* is a minimax point of .
Hence

x|l

3.1) Supeor R (6, 8) = max; D j—o p;ws; = max; w; = %"
and consequently the right-hand side of (2.2) is not smaller than %*. But the
constant procedure §; satisfies supe R (6, 8;) = . Hence & has minimax risk and
the right-hand side of (2.2) is equal to %™
(ii) We have to show that w™ (8y) = >0 p;* (60)w.; is a minimax point of S.
But with respect to 8* equality holds everwhere in (3.1). Hence the maximum
coordinate of w™* (8,) is equal to %™ and w* (6,) is a minimax point of S.
CoroLLARY 3.1. If (po*, -+, p*) = (1,0, ---, 0) is the unique minimaz
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strategy for Player 11 in the game with matriz (wi;) and if Eg{e (X)} = 0 for a test
function ¢ implies o = 0 a.e. () at least for some 6y & U, then each ML.R. procedure
8% =8(po*, - - ,@n") for the TypeI problem satisfiesoo” = 1,0;,* =0(j =1,-+-,n)
a.e. (u).

This corollary is a simple consequence of Theorem 3.1(ii) and constitutes a
generalization of [19] page 572 and [27] page 50. It will show for the problems in
Sections 6, ---, 9 that the trivial procedure which assigns decision dy with
probability 1 to all z £ & is the unique M.R. procedure (procedures are identified
when having the same risk function).

The general problem for obtaining all minimax strategies for Player IT (and
maximin strategies for Player I) in the matrix game, has been dealt with in
Karlin [15] Chapter 2. The set of all minimax strategies is the convex envelope of a
finite number of extreme-point optimal strategies which can be obtained by
considering respectively all square submatrices of the matrix (w;;). Fortunately
we can often employ more direct methods by using the special properties of the
matrix under consideration. In many cases it is possible to guess what the opti-
mum strategies are. In that case we only need a proof that they are indeed optimal
and that we obtained all optimal strategies. The following lemmas are helpful.

Lemma 3.1. w* = D7 p;*w.; is @ minimaz point of S ((po*, -+, pa”) is @
minimaz strategy for Player I1) if and only if there exists a strategy (g1, *** , gm)
for Player I such that (i) gi = 0 for all © with w;" < max w;* = @©* and (ii)
(g, w.; — w*) 20G=0,--,n).

ProoF. Suppose (g1, -+, gm), Do’y -+, Pn") is a pair of optimal strategies
for the players I and II respectively. Then (g, w*) = %" is the value of the game.
This shows (i) (see also Karlin [15] Lemma 2.1.2) and (ii), for IT will lose not
less than %™ when using the pure strategy j in case I uses his maximin strategy g.

On the other hand, if the conditions (i) and (ii) are satisfied and (A1, < -+ , hm)
is an arbitrary mixed strategy for Player I while (po, - - - , p.) is a strategy for II,
then by applying (i) and (ii) respectively, we obtain

(hy w*) £ (g, w*) £ (g, 2oi=0 PW.5)

which shows that (g1, -+, ¢gn) is a maximin strategy for Player I while
(Po*, -+, pa”) is a minimax strategy for Player II (see Karlin [15] Corollary
1.3.1).

LemMa 3.2. If there exists a strategy (g1, -, gm) for Player I such that (i)
g: = 0 for all ¢ with wy < max wy = Wand (i) (g, w.; — w.o) >0@F=1,---,n)
then (1,0, - -, 0) is the unique minimax strategy for Player I1.

Proor. Lemma 3.1 shows that w.o is a minimax point of S and that (g, w.o)
is the value of the game. For each strategy (po, -+, pn) # (1,0, ---,0) of
Player IT we have (g, 2~ pjw.;) > (g, w.0) on account of (ii ). This establishes
the uniqueness.

REMARK CONCERNING ANOTHER FORMULATION. In [17] Krafft suggested to
replace the formulation of Section 2 by the following one which is also based on a
matrix wi; (¢ = 1, ---,m;j =0, - -+, n) of weights and where one looks for the
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“best-W”” prcedure & (¢o*, -+ - , ¢a") such that
22 2 wi; supsea; Bofe;™ (X)) = infs 30 37 wi; supsea; Bofe; (X)}.

Inouropinion this formulation is less attractive than the formulation of Section 2
because the loss and risk functions of Section 2 have clear interpretations. More-
over “best-W” procedures are unusable for Type I problems. In order to show
this, let 6, be some point in Q¢ and let .; = Y7 w;; . Then

2 2 wii supa; Eofe; (X)) 2 25 2 wiiBaye: (X))
= 3 W.;Bs{¢;(X)} = min; b.;.

But if j* is an index such that .;» = min; .;, then the trivial procedure with
¢+ = 1 a.e. (u) has the property that

2= 20 wi; supg, Bofe; (X)} = .
with the result that this trivial and unusable procedure is “best-W.”

4. Unbiasedness and minimax risk. The conditions of Corollary 3.1 are satis-
fied for the problems which will be considered in Sections 6, ---, 10. Thus the
M.R. criterion is inappropriate for these problems; for the unique M.R.. procedure
is the trivial procedure 8, which has a constant risk function, with the result that
there will exist procedures with a larger maximum risk but with a much smaller
risk for the greater part of Q. For other interesting m.d.p.’s of Type I (Sections 5,
11 and 12) there exists a large class of M.R. procedures and one will want to
restrict this class.

In order to deal with the situations described above, Lehmann’s unbiasedness
condition may be of interest.

DgeriniTION. A procedure 6 is said to be unbiased ([20] page 12) if and only if

(4.1) EL{6, 5(X)}] 2 Eo[L{0, 5(X)}] = R, 5)

holds for all 6, 6" ¢ 2.
LemMa 4.1. The procedure § = 8(po, * -, ¢a) ts unbiased if and only if for
1 =1, ---, m the following inequalities hold for all 6 € Q; :

(4.2) Z;‘;o waiBefe; (X)) = Z;;owion{‘Pj(X)} (h=1,---,m).
Proor. For 6 £ Q; and 6" ¢ @, we have
(4.3) EoL{6', §(X)}] = 35— waiBo{e; (X)}.

CoOROLLARY 4.1. For Type I problems the unbiasedness of & implies that equality
holds in (4.2) for all 0 & Q.

As Q) # & we see that no unbiased procedure can exist unless the convex set S
contains at least one point w* = (@*, ---, @*) with all coordinates equally
large. If S contains such a point w* = Y7~ p;*w.; then the constant procedure
01 of Theorem 3.1 provides an example of an unbiased procedure. Moreover
Corollary 4.1 and Theorem 3.1 (ii) show that no M.R. procedure can be unbiased
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unless there exists a minimax point w* of § with all coordinates equally large. In
our opinion these remarks show that Lehmann’s unbiasedness condition must
not be applied too rashly. We shall round off these discussions in Remark 4.2.

TurorEM 4.1. If for a Type I problem there exists a point w* = (@*, -+, "
that s both a minimax and a maximin point of S, then each unbiased procedure has
minimaz risk.”

Proor. Suppose d = (¢, -+, ¢») is unbiased and 4 ¢ @;. Consider the point
ws (0) = D im0 pjw.; € S where p; = Ep{e;(X)}. Lemma 4.1 shows that no co-
ordinate of w;(8) is smaller than the 7th which is equal to R (9, 8). But w* is a
maximin point. Hence R (6,8) < " for 6 £ 2; and consequently supg.o- R (6,8) < w*.
But the problem is of Type I and w* is a minimax point. The proof of Theorem
3.1 shows that the right-hand side of (2.2) is equal to %w*. Hence 8 has minimax
risk.

The following lemma gives sufficient conditions for the applicability of Theorem
4.1.

LemMa 4.2. If w™ = @, ---, ©*) € S is such that there exists a strategy
(g1, -+, gm) for Player I with g; > 0@ = 1, -+, m) and (g, w; — w*) =
0(G =0, - ,n)then w* is the unique minimax and the unique mazximin point of S.

Proor. We shall show that w™ is the unique maximin point of S or equivalently
that w = D jo paw.; €8, w; = (@ = 1, --+, m) implies that w = w*. But
g:i>0@ =1, ---,m) implies Y 7 gi(w; — @*) = 0 with strict inequality un-
less w = w*. Hence (g, w) > (g, w*) unlessw = w*. But (g, w) = D im0 p; (g, w.;)
= (g, w*). Hence w = w*.

REMARK 4.1. The conditions of Lemma 4.2 do not imply that w* has a unique
convex representation (see Lemma 7.1 (ii) and Remark 11.1). The following
counter-example shows that the sufficient conditions of Lemma 4.2 are not neces-
sary. Takem = 2,n = 2, wo = (2,2), w1 = (3,0), we = (3, 1) then w.is the
unique minimax and also the unique maximin point.

REMARK 4.2. We propose to apply the unbiasedness condition (i) when the
M.R. procedure is not unique while S contains a point w* = (@*, ---, @w*)
that is the unique minimax point and (one of ) the maximin points, for in that
case Theorem 4.1 shows W C M where W denotes the class of all unbiased and M
that of all M.R. procedures (in Sections 5 and 11 the conditions of Lemma 4.2
are satisfied and accordingly we apply the unbiasedness restriction; in Section 12
there exists a point w* that is the unique maximin point but the worst of the
minimax points: though W C M on account of Theorem 4.1, the unbiasedness
condition is not appropriate because it is too restrictive, W contains only bad
and useless M.R. procedures), (ii) when the M.R. procedure 6™ is unique and
trivial (Theorem 3.1 (i)) while the class W of unbiased procedures is “not too
small”’; in this case we regard 6* # W as an indication that W might be too small
though this argument is not sufficient because 8 is an uninteresting procedure
from the practical point of view (see Sections 5, -+ -, 10).

2 In the meantime, Mrs. W. Stefansky, Department of Statistics, Berkeley, obtained a
theorem describing necessary and sufficient conditions for each unbiased procedure having
minimax risk.
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ReEmARk 4.3. We apply the unbiasedness restriction in order to obtain an
optimum procedure with respect to the class of all unbiased procedures. We define
some optimum properties with respect to an arbitrary class W of decision pro-
cedures (see [27]). Let Ry™ (6) = infsew R (6, 8) denote the envelope risk function
infeQ . Then Sy (©,8) = R(6,8) — Ry" (8) is called the regret function in 6 €
of & with respect to the class W. The procedure * has UM.R. (W) (uniformly
minimum risk with respect to W) if (1) 6* ¢ W and (i) Sw (8, 8) = 0 for all 6 ¢ @’
We say that 6* has minimaz regret (W) if (i) 8™ e W and (ii)

“44) supe Sw @, 8%) = infsew supe Sw (6, 8).

A procedure § is said to have S.M.R. (W) (somewhere minimum risk with respect
to W)if (i) 6 e W and (ii) Sy (6, ) = 0 for some 8 £ Q. Let U denote the class of
all S.M.R. (W) procedures. We say that 8, has minimazx regret SM.R. (W) if
(1) do e U and (i)

(4.5) supgr Sw (0, 60) = infs.y super Sw (8, 6).

Only a few m.d.p.’s admit U.M.R. (W) procedures (Sections 5 and 11). If
there does not exist a U.M.R. (W) procedure then we try to apply the much
less compelling criterions minimax regret (W) and minimax regret S.M.R. (W)
which are modifications of the criterions most stringent (D) and most stringent
S.M.P. (D) in the Neyman-Pearson theory ([27] Chapter 3; see also Sections 6
and 9). That these criterions are far from compellng is unfortunate but natural:
compelling criterions will only be applicable to very simple problems (Sections 5
and 11) and to more difficult problems when their formulation is oversimplified.

