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SUFFICIENT CONDITIONS FOR A MIXTURE OF EXPONENTIALS TO BE
A PROBABILITY DENSITY FUNCTION

By D. J. BARTHOLOMEW

University of Kent at Canterbury
1. Introduction. We shall consider the function

1) f@) = 2k pane ™ (x=0)

where the \’s are positive and -1 p: = 1. Without loss of generality we may sup-
pose that &y < X2 < -+ < M. If all of the p’s are positive then it is obvious that
(1) represents a probability density function. If some of the p’s are negative,
f(z) could be negative for some values of z and so may not be a density function.
Steutel, in [3], remarked that there appear to be no simple conditions for deter-
mining whether or not f(z) is a density. It is the main purpose of this note to
provide some simple sufficient conditions. These all have the form of inequalities
involving linear functions of the p’s; the principal results are given in Theorems
1 and 2 and their Corollaries.

Mixed exponential distributions with negative p’s arise in several statistical
contexts. One of the best known members of the family is the so-called Erlang
distribution. This plays a central role in the derivation of our conditions. It arises
as follows. Let y1, 32, - - - yx beindependently and exponentially distributed ran-
dom variables with scale parameters \; , A, - - - A, respectively, then z = >t y:
has an Erlang distribution with density given by (1) with

pi = I v O/ (i — N)), ¢=1,2---k).

(see [1], page 17). In this case the signs of the p’s alternate.

The mixed exponential distribution has many attractive properties. The fact
that its Laplace transform is a rational algebraic fraction offers many advantages
in renewal theory and other branches of stochastic processes. Kingman in [2]
has shown that one can approximate arbitrarily closely to any density on (0, « )
by a function of the form (1), (although this might require a very large value of
k in any particular instance). The many advantages which this function offers
are off-set to some extent by the difficulty of determining whether a given f(x)
is in fact a density function. Our results provide a partial answer to this problem.

A further property, which has a direct application to testing for positivity, is
that a mixed exponential distribution, truncated on the left, is also mixed exponen-
tial in form. Thus if the point of truncationisx = X and if y = £ — X then

2) Flly 2 0) = 25apine™
where p;’ = pie %/ Z'E,l pie")“x.
2. Two necessary conditions. By considering the two casesz = 0 and 2 — o,
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Steutel showed in [3] that the following two conditions are necessary for f(z) to
be a density.

(@) X¥api = 0, and (b) p1 > 0.
A slightly more general form of (a) is

(&') £ (0) = 0 where f  (0) is the first non-zero derivative of f(x) at z = 0
and f@(0) = f(0) = X% pi:. Except for the case k& = 2, conditions (a’)
and (b) are not sufficient for f (z) to be a density function.

3. Some sufficient conditions. Summation of (1) by parts gives the alterna-
tive expression
3) fx) = e Zi‘;l piNi + ]:;i (6~Mx - 6~A'+lx) 21:;1 Diki .
Since M < X2 < -+ < N\ it follows that

EM gt >0 ¢ =1,2 -k —1).

Hence every term in (3) is positive for all z if
) 2iaapi 20, (r=1,2---k).

This ensures that f(z) is everywhere positive; we state the result as:
TueoreM 1. The following conditions are sufficient to ensure that f(z) in (1) is a
probability density function:
2Pk 20, (r=1,2---k).
The conditions in the theorem are extremely simple but they are not the best

that can be obtained. To demonstrate this we proceed as follows.
Let

(5) Pr @ ()\r+l - >\r) Z;“=1 pi)\i/)\r (2),
where A® =AM\t = 1,2, -+ k — 1), 2% = D1 pNi/Ne,

and
fr (2) (x) = >\r 2) (>‘1‘+1 _ )\1‘)_1 (e—)\,-:c _ e—)\r-plx).

The function f, ® () is the Erlang density function of the sum of two exponential
variates with parameters A\, and A,,1. Hence it is necessarily non-negative for all
z. In this notation (3) becomes

©) F@) = ;PhH P @) + 25 