6. The general two-decision hypothesis testing problem as an example with
m = 2,n = 1. Let the observation = £ X be obtained in order to decide upon one
of the two statements.

do:both H and K are neither rejected nor accepted (“6 € Q)

di:H 1s rejected and K s accepted (“6 € Qy”")
where H is the hypothesis that 6 € @, and K is the alternative that 6 e 2 (1 n Qs = &
Q=Quud;Q = & in many cases). The two-decision procedure & (o, ¢1) is
completely determined by the test function ¢; .

In the Neyman-Pearson theory the statistician controls the error of the first
kind (dy is made whereas 6 ¢ ©,) by restricting the attention to the class of all -
size-a tests where a is the predetermined level of significance. In many cases this
class is further restricted by applying Neyman’s unbiasedness condition. Within
such a restricted class the statistician looks for an optimum test for which the
power function B,, (0) = Ep{e1(X)} = 1 — Ep{po(X )} over £ is in some sense as
large as possible. Here Eq{po(X )} is the probability of an error of the second kind
(do is made whereas 6 € Qy).

The following example shows that the Neyman-Pearson formulation is not
completely satisfactory. Suppose an observation x is obtained from the normal
N (u, 1) distribution in order to test the hypothesis H:u = 0 against the alterna-
tive K:u = u where y; is some positive constant. In order to protect ourselves
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against the serious error of the first kind we use a small value of «, say a = .05.
Then the Neyman-Pearson theory provides the procedure 6 (¢, ¢1) where ¢ is
the characteristic function of the interval (u., © ) where u, = 1.645. This result
is not reasonable when w; > 2u, , for when an error of the first kind is regarded as
much more serious than an error of the second kind then it is reasonable to require
that Eu—o{e1 (X )} < E,{eo(X)}. Hence a has in some sense to depend on u; but
the Neyman-Pearson theory does not solve this problem.

A more attractive decision-theoretical formulation is obtained by introducing
Lehmann’s loss function ([20] page 12)

(51) L(O, do) = W = 0; L(O, dl) = wn = b (0 891)
L(O, do) = W = a5 L(0, dl) = W = 0 (0892)

which expresses that the loss resulting from an error of the first kind is b/a times
the loss resulting from an error of the second kind. In this formulation b/a is a
predetermined constant which plays a similar part as « in the Neyman-Pearson
formulation. By adopting this formulation with loss function (5.1), the above-
mentioned difficulty is remedied. Problems with a simple hypothesis and a simple
alternative are not of Type I. We can easily construct the M.R. procedure as the
Bayes procedure with respect to the least favorable a priori distribution and this
procedure turns out to be very attractive.

Most testing problems from actual practice are of Type I. For such problems
the following theorem of Lehmann shows that there will exist a class of M.R.
procedures.

TueoreM 5.1. (Lehmann). If the two-decision testing problem with loss function
(5.1) is of Type I ([u] n [Q] % &) then the following three classes of procedures coin-
cide: (i) the class of all M.R. procedures, (ii) the class of all unbiased procedures,
(i) the class of all unbiased size-a tests where o = a/(a + b).

Proor. (see [20] pages 12, 24, 25). The equivalence of (i) and (iii) is a con-
sequence of Lemma, 4.1. In order to establish the equivalence of (i) and (i) we
remark that S is the line segment joining w., = (0, @) and w., = (b, 0). Lemma
4.2 may be used to show that w* = (@*, &™) with ®* = ab/ (a + b) is the unique
minimax and maximin point of S. Hence each unbiased procedure has minimax
risk (Theorem 4.1). On the other hand, if one coordinate of w ¢ S is smaller than
%", then this coordinate is the smallest one. This argument shows that each M.R.
procedure is unbiased (the argument does not hold in more dimensions: Theorem
4.1 cannot be sharpened).

ReEMARK. Theorem 5.1 was the starting point of Lehmann’s paper [19] and
of our results in [27] Chapter 3. The theorem shows that for many two-decision
testing problems of Type I both the Neyman-Pearson and the decision-theo-
retical approach will provide the same “optimum” two-decision procedure pro-
vided that the predetermined constants o and b/a satisfy o = a/(a + b). Of
course the optimum properties of the Neyman-Pearson theory will have to be
reformulated in the decision-theoretic approach (see [27] Chapter 3 and [28]).
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6. The general three-decision two-sided hypothesis testing problem as an
example with m = n = 2. Let the observation z ¢ % be obtained in order to
decide upon one of the three statements

do:no sufficient evidence for 0 € Qi , nor for 6 € Q,
dy:the statement “0 & @, 1s accepted
dothe statement “0 € Qp” is accepted

where for the partition @ = Qo u @ U Q, in a certain sense @, = Q, is situated be-
tween Q; and @, . An important simple example is obtained when z is the outcome
of the normal N (u, 1)-distribution and where @ = {0}, & = (— =, 0) and
Qy = (0, ). In this case d» may be reformulated by saying that there is sufficient
evidence for u being positive (dy and d; can be reformulated similarly ).

The Neyman-Pearson approach to these problems is rather artificial. The
statistician constructs an optimum unbiased size-a test o™ for testing 0 ¢ Qo
against the two-sided alternative 6 & Q. In the most important applications ¢* is
the indicator function of the union of two mutually exclusive simply connected
subsets of &. In that case the statistician proposes to use the three-decision pro-
cedure 6 (¢, ¢1, ¢2) Where ¢ is the indicator function of one of these subsets and
@2 of the other. In Section 7 we shall meet problems where the optimum test
¢* is the indicator function of one simply connected subset of & so that the
above-described natural interpretation of ¢* = 1 does not exist. Moreover for
many other problems with a natural interpretation of the optimum unbiased
size-a test, the tail probabilities Ey,{¢1 (X )} and Eg,{¢:(X)} arenot (both) equal
(to 3a). This is not very reasonable from the three-decision point of view. More-
over it is unpractical, for one would need many new tables. However in practice
one does not use the optimum unbiased size-a test but its analogue with equal
tail probabilities. In Remark 6.3 we shall see that this is reasonable from our
theoretical point of view.

In our opinion, the most attractive formulation of the three-decision problem
is obtained by defining the following loss function

(6.1) L(®,do) = wio

a; L(0, dl) = wn = O, L(0, dz) = W12 = b (0891)
L(0, do) = Wy = a; L(O, dl) = W = b; L(e,d2) = Wy = 0 (0892) .

which just like (5.1) expresses that the loss resulting from an error of the first kind

(the explicit statement dy (dz) is made whereas 8 ¢ Q; (€1)) is b/a times the loss
resulting from an error of the second kind (the uninformative statement dj is
made whereas actually 6 € Q; or 6 € Q;). The theory of Section 5 suggests that the
experimenter might use (6.1) withbd/a = —1 4 1/« if heintended to use the Ney-
man-Pearson size-arestriction. We remark that the above-mentioned formulation
of the error of the first kind is not consistent with that used in the Neyman-Pear-
son approach because there an error of the first kind is committed when 6 ¢ Q =
Qo whereas one of the decisions d; and d; is made.
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In this section we restrict the attention to three-decision problems of Type I
where (1) in (6.1) we have b > 2a and (ii) Es, {0 (X)} = 0 for some 6y & @ = Q'
implies ¢ = 0 a.e. (u) when ¢ is a test function. The symmetry of (6.1) suggests
that (g1, ¢2) = (%, %) is a maximin strategy for Player I in the game with 2 X 3
matrix (w;;) (the maximin strategy is not unique). On account of b > 2a this
strategy (3, 1) satisfies the conditions of Lemma 3.2. Hence (1, 0, 0) is the unique
minimax strategy for Player IT and Corollary 3.1 shows that the trivial procedure
8o which assigns do with probability 1 to all z £ & is the unique M.R. procedure
(see [27] page 50). Hence the M.R. criterion is inappropriate.

We shall see that the unbiasedness restriction provides relief. It follows im-
mediately from Lemma 4.1 that 8 (g0, ¢1, ¢2) is unbiased if and only if

(62) Eof{(p,(X)} g Eoi{<P3—i(X)} for all 01' & Qi

holds for ¢ = 1, 2. We shall apply one of the criterions minimax regret (W) and
minimax regret S.M.R. (W).

REMARk 6.1. The above-described approach to three-decision problems was
introduced in [27] where minimazx regret S.M.R. (W) procedures were constructed
for very large classes of problems where €; and Q, are each other’s image under the
transformation f(#) = —8 in R® while @1 (and consequently ;) is a subset of R’
(a polyhedral angle or cone) which is defined by a number of homogeneous linear
inequalities. (For example, consider the two-sided trend problem where Q; con-
sists of all8 = (01, - -, 0,) satisfying 6; = 6, = --- = 6, (with at least one in-
equality strong), while 8 € Q if and only if 6, < 6, = --- = 6,, with at least one
inequality strong).) If the number of inequalities is larger than one, then these
problems are so difficult that there do not exist completely satisfactory compelling
criterions (see [27] and [28]). We shall now show that in the case of only one in-
equality, the same procedure has minimazx regret S.NL.R. (W) and minimax regret
(W) at least when certain conditions are satisfied.

In order to be able to consider the uniqueness of certain results, we identify
tests when they have the same power function Es{¢ (X )} over @ and we consider
procedures as identical when they have the same risk function over Q. A sub-
class € of a class C of procedures is called a complete subclass of C, if for each
8 ¢ C there exists a procedure 8’ ¢ C’ such that R (6, 8') < R (9, 8) forall 6 £ Q.

THEOREM 6.1. Suppose Qo = Q = {60} is simple and that for each « € [0, 1]
there exists a pair of test functions 1, @2 such that (i) for all 0; & Q;, ¢:® is
the unique M.P. size-a test for testing H:0 = 0, against the simple alternative
K:0 =0, =1,2); (ii) ¢; “® s the unique least powerful test for H:0 = 6, against
the simple alternative K:0 = 0;_; among the similar size-o fests (satisfying
Eofo (X)) = a), for all 0s_; e Qs_i(s = 1, 2); and (iii) 0o @ @) = 1 — 01 (2)
— 0@ @) = 0forallzex.

Then § = 8(p0®, ¢1'“, ¢2) is a procedure and the following holds when W
18 the class of all unbiased procedures, U is the class of all S.M.R. (W) procedures
and U' = {60 < a < 1}: (a) WD U D U; (b) U is a complete subclass of
W; (¢) if 8™ is a minimax regret (U’) procedure, then 8 is a minimazx regret (W)
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procedure and (d) if moreover 8* ¢ U, then §* is a minimax regret S.M.R. (W)
procedure.

Proor. (a) With respect to the arbitrary procedure 5§ ¢ U’, the conditions
(i) and (i) show that Ep{e: @ (X)} = a = Es,{es%)(X)} holds for all 6; £ Q;
(i = 1, 2). Lemma 4.1 shows that 5 is unbiased (see (6.2)). Hence W D U’.

In order to show U’ D U suppose 8 = &(¢o, ¢1,¢2) € U or in other words 8 ¢ W

and there exists 0; ¢ Q; (# = 1 or 2) with R (8;,8) = infy R (0;, 6) where
(6.3) R(0:,8) = a — aBp{e:(X)} + (b — a)Es{es—i(X)}.

Now & ¢ W shows that Es {¢1(X)} = Eofe2(X)} = « for some a ¢ [0, }]
(Corollary 4.1). Consider the corresponding procedure 6 ' We already estab-
lished W D U’ with the result that 4 ¢ W. But 6 has minimum risk (W) in
6;. Hence R(6;,5) < R(6:,5”).

On the other hand (i) shows that Ep,{¢:(X)} < Ep{e:® (X))} with strict
inequality, unless Eofe:(X)} = Eofe:  (X)} holds for all 8 ¢ 2. Moreover (i)
shows that Ep,{¢s_:(X)} = Ey{es2i (X))} for all § ¢ 2. By using (6.3) we obtain
that R (6:,8) = R (6:, 8) holds with strict inequality, unless 6 and 6 ‘” have
the same risk function in which case they are identified. But we already es-
tablished R (8, 8) < R(6;,5“). Hence 5 = 5 ¢ U’ and we have proved that
U>oU.

(b) Suppose § ¢ W then Eg {¢1(X)} = Egle:(X)} = a for some a [0, 3]
and § “” ¢ U’ has the property that R (6, §‘”) = R (6, 8) holds for all § ¢ ©".

(¢) On account of (b) we have Ry™(0) = Ry (9) for all 6 ¢ @'. Hence Sy (6, 8)
= Sy (6, ) holds for the regret function. Next suppose 8" does not have minimax
regret (W). Then there exists a procedure 6 ¢ W and correspondingly on account
of (b) a procedure 8’ ¢ U’ such that

sup Sy (6, 8') < sup Sw (8, 8) < sup Sp- (6, 6%)

with the result that * does not have minimax regret (U’).

(d) Apply similar arguments using U’ D U and ¥ eU.

The class U’ is a one-parameter family. The construction of the minimax regret
(U") procedure 8* is feasible. First we have to determine the envelope risk
Ru+* (6) choosing the best o (8) for each 8. Then for each 6 € U’ the regret function
Sy (8, 8) is determined and we have to look for the parameter o™ corresponding
with the minimax regret (U’) procedure 3*. In many cases it can be shown easily
that 8% is the unigue minimax regret (U’) procedure and that there exists a -
parameter, say 0; € Q;, such that Sy (6, 8%) = supar Sy (6, 8%). In that case it
follows easily that 8™ is the unique minimax regret (W) procedure (uniqueness
for (d) follows similarly).

ExampLE 6.1. We shall elucidate Theorem 6.1 by working out the example
mentioned at the beginning of this section. We remark that much more general
situations can be dealt with, particularly those where the family {ps; 8 ¢ 2} is a
one-parameter exponential family or a family with monotone likelihood-ratio.
However we restrict the attention to the above-mentioned example because for
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this example certain computational tasks have already been accomplished in
[27]. Hence let X have the normal N (g, 1) distribution; Qo = {0}, &% = (— =, 0)
and @ = (0, « ). Here and in following examples we shall use the following nota-
tion.

NotatioN. ® denotes the cumulative distribution function of the N (0, 1)
distribution. Hence ®(z) = P(X =< z) when X has the N (0, 1) distribution.
Moreover ue = ® (1 — a) will denote the number (u.;; = 1.645) for which
®(ue) = 1 — a.

With respect to our example let §, denote the three-decision procedure & (¢,
@1, ¢2) Where ¢1 , ¢o and ¢; successively are the indicator functions of (— «, —c),
[—¢, +c] and (¢, ). The Neyman-Pearson fundamental lemma shows that
8. is the procedure & “ of Theorem 6.1 when ¢ = u, . Hence U =1{5;0=<c¢=< »}
is a complete subelass of the class W of all unbiased procedures (Theorem 6.1
(b)). The S.M.R. (W) procedure with minimum risk in 6; = peQ, is con-
sequently of the form 8, where c is determined in such a way that for p = |u|
the risk (see (6.3))

(6.4) R(@:,8) = (b — a)®(—c —p) + 2(c —»p)

is minimized as a function of ¢. Differentiation shows that the minimum is ob-
tained when ¢ = &(p) where

(6.5) &(p) = {ln (b — a) — Ina}/(2p).

We have 0 < p < o and consequently «© > &(p) > 0. Hence U = {6 ;
0 < ¢ < «}. The minimax regret (U’) procedure 4™ is obtained by minimizing

(6.6) sup,>0[(b — a){®(—c — p) — ®(—C(p) — p)}
+ af{®(c — p) — ®E(p) — p)}]

as a function of ¢. Let ¢*(b/a) be the value of ¢ minimizing (6.6). Then §* =
dc+@/ay 18 the unique minimax regret (U"), the unique minimax regret (W) and
the unique minimax regret S.M.R. (W) procedure (Theorem 6.1). The values of
¢*(b/a) are given by the line cos ¥, = 1 in [27] Figure 7. For & = .10(.05) the
Neyman-Pearson approach of the beginning of this section, provides the pro-
cedure 8, with ¢ = u3. = 1.645 (1.960). The related decision-theoretical ap-
proach based on the loss function (6.1) with b/a = 9(19) provides e+ @/a) where
¢*(b/a) = 1.73(2.03).

In Theorem 6.1 we restricted the attention to the case that Qo = Q0 = {6}
is simple. It is possible to generalize parts of Theorem 6.1 in order to deal
with the case that Qo = Qo is composite (see [27] Section 3.4) but we encountered
difficulties in generalizing Theorem 6.1 (c¢). The following lemma may be helpful
in order to overcome these difficulties.

Suppose that with respect to the same random observable X we consider two
related three-decision problems (see [28] Lemma 2) IT and = both with loss fune-
tion (6.1). II is defined by the partition @ = QU & uUQ and 7 by @ = wou
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w1 U w; where w; C ©; (z = 0, 1, 2). Let W denote a class of procedures for II and
w for = (in the applications W and w will be the classes of unbiased procedures
for II and = respectively so that Lemma 4.1 shows that, on account of w; C Q
(7 = 0, 1, 2), holds that W < w). Obviously a procedure §(vo, ¢1, ¢2) may
both be interpreted as a procedure for II and as one for =.

LemMa 6.1. Suppose that (1) W < w; (i) 8™ has minimaz regret (w) for prob-
lem w; (iii) 8" e W; (iv) Ry (0) = R, (8) for all 0w = wiuw and (v)
supg: Sw (8, 8™) = sup. Sw (6, 8%). Then 6™ has minimaz regret (W) for problem II.

Proor. We have

(iif) (v),(iv)
infseW Supeea’ SW(B, 6) é SUpgeq’ SW(G, 6*) = SUPsew’ Sw(oa 6*)

(i) (iv) @
= infﬁew Supﬂew’ Sw(0; 6) é infﬁew Supoeﬂ’ SW(O, 6) é infﬁeW Supﬂeﬂ' SW(oy 6)

Hence equality holds everywhere and §* has minimax regret (W).

We already remarked that econdition (i) will hold when W and w are the classes
of unbiased procedures. Condition (ii) can sometimes be fulfilled by taking
w so small that wo = wn Q is simple so that Theorem 6.1 can be applied; (iv)
can sometimes be proved by showing that each S.M.R. (w) procedure for prob-
lem 7 is a S.M.R. (W) procedure for problem II. We elucidate Lemma 6.1 by
working out the following very simple example.

ExampLE 6.2. Suppose X = (X;, X,) where X; and X, have independent
normal N (u1, 1) and N (uz, 1) distributions respectively. @ will be {u, u);
w < 0}, Q = {(u,u); m =0} and @ = { (w1, p2); w1 > 0}. In order to solve
this problem, we first consider the auxiliary problem where w; = {(u1, 0);
ur < 0}, wo = {(0,0)} and wo = { (w1, 0); ux > 0}. This problem = is a slight
modification of Example 6.1. We can apply Theorem 6.1 because wy = wy =
{(0, 0)} is simple. By doing so we easily obtain that §* = 8mg/q is the unique
minimax regret unbiased procedure for problem = when ¢*(b/a) is again the
value of ¢ minimizing (6.6) and with 6. = 6 (¢o, ¢1, ¢2) Where o1, ¢o and ¢, are
respectively the indicator functions of the sets of sample points which are de-
fined by 1 < —¢, —¢ = 21 = cand ¢ < 2, respectively. The conditions of Lemma
6.1 can be verified easily. Hence 8* = 84+¢/a) is the unique minimax regret un-
biased procedure for problem II.

REMARK 6.2. Application of Theorem 6.1 together with Lemma 6.1 will only
be successful if there exist uniformly M.P. size-a tests for testing the possibly
composite hypothesis 6 ¢ @, against the composite alternative 8 e Q; (@ = 1, 2)
(see Example 6.2). Fortunately we can deal with many other problems (namely
those where uniformly M.P. similar size-a tests exist) if we modify the criterions
of Theorem 6.1 a little bit. First we remark that the unbiasedness of a procedure
5((,00 y 1y (pg) 1mp11es Eoo{qm (X)} = Eoo{qoz (X)} for all 6o Qy = Qo/ but not that
the stmilarity condition holds which states that Ep{¢;(X )} has the same value
for all 602 (7 = 0, 1, 2). A counter example is obtained easily by considering
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Example 6.2. Let ¢o, ¢1 and ¢, be the indicator functions of the sets defined by
22 = 0;21,2 < 0and x; = 0, 22 < 0 respectively. Then 6 (¢, ¢1, ¢2) is unbiased
on account of Lemma 4.1 but Ej,{¢;(X)} depends on 8, = (0, pz) £ Q. Let W
denote the class of all unbiased similar procedures which are defined by (6.2)
(# = 1, 2) and the existence of a number « ¢ [0, 1] such that Ey{e:(X)} =
Ep,l¢:(X)} = aforall 6eQ = Q. Then one can easily formulate and prove a
modification of Theorem 6.1 which shows that one may be able to construct
minimax regret (W) procedures if uniformly M.P. similar size-a tests exist.
Thus one can deal with many problems with nuisance parameters (see [27]
Section 3.5 where minimax regret S.M.R. (W) procedures were outlined for very
large classes of problems).

REMARK 6.3. Obviously we can obtain results in an easier way, if we restrict
our class W (or the class W) further, by applying a size-restriction. At first sight
this approach is not very attractive from the theoretical point of view because
it seems to provide an over-simplification, for ‘“‘which size is compatible with the
coefficient b/a in the loss function (6.1).” On the other hand, if one restricts the
attention to the class C, of all unbiased procedures 8(po, ¢1, ¢2) satisfying the
condition that they are “similar size-a”: Egp{oo(X)} = 1 — « for all oD
then procedure 5 ** will have U.M.R. (C.) for each loss function (6.1) provided
that the conditions of Theorem 6.1 are satisfied (Remark 6.2 can be supple-
mented similarly). In some sense this result establishes in a clear way that we
have indeed over-simplified the formulation of our problem for it is not nat-
ural when the same procedure is always optimal, no matter which coefficient b/a
is chosen in the loss function. On the other hand, the simplicity of the result
makes it very attractive from the practical point of view. We remark that 3
corresponds with the natural interpretation of the uniformly M.P. equal tails
stze-o test ¢ = @1 + ¢s for testing the hypothesis H:0 € 2, against the two-sided
alternative Ks:0 ¢ (21U Q) (the criterion “uniformly M.P. equal tails size-o”’
corresponds with the U.M.R. (C,) criterion in the special case ¢ = b = 1 in the
loss funetion (6.1)).

7. Selecting the best in slippage situations and selecting the unknown time
point at which a shift occurs, as examples with m = n = 2. The following
problem may be regarded as a generalization of the problem of Section 6 and
may provide a reasonable reformulation of certain problems of Doornbos and
Prins [9], Kander and Zacks [14] and Paulson [26].

With respect to a partition @ = Qu - - - U Q,, with the corresponding hypothe-
ses H;:0 ¢ Q; wheret = 1, - - - | m, we consider the problem that is defined by the
decisions dy, -, dn Where dy corresponds with the statement that all H; are
neither rejected nor accepted (“6 &2”) while d; is the assertion that H; is ac-
cepted and H; is rejected for all j £ ¢ (“0¢ Q) (¢ =1, ---, m). The loss func-
tion is defined as follows

(71) wio = a(@ = 1, -+, m); wy = bl — 65) @G =1, -, m)
where 6;; = 0 (or 1) in case ¢ > j (or 7 = j). Just like (5.1) and (6.1) this loss
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function expresses that the loss resulting from an error of the first kind (the
explicit statement d; (‘0 € @) is made whereas 0 Q; (4,7 = 1, --- ,m; ¢ £ J))
is b/a times the loss resulting from an error of the second kind (the uninforma-
tive statement dp is made whereas actually 8 € Q; for some index ¢ (Z = 1, ---,
m)). Here b/a is a predetermined constant and the theory of Section 5 suggests
that the experimenter might use (7.1) with b/a = —1 + 1/« if he is in the habit
of applying the Neyman-Pearson size-a restriction.

Lemma 7.1. 1) b > m(m — 1)'a implies that (1, 0 --- 0) 4s the unique
minimax strateqy for Player 11 in the game with matrixz (wi;).

() If b = m (m — 1)7'a then w.o is the unique minimazr and the unique
mazimin point of S. The convex representations w.o = Y r=oPab.; 0f W.o are de-

termined by po = p,p; = (1 — p)/m (j =1, -+, m) where p s arbitrary (0 =
p=1).

(i) If b < m(m — 1)7'a then (0, 1/m, ---, 1/m) is the unique minimazx
strategy for Player 11.

Proor. The symmetry of (7.1) shows that (g1, -+, gm) = A/m, ---, 1/m)

is a maximin strategy for Player I. We shall have to use this strategy when
applying Lemma 3.1, Lemma 3.2 or Lemma 4.2. By doing so, (i) is a simple
consequence of Lemma 3.2, (ii) of Lemma 4.2 while (iii) follows from Lemma
3.1 (the uniqueness has to be established separately, for example by consider-
ing the convex hull of w.1, - -+, w.» to which Lemma 4.2 may be applied).

In actual situations we shall have b > m(m — 1)"'a and Lemma 7.1 shows
that the conditions of Corollary 3.1 are satisfied.

TaeoREM 7.1. If for a Type I problem with loss function (7.1) holds that (i)
b>m@m — 1)"a and (i) Es{e(X)} = 0 for some 8o Q implies ¢ = 0 a.e.
() for each test function ¢; then the trivial procedure 8 with o = 1 a.e. (u) s
the unique M.R. procedure.

This generalization of [19] page 572 and [27] page 50 shows that the M.R.
criterion is inappropriate. According to Remark 4.2 we try to apply Lehmann’s
unbiasedness restriction. Lemma 4.1 and Corollary 4.1 provide the following
result.

LeEmMA 7.2. The procedure 6(¢o, - -+, ¢m) ts unbiased for a problem with loss
Sfunction (7.1), if and only if
(7.2) Epilei(X)} = max,....n Bpife; (X))}
holds for all6; ¢ Q; 2 =1, ---,m) (see (6.2)).
For a Type I problem the unbiasedness of 6 (o, - -+ , om) tmplies
(7.3) Eoler(X)} = -+ = Eplon(X)} forall 6oeQ.

In Section 9 we shall construct the minimax regret unbiased procedure for a
very simple slippage problem similar to those considered by Paulson. In the
following example we illustrate Theorem 7.1 by considering a problem similar to
those of Kander and Zacks in [14].

ExampLi. Let Xu, - -+, Xin; be a sample from the normal N (u;, ¢°) distribu-
tion (¢ = 1, ---, m). The experimenter aims at y1 = -+ = u, = u where u is
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known, but it is possible that there occurs an increasing shift at an unknown time
point (index 7). He assumes that no more than one shift can occur. Hence @ = Q

U - UQuwhereQ = {0;0 = (u1, ) btm, 0 ) = -+~ = i = < iyl =
© = fm,a" >0} =0,---,m). An observation of X = {X;;;7 =1, ---,
n;; 1 =1, ---, m} is made in order to decide whether a shift has occurred and

if this is the case, at which time point. Thus the experimenter wishes to make one
of the decisions dy, - - -, dn. described at the beginning of this section. The sets
Q: (@ =0, ---,m)in R™ are such that the problem is of Type I. If the experi-
menter decides to use the loss function (7.1) with b > m(m — 1) 'a then the
trivial procedure 8, is the unique M.R. procedure. This result is also true when
the loss function (7.1) is replaced by

which expresses that the experimenter “makes | — j| errors of the first kind?”’
when he decides upon a shift at index 7 whereas actually the shift occurred at
index 7.

In Section 6 we remarked that the Neyman-Pearson approach to the problems
of this section, results in a most stringent size-a test (see [28] Section 4) or in
some other size-o test (see [14]) for testing the hypothesis H:6 ¢ Qy against the
alternative K:0 ¢ |Ji=1©2:. The rejection regions of these tests turn generally
out to be simply connected subsets of the sample space. Consequently no natural
interpretation is possible when H is rejected (the problems of Section 6 constitute
an exception).

8. A modification of Section 7 which is obtained by defining the loss all over Q.
In Section 6 and Section 7 we did not define the loss over the indefiniteness zone
Q. This has the following advantages (i) it is not necessary to give motivations
for a particular choice of L (8, d) for 6 ¢ Q, (ii) the corresponding optimum proce-
dure remains the same whether (a) Q is omitted from the parameter space @ (be-
cause it is “practically impossible that 6 belongs to the set Qo of Lebesgue meas-
ure 0”) or (b) @ is included in one of the regions @i, -+, Q.

Nevertheless suppose that the experimenter wants to define the loss for all
6 ¢Q by means of (7.1) and

(81) L@ do) = wo = a5 LO, dj) = w; =b'(G=1,---,m) @e)

where it is reasonable to assume 0 < o’ < @ and 0 £ b" < b. The resulting prob-
lem is of the form discussed in the general Sections 2, 3 and 4 when the index 0
is replaced by (m + 1).

LemMa 8.1. Ifd’ < aandb’ > m (m — 1) "athen (1,0, - -, 0) is the unique
minimaz strategy for Player 11 in the game with matriz ws;; ¢ =0, --- ,m;j = 0,
s, m).

This lemma, is an obvious modification of Lemma 7.1(i) and can be proved by
applying Lemma 3.2 and using the strategy (0, 1/m, ---, 1/m) which is ob-
viously maximin for Player I. We are interested in Type I problems with Q@ =
Q' =[] n - n[Q] # J. It follows from Corollary 3.1 that under the conditions
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of Lemma 8.1 the trivial procedure with ¢, = 1 a.e. (#) is the umque M.R. pro-
cedure. This is a generalization of them = 2,0’ = 0,5’ = b — a case in Lehmann
[19] page 572. We shall investigate Lehmann’s unbiasedness condition which
now states that (4.1) holds for all 9, 6" € Q.
TrEOREM 8.1. For Type 1 problems with Q, = =[Qn--n[Q) # &
and loss functzon { (7.1), (8.1)} the following results hold
@) a < a, b’ < b — b/m implies that no unbiased procedure exists;
(i) a =ab =b—bm zmplzes that (e, « -, om) s unbiased if and only
if (7.2) holdsfor all 0;Q; G =1, ---,m);
(i) ¢’ =a,b = b — b/m zmplws that the trivial procedure with ¢ = 1 a.e.
(u) s the unique unbiased procedure;

(iv) ' <a, b =b—b/m smplies that & (g9, - . , om) 15 unbiased if and only
if the conditions A and B; (i = 1, ---, m) hold where A is satisfied if and only if
Eoloo(X)} =1 — a, Bolo;(X)} = a/m (j = 1, -+~ , m) holds for all 8 Q
while
8.2) a=(a—ad)/(a—a +b —b+b/m)

and where B; is satisfied if and only if (7.2) and
8.3) bEpfes(X)} = (0 — 1) + (@ — ' — b+ b )Enfe(X)}

holds for all 8; ¢ Q;.

This theorem is a corollary of Lemma 4.1 where b,z = 0, - - - , m. In our opinion
a completely satisfactory restriction is obtained only in case (i) where the class
W of all unbiased procedures is exactly the same as in Section 7 (see Section 9).
The requirements (7.2) are very reasonable and the unique trivial M.R. pro-
cedure & with o = 1 a.e. (u) satisfies § ¢ W. In case (i) the unbiasedness re-
striction is completely unfit for use because W = . In case (iii) it does not
provide relief, for &, is the unique unbiased procedure. Case (iv) is very interest-
ing. Here the class W is so small that W does not contain the unique M.R. pro-
cedure & . Though & is a useless procedure, this might indicate that the un-
biasedness restriction is too restrictive in case (iv); we are not sure of not
throwing out the baby with the bath-water. On the other hand the size condition
A may make it rather easy to obtain a ‘“best’ unbiased procedure. This will be
elucidated by considering the three-decision problem of Section 6 where the loss
function is defined by (6.1) and

’

(84) : L@, d) = wo=a;
LO,d) = wn=L0O,dy) = we = b 0 Q)

where we assume |

8.5) 0<ad <a<iHh=b=z=bad b—b2a—d.

Next let a be defined by (8.2) where m = 2 is substituted.
THEOREM 8.2. If Q = Q) = [] n [%] = & and o1 and ¢ are two test Sfunctions
such that (1) o = 1 — o1(z) — @2(z) = 0 holds for all x £ X, (ii) ¢; s the unique
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U.M.P. similar size —%a test for testing H:0 € Qy against K;:0 ¢, (1 = 1, 2)
while (ii1) ¢3—; 78 the unique uniformly least powerful similar size-1a test for testing
H against K; (1 = 1,2). Then 6 (po, ¢1, ¢2) 28 the unique UM.R. (W) procedure
where W 1s the class of all unbiased procedures.

Proor. Let W’ denote the class of all procedures with Eg,{0(X)} = 1 — a
and Ep,f{e1(X)} = Eg{02(X)} = 3aforall ¢ Q. Then W C W’ on account of
Theorem 8.1 (iv). Moreover (6.3) shows that & (g0, @1, ¢2) has UM.R. (W)
(this is Theorem 11.1 in Lehmann [18]). Next we show that 6 ¢ W by applying
Theorem 8.1 (iv). It follows from (ii) and (iii) that

(8.6) Eoplei(X)} = 3a = Epfps—i(X)} for all 6;¢;

holds for 7 = 1, 2. Hence (7.2) or equivalently (6.2) is satisfied. Condition (8.3)
is equivalent to the condition (¢ — o’ + b )Epi{o:(X)} —{ (b —b") — (a — d')}-
Esf{es—i(X)} = a — o where on account of (8.5) the coefficients of Eg:{e; (X )}
are nonnegative. The proof of this condition follows by using (8.6) and (8.2)
with m = 2 for «. Hence 6 ¢ W and consequently 6 has UM.R. (W).

REMark 8.1. In the fundamental paper [19] Lehmann considered two-sided
testing problems as three-decision problems with loss function { (6.1), (8.4)}
where o’ = 0and b’ = b — a > b (apart from a change of notation, this loss
function is given by [19] equation (9.4)). He constructed U.M.R. unbiased
procedures along the lines of a generalization of Theorem 8.2. Though U.M.R.
(W) is a more compelling criterion than those used in Section 6, we like the
formulation and the results of Section 6 more than those based on Theorem 8.2
with @’ = 0 and b’ = b — a because (i) the unbiasedness restriction is open to
some suspicion as ' = 0, b’ = b — a leads to case (iv) in Theorem 8.1, (ii) the
particular choice of a’ and b’ plays a very important part in the determination
of o whereas it seems to be reasonable that the optimum procedure does not
depend (strongly) on the special construction of the loss function over the
region @ which will have measure 0 (Lehmann motivated the choice o' = 0,
b = b — aleading to @ = 2a/b; next suppose that the experimenter wants to
use @’ = 0, b’ = 1b because he considers an error of the first kind to be twice as
wrong as the error which is committed when one decides upon d; or d» whereas
6 £ Qo , then the experimenter arrives at the unusable value & = 1 which may dif-
fer much from 2a/b because in many inference situations one will use b/a = 9,
19 or 99 on account of Section 5).

9. A method for constructing minimax regret unbiased procedures for some
problems of Section 7. Theorem 6.1 and Remark 6.2 show that for many three-
decision problems related with two-sided testing problems, minimax regret (W
or W) procedures can be constructed rather easily. Unfortunately this does not
hold for the more general problems of Section 7 because for such problems the
compatibility condition (iii) in Theorem 6.1 will generally be violated. This may
be elucidated by considering the following sléppage problem.

BExampre 9.1. Let X; and X, have independent normal N (u;, 1) distribution
with u; = 0 (¢ = 1, 2) and g or w2 or both equal to zero. Consider the partition



MULTIPLE DECISION PROBLEMS 1703

Q = Qu QU where Qy = {(0,0)} and Q;is the positive u;-axis (z = 1, 2). With
respect to Theorem 6.1 the test o; © satisfying (i) rejects if and only if z; = Ua.
This test does not satisfy (ii) and also (iii) is violated. Nevertheless we shall
construct the minimax regret unbiased procedure, assuming that the loss fune-
tion is given by (6.1) or (7.1).

Consider the general problem of Section 7 with loss funection (7.1). We modify
this problem by defining the loss over @, according to (8.1) where ' = a and
b = b — b/m. Assuming that the problem is of Type I with @, = €, Theorem
8.1 (ii) and Lemma 7.2 show that the class W of all unbiased procedures is the
same for both the original and the modified problem. The unbiasedness does also
imply continuity of the risk funection. The envelope risk function and the regret
function will also be continuous for each § ¢ W, where W is the class of all un-
biased procedures. Thus the original problem and the modified problem will lead
to the same minimax regret (W) procedure. The modification has the advantage
that we need not consider “wide sense Bayes procedures” in the following dis-
cussion.

It is well known that Bayes procedures whose maximum risk is assumed and
constant on a set of a priori probability 1, are minimax risk. Similarly it can be
shown easily that a Bayes procedure 8* has minimax regret (W) if (i) eW
and (i) 6* assumes its maximum regret with respect to W in each point of a set
of a priori probability 1 (similar results for the criterion “most stringent size-a”
were considered in [28]). :

Application to Example 9.1. The symmetry of the problem suggests that the
“least favorable” a priori distribution assigns a priori probabilities 1 — 2p, p
pandptoby = (0,0) eQ,0, = (k,0) e and b, = (0, ) & 2, respectively where
p and « have to be chosen in the right way (x > 0;0 < p < %). A straightforward
application of the classical theory ([20] page 23 or [27] page 9) to the above-
described a priori distribution, produces the Bayes procedure & (p, ) with

9.1) e, x) =1 for all (z1, ) with z; > f(xs); (¢ = 1, 2),
eo(x1, 22) = 1 for all other points (21, 22);

where the function f is determined by

©2)  f@) =«"ln{®/a— 1)+ (1/p — 2)(Fd/a — 1)}

provided that the usual assumption b/a > 2 holds (in the case b/a < 2 the Bayes
procedure is a trivial one which assigns d; to all points (21, x2) with z; > x5_;
(¢ =12)).

Symmetry arguments show that §(p, «) always satisfies the unbiasedness
condition (6.2). Hence & (p, k) ¢ W. The envelope risk Ry™ (8) is equal to @ when
6 = (0, 0), for the trivial procedure 8, with ¢y = 1 a.e. (u) is unbiased while
each other procedure has the risk ¢ + 2b[1 — E{po(X)}] > a.If 6 = (»,0) or
6 = (0, ») then

+(9.3) Ry*(0) = b — a)®{—E0) — »} + ad{E(») — v}
where & (v) is determined by (6.5). For 6 = (», 0) this results from the fact that
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each procedure 8, of Example 6.2 is unbiased and a discussion similar to that in
Example 6.1 and in the proof of Theorem 6.1 (see (6.3)).

Hence the risk function R{6, é(p, x)} and the regret function Sw{6, §(p, «)}
can be computed numerically (we used Gauss-Hermite m-point quadrature
formulas and checked the results, by varying m). We are looking for the Bayes
procedure §(p*, «*) which assumes its maximum regret in each of the three
points (0, 0), (x*, 0) and (0, ™) if such a procedure exists. In order to find the
the point (p*, «*) we first determine p (x) such that

SW[(O) 0)7 5{2’ (K)) K}] = SW[(K, 0)’ 6{1) (K)7 K}] = SW*(K)

and next we determine «* such that Sy™* (x*) = sup Sy (k) (a similar method was
applied in [28]). The computations showed that the resulting procedure 8{p (x*),
«*} assumes its maximum regret in each of the points (0,0), (x*, 0) and (0, «*).

X2

f
’,3
=

fig 1

Hence this procedure has indeed minimax regret Wlth respect to the class W of
all unbiased procedures. For b/a = 9 we obtained «* = 1.667; p (x ) = .3992.
The corresponding partition of the sample space X = R’is drawn in Figure 1.
Forb/a = 19 we obtained «* = 1.856; p(x*) = .4141 (see Figure 1, dotted lines).
Previous publications ([9], [16], [23] and [33]) and especially Paulson s funda-
mental paper [26] suggest that it is quite natural to consider procedures F
where decision d; is taken with probability 1 for all points (z1, ;) with z; =
max (x1, 2) > ¢ (¢ = 1, 2) while dp is taken for all other pomts (see Figure 2).
We determined the best natural procedure 83s° that has minimax regret (W)
among the procedures of the class U = {5.; ¢ > 0}. For b/a = 9 we obtained
= 1.758 (see Figure 2) and for b/a = 19 we calculated ¢* = 2.255 (Figure 2,
dotted lines). In Figures 3 and 4 the regret functions (divided by a) are plotted
forb/a = 9 and b/a = 19 respectively. Of course 8‘25'“ has a larger maximum regret
than the minimax regret (W) procedure 8™ = 8{p (x*), *} because wteUCCW.
This disadvantage is counterbalanced to some extent, because 85+ * has a smaller
regret in the neighborhood of the origin but nevertheless the minimax regret
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(W) procedure 8* seems to provide a worthwhile improvement upon the best natural
procedure 55s° when the loss function (6.1) s used.
Remark 9.1. Let C. denote the class of all 8 = & (o, 1, ¢2) With (1) Egy{eo(X)}

=1— aforf = (0,0)and (i) ¢1(z1, 22) = @2 (%2, 21) for all 21, 22 (a symmetry
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property ). In Remark 6.3 a similar restriction was very attractive because there
existed a simple procedure with U.M.R. (C.) for each loss function (6.1). It will
turn out that these advantages of the size-restriction get lost for the more general
problems of Section 7 and particularly for Example 9.1 with loss function (6.1).

First we can apply Paulson’s method [26] in order to show that the natural pro-
cedure 8%¢sy with c(a) = ug where = 1 — (1 — )t is the UM.R. (Ca) procedure
in the special case a = b (the proof is deleted ). Next we remark that the applica-
tion to Example 9.1 shows that this result will not hold for b/a > 2. If b/a is
fixed and larger than 2, then there even will not exist a U.M.R. (C.) procedure.
We might try to obtain the minimax regret (C.) procedure but this will depend
on b/a. Hence the size-restriction will not provide relief unless we combine this
restriction with the rather unreasonable assumption ¢ = b. We have the opinion
that in that case the problem is oversimplified.

REMARK 9.2. The method described above in the apphcatlon to Example 9.1
will apply to many problems from Section 7. Unfortunately it may be very dif-
ficult to determine the envelope risk function R%* (6). This may be illustrated by
modifying Example 9.1, changing Q. for the half-line of all points (r cos ¥,
rsin¥) (r > 0) where ¥ is a fixed angle (0 < ¥ < 180°). Then (9.3) determines
the envelope risk in §; = (»,0) and 6, = (v cos ¥, » sin ¥) provided that ¥ = 90°.
If ¢ < 90° (as will be the case when we try to deal with certain simplifications
of the example of Section 7) then the procedures 5. mentioned under (9.3) are
not unbiased and the envelope risk is unknown.

10. Other problems for selecting the best. Example 9.1 and the example of
Section 7 were formulated by means of a parameter space which was restricted
by using an unreasonable assumption. In Example 9.1 for instance, we assumed
that u and ue cannot both be positive. Of course one can try to repair this by
extending the parameter space and the regions in which this space is partitioned.
The general results of the Sections 7 and 8 remain true because the problem re-
mains of Type I, but (i) the procedures constructed (or suggested) in Section
9 lose their optimum property (Example 10.1), (ii) one might want to reformu-
late the loss function (Example 10.1) and (iii) one might want to enlarge the
decision space (Example 10.2).

ExamprE 10.1. Repairing Example 9.1. Suppose that we try to remedy Ex-
ample 9.1 by defining Qo as the set of all (u1, p2) With w1 = w2 = 0 and Q; as the
set of all (u1, pe) With us > us—s = 0 (¢ = 1, 2). Everything of the application to
Example 9.1 gets lost. Even the envelope risk function changes because the
procedures 6, mentioned under (9.3) are no longer unbiased (see Remark 9.2).
Fortunately one can prove easily by modifying the theory of Section 6 and
applymg Lemma 6. 1 that there emsts a unique minimax regret unbiased pro-
cedure 6 (0o*, o1%, ¢.*) and that ¢;" is the indicator functlon of the set of sample
pomts (x1, x2) satisfying z; — 25—; = ¢ * (b/a)2! where ¢*(b/a) is the value of ¢
minimizing (6.6) (¢ = 1, 2). This procedure can be compared with those of
Application to Example 9.1 (see Figures 1 and 2). 8{p (v*), «*} is much more
attractive than 8is' from this point of view.
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We have the opinion that 6™ (¢, 1™, ¢2*) is not a very reasonable procedure in
many actual situations, notwithstanding its attractive optimum property. The
explanation is that the loss function (6.1) is not very attractive: deciding upon d;
whereas u; = 0 < ps_; has to be regarded as more serious than deciding upond;
while 0 < p; < ps—; (¢ = 1, 2), because p = 0 will correspond with a certain
standard situation. This might be expressed by constructing a new loss function.
Let Q; denote the positive u;-axis as in Example 9.1 and let Qu,; denote the region
defined by u; > ws—i > 0 (¢ = 1, 2). The following extension of loss function
(6.1) seems to be reasonable.

L(e,;, do) = a, L(O@, d,) = O; L(e,,, ds—i) =b (01891,)
(10.1) L, do) = 2a; L(Osi, di) = 0;  L(O:,dssi) = ¢ (Bapi & Doyi),
G=1,2) .

Of course the problem is again of Type I (2 = {(0,0)}) but nowm = 4,n = 2.
The loss function (10.1) expresses that we make two errors of the second kind
when we decide upon dy whereas both u; and p. are positive (8 ¢ Qu Q). We
assume 0 < 4a < ¢ < b. Straightforward geometric arguments (consider the
matrix (w;;) as 4 vectors in R® and determine the maximin point) show that
0, 0, 3, 3) is the unique maximin strategy for Player I. Using this auxiliary
strategy in Lemma 3.2, we can prove that (1, 0, 0) is the unique minimax strat-
egy for Player II with the result that once more the trivial procedure &, with
¢o = 1 a.e. (u) is the unique M.R. procedure. By applying Lemma 4.1 we can
characterize the class W of all unbiased procedures.
LemMA 10.1 8(po, o1, ¢2) € W if and only if for all 6 = 0, Q;

(10.2)  Eofes—i(X)} = Eofes(X)} =1— (b —c+ a)Bo{esi(X)}/a (1 =1,2)
holds, while for all 6 = 0a1.; € Qopes

(10.3)  Eofe:(X)} 2 max [Bofes+(X)}, 1 — (b — ¢ + a)Bofesi(X)}/d]
(C=12)

Hence necessary for 6 € W is that Eg{oe(X)} = 1 — a, B fes(X)} = 3a (@ =1,2)
holds for 68, = (0, 0) and with o = 2a/(2a + b — ¢).

From the last part follows &, £ W; the unbiasedness condition is open to sus-
picion because it may be too restrictive. This does also follow from the equality
in (10.2), the reasonableness of which is questionable and which shows that the
procedures constructed in the application to Example 9.1 are not unbiased and
cannot be modified easily such that they become unbiased.

ConcrusioN 10.1. The problem has become so difficult that we can only obtain
certain general results relating and characterizing the classes of minimax risk
and unbiased procedures: optimum results are unattainable.

ExampLE 10.2. On selecting a subset containing the best. When both u; and u,
are admitted to be positive, then it may be very difficult to separate them and
the decision space D = {dy, di, do} is only appropriate in the rather unscientific
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situation that no further experimentation is allowed and that the experimenter
has been charged to take one of the three decisions where do for example cor-
responds with proceeding under standard conditions while d; results in converting
from standard treatment to treatment 7 ( = 1, 2). In many situations one will
like to introduce the decision ds, stating for example that the best of the treatments
1and 2 is better than the standard treatment but that one does not decide which
one of the two nonstandard treatments is actually the best. Now our problem
may be regarded as a problem to select a subset containing the best: dy corresponds
with selecting the void set; d; with selecting the set {u:} consisting of the 7th
mean (7 = 1, 2) while d; selects the set {u1, u} of all means. One is interested in
selecting the largest mean; the decision states that the corresponding subset
contains this largest mean. In Example 11.1 we shall deal with the problem where
one is not primarily interested in selecting the subset containing the best but in
selecting the subset containing the means that are significantly positive.

We shall now formulate a very general problem of selecting the subset con-
taining the largest. Selecting the void set is not permitted in this problem (this
modification is introduced for the sake of Remark 10.1). Let X; have the normal
N (ui, 1) distribution (¢ = 1, -- -, m). The investigator tries to find a subset of
the m expectations or indices ¢ such that this subset is likely to contain the largest
ui; on the other hand the subset is as small as possible (this problem can be
modified and extended in many ways, see [1], [5], [13], [21], [24], [31]). @ = @,
U -+ U@, will consist of all possible 8§ = (w, -+, un); Q; is defined by
mi > maX;e; u; (u; is the largest expectation) (2 = 1, ---, m). The decision
space D consists of all 2™ — 1 decisionsd(by, -+ , hw) {hs =0,1 G =1,---,m),
> hi> 0} where d(hy, -+, hm) corresponds with selecting the subset of those
expectations u; for which 4, = 1. If 0 e Q; and h; = Oind(hy, - -, hn) then an
error of the first kind is committed, for the selected subset does not contain the
largest expectation u;. This serious error results in a loss equal to b units. If
6eQ;and h; = 1in d(hy, - -+, hn) for a certain index j > 7, then the selected
subset unnecessarily contains u; . This error of the second kind results in losing a
units. Accordingly our loss function becomes

(104)  L{6, d(h1, -+, kw)} = b1 — b)) + a(Xjah; — k)
0e) G=1,---,m).

The symmetry shows that (1/m, ---, 1/m) is a maximin strategy for Player I
which may be used when we want to apply Lemma 3.2 or Lemma 3.1. By doing
50 we obtain the following results (i) and (ii).

@) If b > (m — 1)a then Player II has a unique minimax strategy and this
uses d(1, ---, 1) with probability 1. Hence there exists a unique M.R. proce-
dure and this assigns d(1, ---, 1) with probability 1 to (almost) all z & <.
This trivial procedure is not attractive because the risk is everywhere equal to
(m — 1)a. Lehmann’s unbiasedness condition will be attractive and not too
restrictive, for the above-mentioned M.R. procedure is unbiased. Unfortunately
the problems with m > 2 seem to be rather forbidding (Conclusion 10.1 holds);
the case m = 2 will be discussed in Remark 10.1.
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(i) If b < (m — 1)a then Player IT has a unique minimax strategy and this
uses the m columns d (0 - - - 010 - - - 0) each with probability 1/m. Hence an M.R.
procedure never selects a subset consisting of more than 1 mean. The natural
procedure which selects the subset {u.} if and only if z; = max (z1, -+, Tm)
will have certain optimum properties among the M.R. procedures ([2]) and seems
to be the proper procedure if b < (m — 1)a, though this result is somewhat sus-
pect for it implies that the “optimum” procedure does not depend on the special
value of b/a in (10.4), as long as b/a < m — 1. In practice the experimenter will
choose b > (m — 1)a or try to find a more adequate partition of @ (see Example
10.1), for the above-mentioned natural procedure will not be attractive for an
investigator who considers all 2" — 1 decisions of D as reasonable.

REMARK 10.1. The theory of Section 6 applies to the case m = 2; the decisions
do, d; and d, are analogs of d(1, 1), d(1,0) and d (0, 1); Qo consists of all (u1, us)
with w1 = ue and is not simple (Lemma 6.1 has to be used in order to apply
Theorem 6.1); Q; is the set of all (u1, p2) With u; > ps_; (¢ = 1, 2). The loss func-
tions (6.1) and (10.4) (m = 2) are not in complete agreement; the coefficient b
in (6.1) has to be changed for a -+ b. This shows that the notions of errors of the
first and second kind of this section are not equivalent to those of Section 6.

11. Unbiasedness and minimax risk for unrestricted products of two-decision
testing problems. Apart from the two- and three-decision problems of Section 5
and Section 6, the most important problems seem to be those where the means
or variances have to be ranked in an analysis of variance with one-way classifi-
cation (first paragraph of Section 1). In this and the following section we shall
try to attack these problems (Example 11.2 and 12.2). First we consider unre-
stricted products of problems of the form studied in Section 5. Lehmann remarked
that this concept is not general enough to consider the most interesting m.d.p.’s
and he introduced the more general concept of a restricted product. In [19] he
showed that even for such general problems there often exists a U.M.R. unbiased
procedure. Nevertheless we confine the attention to unrestricted products be-
cause (i) for such problems Theorem 11.1 can be shown, suggesting that the
unbiasedness restriction is very attractive (see also Remark 11.1) whereas for
many restricted products the unbiasedness restriction is open to suspicion (see
Remark 8.1 concerning Lehmann’s formulation of the three-decision problem),
(ii) many m.d.p.’s formulated as a restricted product by Lehmann may obtain
another more beautiful formulation along the lines of this paper (see Remark
8.1). ,

In order to define the notion of an unrestricted produect, let II;, - - -, II; be k
two-decision problems for the random observable X with pdf ps (0 £ 2) over .
Problem II, is of the form described in Section 5. Let @ = @1 () u () be the
corresponding partition of @ (we assume Qo (k) = &) and let do(k) and di(h)
denote the decisions. The loss function for Problem II; is given by (see (5.1))

V(].].].) L{B, do(k)} = ’wlo(}b) = 0; L{B, dl(h)} = wu(h) = bh (0 & Ql(k))
L{o, do(h)} = waw(h) = an; L{8, di(h)} = wa(h) =0 (@eQ)).
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Suppose that all 2" intersections @ (41, - -+, %) = Nf-1Q,, (k) are nonempty
{tn =1,2(h =1, ---, k)} and that d(j1, - - -, J») denotes the compound state-
ment composed of the k£ decisions d;, () (A = 1, ---, k). The unrestricted
product problem II = II; x --- x IIj is defined by the partition of Q into the
2* nonempty intersections described above, the 2¥ compound decisions and the
loss function

= ZLl{ahel(ih,jh) + bhfz(ih,jh)} (089(51; ) "k))

where by definition (2, 0) = 1 and (1, 1) = 1 while in all other cases
&(,7) = 0.

A procedure & for Problem IT is determined by 2* test-functions ¢;,...;, {j» = 0,
1( =1,---,k)} determining the probability of taking the corresponding de-
cision when the observation z ¢ % has been obtained. The procedure § defines
in a natural way a procedure &, = (g0 ™, o1 ) for the component Problem II;
when

(11.3) 052 = Dhim0 t Dhimd Dadaermt T Dadm0 Pigeeeiy

On the other hand if &, = 5( ®, o1 ®) is a procedure for Problem II; then the
family {8, ---, 8} corresponds with a product procedure § = & x --- x &
for Problem II where

(11.4) iy = JThe1 05y

It can be shown easily that the relations (11.3) and (11.4) establish a 1:1 cor-
respondence between the product procedures for Problem IT and the families
{81, -+, 8} of procedures for the respective Problems II;, . In the case of non-
randomized (¢ = O or 1) procedures, Lehmann ([19] Theorem 1) proved that
each procedure for Problem II is a product procedure. Unfortunately this result
does not hold in the case of randomized procedures ([21] page 995), but the fol-
lowing lemma shows that it is very reasonable to restrict the attention to the
class of all product procedures for Problem II.

LemMa 11.1. Suppose &' is an arbitrary procedure for Problem II and that
{81, -+, 0k} s the corresponding family defined by (11.3). Then & and
8 =208 % -+ % & have the same risk function. Moreover 8’ is unbiased if and only
if 6 vs unbiased.

Proor. The result is obtained easily by showing that for 6’ ¢ Qs , - - , )

BdL{e, & (X)}] ’
(11.5) = E§1=0 s Z}Fo Zlka=l {ares (I, Jn) + brea (B, Jn)}Eofej,...;; (X)}
= 2 BL{, 6, (X)}] = BL{6', 6(X)}]

for, then § = 6’ shows R (9, 8') = R (9, 8) while the unbiasedness result follows
immediately from the definition (4.1).
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TuEOREM 11.1. If I = II; % --- % IIy is of Type I, Wy s the class of all ML.R.
product procedures, W, that of all unbmsed products and W3 that of all products
& X - x & where & = 3(a0™, o ) and such that ;" is an unbiased size-a

test for Problem Il with c, = ar/(an + bw)(h = 1, k). Then Wy C Wy C Wy,

Proor. We first remark that each component Problem I, will be of Type I
with the result that Theorem 5.1 shows that W;istheclassof alld = & % -+ x &
where 8 is unbiased for Problem II; . By applying (11.5) we obtain W3 C W,.
Next let W, denote the class of all M.R. procedures and W' that of all unbiased
procedures for Problem II. By applying Lemma 4.2 and Theorem 4.1 we shall
show that Wy < W, with as a consequence W, € Wi . For that purpose con-

sider w* = @*, ---, %) with ®* = X i1 asbr/(an + bs). Then (Lemma 4.2)
we have to show w* e S. Let w(ji, - - - , j») denote the vector in R™(m = 2%)
Wlth the coordinates (11.2) {# = 1, 2(h =1, » k)}. We have to show that

w* is a convex combination of these 2* vectors. The welghts
(11.6) G, -+ ,7¢) = {11k (@ + )} ITias {are2 (1, jin) + baes (2, G)}

provide the required result. Next we show that there exists a vector g & R”, or
equivalently a strategy for Player 1, such that the other conditions of Lemma
4.2 are satisfied. The coordinates

(117) gGa, -+, %) = {IIi= (e + b)) TTia {awee(in, 1) + bre(dn, 0)}

provide the required result. Hence the proof is complete.

The referee remarked that we can obtain more insight into Theorem 11.1 by
establishing Wy C W1, using the simple remark that the value of the game with
2% % 2F matrix (11.2) is equal to the sum of the values of the k games with
2 X 2 matrices (11.1). This elucidates our formula for %*. For suppose
=28 % - % 6, & Ws,then each 6, has ML.R. for the correspondmg component
problem (Theorem 5.1). By applying (11 5) in case 6 = 6" we obtain that the
maximum risk of § is not larger than %”*. Hence & ¢ W, (see (3.1) in the proof of
Theorem 3.1). Moreover W3 C W, was established as a simple consequence of
(11.5). Unfortunately (11.5) suggests that there may exist product problems such
that W, ¢ W, or in other words such that there may exist unbiased productpro-
cedures which are not products of unbiased procedures. Lehmann ([19] page 16)
gave sufficient conditions for W, = W; or equivalently such that the unbiasedness
of a product implies the unbiasedness of the components. His way of proving the
sufficiency of these conditions applies to many situations from practice and par-
ticularly to the Examples 11.1 and 11.2. Nevertheless W3 = W, will be possible
in some situations and Theorem 11.1 provides the extra information that
W, C W, still holds. Theorem 11.1 suggests that it is reasonable for unrestricted
Type I product problems to confine the attention to the class W or the class Ws.
Remark 11.1 will show that this is a true restriction in general.

TuroreM 11.2. (Lehmann [19] page 18) For the unrestrzcted Type 1 product
O=1I, % -+ x M letw®) = [U)]n[2R)] and 8 = 8% x -+ x & with

B = 0000 ®, 01 ™) be such that with an = an/ (ar + br) 1) e1 (") 2s U.M.P. similar
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stze-ay, for testing 0 € w (h) against 6 € @ (h) — w(h) and (i) ¢o ® is U.M.P. similar
size-(1 — ay) for testing 0 € w (h) against 6 € @ (h) — w(h). Then 8™ has U.M.R.
(W3) for Problem 1. If moreover (iii) for each 6 € w(h) there exist indices iy, - - - ,
such that 0 & [Q (4, -+ - , )] both when %, = 1 and when i, = 2, then 8 has also
U.M.R. (W) for Problem II.

Proor. First show that the conditions (i) and (ii) imply that ¢; ® is U.M.P.
unbiased size-a; for testing the hypothesis 6 ¢ ; (k) against 6 € 22(h) and that
oo™ is U.M.P. unbiased size-(1 — a;) for testing 6 & (k) against 6 & @ (h).
Hence 6" e W5 and if 8 = &, x --- x & & W then it is easily seen that on ac-
count of the unbiasedness of &, for Problem II;, we have R (8, &) = R (9, &%) for
all § £ Q. Then (11.5) with 6 = 6" provides that 5* has U.M.R. (W3).

In order to show the second part, suppose § = & % --- x & & W, then we
have to show R(6, §) = R (9, ™) for all 8 & @ but it is sufficient when we show
R®,5) = R(6,5") (6 Q) for the component Problem II, . For that purpose we
show that the unbiasedness of § implies for &, = (@ ®, & ®) that @ * is similar
size-a, and @ ® is similar size-(1 — ay) for testing the hypothesis 6 € w (h). For
then (i) and (ii) easily provide the required result for Problem II, . Hence let §
be unbiased for Problem II and 6 € w (k). Condition (iii) and the continuity of
E4(p) as a function of 9 (see definition of Type I m.d.p.) imply that

Z}1=0 LR Z}k=0 ZLI {ahel (Zh ,].h) + brex (’Lh ,jh)}EO{‘»-Djr"ik (X)}

has the same value for 4, = 1 and for 4, = 2 when § is defined by the 2" test func-
tions ;,..., . Then (11.3) shows that this implies biEs{&™ (X)} = arBo{ae™ (X)}.
By using @ ® + & ® = 1, the similarity follows. .

Lehmann’s Theorem 2 in [19] constitutes a generalization of Theorem 11.3 to
restricted products. If Theorem 11.3 provides that 6 has U.M.R. (W) where
W, is the class of all unbiased product procedures then Lemma 11.1 shows that
™ has also UM.R. (W,") where W' denotes the larger class of all unbiased pro-
cedures for Problem II. In Remark 11.1 we shall see that 6™ does not have U.M.R.
(W) in general: there may exist much more M.R. procedures than unbiased pro-
cedures for Problem II.

ExamprE 11.1. (Combining & one-sided tests of significance; see Example 12.1
for a more reasonable formulation in the ¥ = 2 case.) Let X1, - - - , X have inde-
pendent normal N (u;, 1) distributions (¢ = 1, --- , k). @ is the R of all points
0 = (m, -, m) (the case (see [34]) where Q is the positive orthant of R* con-
sisting of all # with u; = 0 for all 7, can be treated along the same lines and pro-
vides the same optimum procedure §). II, is defined by the partition
Q=@ (h)uQ(h) where @ (k) is defined by w, < 0 and (k) by w > 0. We
verify the conditions of Theorem 11.2. The subset w (%) consists of all § with
un = 0. The test o1 ® with s ® (21, -+ -, 2x) = 1 (or 0) for all sample points with
2, = (or <) u, is the U.M.P. similar size-a; test for testing 6 ¢ w (%) against
0cQ(h) — w(h) while oo ® = 1 — ¢ ® satisfies condition (ii) of Theorem 11.2.
Also condition (iii) is easily verified. Hence the natural procedure & * =
55 % - x 8% with 8% = 8(e0®, o1 ™) which combines the results of the k



MULTIPLE DECISION PROBLEMS 1713

component one-sided size-ay; tests has U.M.R. (W,) for the compound Problem
I = 2,3).

REMARK 11.1. The U.M.R. (W;) procedure 6* does not have U.M.R. (W;) in
case k = 2, ag = 0 = a, bl = bz = }. If00 = (O, 0), 5* = 5(§000, cee ,‘Pll) and
pii = o, (pi;) then po = b°/(a 4+ b), po = pn = ab/(a + b)" and py =
a’/(a + b)’. Let W™ denote the class of all M.R. product procedures for which
these equalities hold. Then obviously 6* £ W,* < W, where the inclusion is strict,
for the unique minimax and maximin point of the convex set S does not have a
unique convex representation: apart from the coefficients p;; corresponding with
those determined by (11.6) one may also choose pyp = b/(a + b), P10 = pa = 0,
pu = a/(a + b) for example. Hence there exist many M.R. product procedures
not belonging to W,* and in order to show that 6* does not have U.M.R. (W)
it is sufficient when we show the much stronger result that 6* does not have
U.M.R. (W,*). For that purpose we have to construct a procedure 8’ ¢ W;* such
that R (6, 8') < R (6, 8™) holds for some 0 £ 2. A simple example is obtained as
follows. Let Q denote the set of all (z; , #2) with 2; < u, where a = ab/(a +b)®
and let Io denote the indicator function of Q. Define gy = b’Io/c; oo = ablo/c;
o=1—1I, ;<p{1 = d’Io/c where ¢ = a” + ab + b’. Then it is shown easily that
5 (<p<,)o y e1) is a procedure satisfying the equalities mentioned at the begin-
ning of this remark. Moreover the corresponding risk is not larger than
@ = 2ab/(a + b) for all 9 £ (provided that a < b; we have to consider re-
spectively all 4 cases 0 &Q (41, 4;)). Let &' denote the product procedure cor-
responding with 5(¢(',0 , oo+, on) (first apply (11.3) and next (11.4)). Lemma
11.1 shows that 8" ¢ W1*. Moreover R (6, 8') < R (9, 6*) will hold for = (u1, 0)
with w sufficiently large. The remark shows that apart from the criterion U.M.R.
(W2) also other criterions might be of interest, like the criterion minimax regret
(Wh).

ReMARK 11.2. The U.M.R. (W;) procedure 5* provides in a natural way a test
1 — ¢ for testing H:0 ¢ Qy against K:0 £ Q@ — Qy in the case of Remark 11.1.
This test rejects if and only if max (X;) is sufficiently large. Tests of this form
may be rather reasonable (though not unbiased) if @ = R’ but they are not very
attractive if Q is the positive orthant of R* (see [28] and [34]). Darroch and Silvey
[7] constructed similar product problems where the test of the form 1 — ¢g has
very poor power properties for testing H against K. Obviously this results from
the formulation of our product problems where no special attention is paid to
testing H against K. In many practical situations it seems to be very natural to
be concerned about the testing problem (H, K). This shows that for such situ-
ations the formulation is oversimplified if we consider them as unrestricted
products. In Section 12 we try to remedy this.

ExamprLE 11.2. (An m.d.p. for a (k + 1)-sample trend situation; see Example

12.2 for a more reasonable formulation in the k¥ = 2 case). Let Xa, -+, Xin, be
an independent sample from the normal N (u;, ¢°)-distribution (i = 0, --- , k).
Theoretical a priori considerations show that one may assume w = -+ =< ur.

“ Hence Q consists of all points § = (uo, -+, m, o°) in R**? satisfying
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o < -+ = m, o > 0. Let II, denote the two-decision problem for comparing
wn— and w, . The corresponding partition @ = @ (k) u Q,(4) is determined by
Q1 (h) and Q2 (h) which are respectively the subsets of @ defined by ur = wx and
w1 < mn . The decision do(k) states that there exists no sufficient evidence for
“un_y < wa’’ whereas di (h) states that such evidence exists. The decisions for the
compound problem IT = IT; x --- x II; can be visualized by drawing lines above
the nonoverlapping subsets of consecutive sample means for which no pair
(zs%:41.) showed a mgmﬁcant dlfference In the & = 2 case the 4 decisions are
doo = Z1.25.%5. ; d1o = 21.75.05. 3 dun = Z1.25.75. and du = 71.22.25. . In Example 12.2
we shall argue that for many practical sﬂaﬂ,‘tlons one will wish to extend the
decision space by adding the decision z; z,.z;. which expresses that there exists
sufficient evidence for rejecting 6 £ Oy or equivalently for rejecting u; = us but
that it remains undecided where the shift occurs. If we, restrict the attention to
the product problem II and the case in which ¢” s known (we assume o® = 1)
then the conditions of Theorem 11.2 are satisfied when ¢, ® is the test rejecting
H:bcw(h) = %), if and only if zn. — Zhy. = Ue, (s ' + niy)! and the
U.M.R. (W3) procedure 5 for Problem II is obtained by combining the results
of the &k component tests in the natural way. This result suggests that in case o’
is unknown ¢, ® will be the Student-¢ test, rejecting if and only if

Th — Thote 2 boisay (0 + m)ls; & = DD (@ — )/ (0 — k).

Though the correspondmg compound procedure W111 be a very attractive one,
especially when n = Y n, is large, we believe that ¢; ¢ " does not satisfy the con-
ditions of Theorem 11.2 on account of the restrictions imposed upon .

12. A Type I problem with m = n = 4 and two examples. In Remark 11.2
and Example 11.2 we argued that the formulation of Section 11 might constitute
an oversimplification of the actual situation. In this section we try to remedy
this for the special k& = 2 case by introducing a fifth decision (see Example 11.2)
which states that there exists sufficient evidence for “ £ Qi’” but that it is not
clear from the observations whether the result is significant for Problem II; or
for Problem II, . As the double-index notation of Section 11 loses its sense we de-
note dyo , dio , du and dn respectively by do , ds , ds and ds while Q1 , Qo1 , Q12 , Qs i
changed to @, Qs , 2 and @, . The fifth decision will be denoted by d; , thus ex-
pressing that its implications are situated somewhere between those of dy and the
decisions dz , ds . We shall give arguments for the following loss function

do (=dow) di dy(=dw) ds(=dn) di(= du)

o (= Qu) -0 b 2b 2b 3b
(12.1) Q (= Q) 2a a 0 a+b b
Qs (= 912) 20 a a + b 0 b
Q (= Q) 3a 2a a a 0.

For that purpose we remark that there are three testing problems playing their
part: II;, II, and the problem where “0cQu” has to be tested against
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“geQ — Qu.” Thus w, = 2b expresses that for 9 € Q1 one makes two errors of the
first kind when one decides upon d; . We remark that (12.1) is not in agreement
with (11.2) in case k¥ = 2;a1 = @ = a; by = by = b, for (11.2) implies, for ex-
ample, that wi; = w(@ eQu, d = di) = b. This gives a new illustration of Re-
mark 10.1: our notions of the errors of the first and second kind are not always
compatible.

It is an interesting and urgent task (Theorem 3.1) to determine all minimax
strategies for Player II in the game with matrix (12.1). Karlin [15] (Section 2.4)
described a very beautiful general method for characterizing the extreme point
optimal strategies in zero-sum matrix games. This method can be applied to
(12.1) in order to find the set Y of all minimax strategies (po, - - - , ps). By con-
sidering all square submatrices of the payoff matrix (12.1) it turns out that Y'is
the convex hull of the following strategies where o = a/(a + b)

(12.2) (1—e,0,0, 0, ), (1 —3a/2,0,a, 3, 0), (1 —3a/2,0, 3e,a,0)
1-2aa4a0,0), 1 —2a,a,0aq,0), (1 — 3a, 3, 0,0,0).

In the following lemma we shall give a similar characterization by using special
features of (12.1).

LemMa 12.1. (po, -+ , pa) s @ minsmaz strategy if and only if there exist con-
stants €, 8 and p such that

(123) po=1b/(a+b) —¢ p1=2—8 p=208— 3 — p;
ps=08—3¢+p; pi=a/(a+b)—3o

with

(124) 0= e=b/(a+Db);0=6=a/(@a+Dd); =2

8 =< 2¢ [o| < min (3¢, 6 — 3e).

If (12.3) and (12.4) hold and w = D30 pw.; , then w s a minimax point of
the convex set S and its coordinates are determined by

(125) w= (@* ®* — (e —p)(@a+b), " — (}e+p)(@a+b), ®")

where w* = 3ab/ (a + b). The point w* = @, -+, 0*) is the unique maximin
point of S and has a unique convex representation determined by e = 6 = p = 0.

Proor. The vectors w.o, - -+ , w.4 lie in the 3-dimensional hyperplane V' de-
fined by az + bxs = 3ab in R*. Consequently we have max (z;) = @* and
min (z;) < @ forallz = (z1, -+, 2s) ¢ S € V. But equality holds for w¥esS.
Hence w™ is both a minimax and a maximin point of S.

Next we characterize the class Y° of all minimax strategies for Player II. Obvi-
ously the conditions (12.4) are sufficient on account of (12.5). We must show
that they are necessary. The first paragraph of this proof shows that z cannot be

” 3 minimax point of S unless 2; = zs = W . Hence if (po, - -, ps) is & minimax
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strategy for Player II, then

(12.6) piZ0([=0---,4); Xpi=1
(12.7) bpr + 2bps + 2bps 4 3bps = o

(12.8) 2ape + apy + (a + b)ps + bps < v*
(12.9) 2apo + ap1 + (a + b)p, + bpe < B*
(12.10) 3apo + 2ap: + ap: + aps = o*

The equalities (12.7) and (12.10) show that po and ps can be determined by
(12.3) where ¢ and & have to satisfy the first two inequalities of (12.4). Next
(using (12.6)), substitute p, + ps = 1 — po — p1 — P+ = € + & — pyinto (12.7).
We obtain p; = 2¢ — & and 6 must satisfy § < 2¢ (see.(12.4) and (12.6)). More-
over ps + pa = 26 — e and e must satisfy e < 25. Next we can introduce p with
lo] = & — %e and write p. and p; according to (12.3). The inequalities (12.8),
(12.9) are satisfied if and only if |p| = 3

In order to show the last part of Lemma, 12.1, let w = Z p;w.; be a maximin
point of S. The first paragraph of this proof shows that w cannot be 2 maximin
point unless both the first and the last coordinate are equal to »”*. Hence the
equalites (12.6), (12.7) and (12.10) must hold and the discussion above holds
apart from the last sentence. (12.8) and (12.9) must hold with reversed inequality
signs. This is only possible if (see (12.5)) 3¢ — p =< 0 and e 4 p = 0. Combining
these inequalities we obtain e < 0, but ¢ = 0. Hence e = 0 and & = p = 0 follows
immediately.

In order to see that (12.2) and Lemma 12.1 determine the same set Y? of
minimax strategies for Player II, we remark that both sets of strategies are in
1:1 correspondence with the convex hull of the points (0, 0, 0), (3, @, —a/4),
(Ra, o, a/4), (a, a, —a), (e, a, 2a) and (2a, a, 0) in the R® of points (¢, 8, p) and
where of course @ = a/(a + b).

Lemma 12.1 and Theorem 3.1 show that there does not exist a unique M.R.
procedure if the problem is of Type I: there exist for example many constant
procedures with ML.R.

CoROLLARY 12.1. If W denotes the class of all unbiased procedures and M that of
all M.R.. procedures, then W < M.

This corollary is a consequence of Lemma 12.1 and Theorem 4.1. The con-
ditions of Lemma, 4.2 are not satisfied, for w™ is not the unique minimax point of
S (see Remark 4.2). We remark that Lehmann’s unbiasedness condltlon is not
attractive here (notwithstanding Corollary 12.1) because (i) w* is the least at-
tractive minimax point of S; each other minimax point has some coordinates
smaller than w* and will consequently have a more attractive risk function (at
least in the neighborhood of @) (i) the uniqueness of the convex representation

= b/(a + b)w., + a/(a + b)w.s (Lemma 12.1) shows that for each un-
piased procedure Ep{p;(X)} = 0 for all BocQ and j = 1, 2, 3: the decisions
dy , dy and ds will never occur if we apply an unbiased procedure.
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Lemma 12.2. If @ = Q, @ = [ n [Q] (G = 2, 3) and for some 6, & X the con-
dition B, (¢) = 0implies ¢ = 0 a.e. (u) for each test function ¢, then 6(eo, * - - , ¢1)
is unbiased if and only if (1)1 = @2 = @3 = O0a.e. (u), (ii) Eofoo(X)} =1 — aand
Eofos(X)} = aforall 0@ — Q and (iii) Esfes(X)} = o for all 0 & Qq, where
a=a/(a+b).

Proor. The necessity of (i) was shown above. 6 £ Q; is a limit point both of
2 and Q. Unbiasedness implies continuity of the risk function. Thus (12.1)
proves the necessity of (ii). (iii) follows from Lemma 4.1. The sufficiency of (i),
(ii) and (iii) follows by verifying the conditions of Lemma 4.1.

The conditions in Lemma 12.2 are very strong and one might conjecture that
the trivial constant procedure with ¢ = a and ¢; = 1 — a for all z £ &, is the
unique unbiased procedure. Remark 12.1 shows that this is not true in general.

ExampLE 12.1 (An m.d.p. for combining two one-sided tests of significance).
Let X;, X, have independent N (u;, 1) distributions with u; = 0 (# = 1, 2).
Q = Qu --- U where in the R’ of points § = (u1, u2) we have @ = {(0, 0)},
Q;is the positive u;j-axis ( = 2, 3) and Q4 is the open positive orthant. Decision
do expresses that the evidence for (u1, p2) # (0, 0) is not sufficient, d; expresses
that (u1, u2) % (0,0) but that no sufficient evidence exists for deciding whether
1 , ue Or both are positive, d; states that u;—1 > 0 but whether the other mean is
also positive remains undecided (¢ = 2, 3) and d4 states that both means are
positive. The preceding discussions can be applied to this example. Lemma 12 2
shows that each unbiased procedure & satlsﬁes R@,8) = 3ab/(a +b) = »* for
all § ¢ @ — Q whereas of course R (8, 8) < w™ for all 6 £ Q but in such a way that
R(9, 8) — w" if 8 £ Q4 tends to a point on one of the two nonnegative axes (for
the unbiasedness of & implies the continuity of its risk function). We obtain
new arguments for rejecting the unblasedness restnctlon in this section, by con-
structing a special M.R. procedure 8 = 6(po’, -+ , ¢4 ") whose risk function is not
continuous but much more attractive than that of any unbiased procedure. For that
purpose suppose

(12.11) o =2—{4—3a/(a+b)}

and define @y (21, 2:) = 1 when z;, 2 < %o ; @1 "(x1, 1) = 0 for all (z1, 2,);
@i (@1, 2) = 1 when 2,1 = Uar, ZT4mi < Uar (I = 2, 3) and ¢4 "(a, .’I?z) = 1 when

Ty, Ta = Uy . With respect to the corresponding risk function R (6, &) we obvi-
ously have R(6,8") = w*if 6 ey,

(12.12) R(0,8) = a'b + (2 — o' )ad (uar — &)
ifo=(,0)eQord = (0,k) ek >0)and
(12.13) R, 8) = a{l + ®@a — )}{1 + S(uar — »)} —

ifo = (k,v) € 94 (k, » > 0). One easily verifies that R (6, ) = w* forall 6 £ 2 and
consequently ¢’ has minimax risk. Moreover it follows from (12.12) and (12.13)
that 8’ has an appropnate risk function with for example (12. 13) —0ask,v— ©;
7(12.12) = a'b < @ *ask — »; (12.13) »a(l — a "y < w* as (k, v) € Wlth
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k — o and » — 0. The discontinuity of the risk function follows from the last
two limits. We remark that it is quite natural that procedures have discontinuous
risk functions for m.d.p.’s of Type I. The unbiasedness condition implies con-
tinuity of the risk function everywhere. In our special case each unbiased procedure
& was shown to satisfy R (6, 8) = w™ for all 6 ¢ @ — ©, with as a result that & is
obviously a much better procedure. Of course 8" is not necessarily the best M.R.
procedure. We studied 8" because of the simplicity of its risk function. In our
opinion the most beautiful appropriate criterion for the problem of this section
is the minimazx regret (M) criterion where M is the class of all M.R. procedures.
Unfortunately the construction of minimax regret (/) procedures goes beyond
our abilities.

ReMARk 12.1. (An example of A. I. van de Vooren of a nonconstant unbiased
procedure ). The function :

os(@y, ) = a + {1 — ecos (2%1)}{1 — ecos (2%)}
is a test function provided that e is sufficiently small. Moreover
Bofos(X1, Xo)} = a + {1 — cos (2%)}{1 — cos (2h))}

ing = (k,v) eQ Lemma 12.2 shows that (1 — ¢4, 0, 0, 0, ¢4) is an example of a
nonconstant unbiased procedure. The proof is based on the following equality

[Zeexp {— (x — y)*} cos 2z dz = e 'nt cos 2y.

The problem to construct a nonrandomized (indicator-) function ¢, satisfying
the conditions in Lemma 12.2 (or to show the nonexistence of such a function)
has not yet been solved.?

ExampLE 12.2 (A multiple decision three-sample trend problem). Consider
k = 21in Example 11.2; Q@ = Q u - -- u @, where @, is the subset of Q defined by
wo = M1 = pp; Qo is defined by puo < w1 = w2 ; @ by uo = wm < w2 and 24 by
e < m < mz. Decision dy (= x9.21.7..) states that there does not exist sufficient
evidence for 0 2Q; ; di (= Zox.zs.) states that the hypothesis of homogeneity
wo = m = mp has to be rejected but it remains undecided whether py < w or
w1 < ps or both; ds (= 2o.z1.22.) states that there is sufficient evidence for u < wm
but not for u; < us ; ds (= Zo.x1.25.) is formulated when x,. is significantly larger
than z;. whereas the evidence for uy < w is not sufficient and dy (= xo.21.22.) cor-
responds with the statement “6 € Q4 or “uo < w1 < 2 .”

This (and other) problem (s) may be regarded from various points of view:
(i) as a problem of multiple comparisons where at the same time o = w; has to be
tested against up < w1 ; w1 = e against uy < ps and po = e against uo < ps ;
(ii) as a problem where two decision problems are considered consecutively, first
the problem to test uo = w1 = w against an upward trend (see [27]) and next, if
the hypothesis of homogeneity is rejected, the problem to test at the same time

(see Section 11) ug = w against uo < i and w = pp against wy < e ; (iii) asa
——
3 In the meantime, Mrs. W. Stefansky, Department of Statistics, Berkeley, constructed

such indicator functions ¢, in the case « is rational.
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restricted product (in a more general sense than in [19] because there are more
decisions than subsets of @) of the three problems under (ii). In all these cases
(12.1) seems to be an attractive loss function. The fact that the problem can be
regarded from different points of view entails that there does not exist a “natural”
procedure: a procedure which is natural from one point of view is not natural
from another one. Accordingly the problem to find an “optimum”’ procedure (the
minimax regret (M) procedure) seems to be forbidding.

13. Acknowledgments. The computations resulting in the figures 1,. . ., 4 were
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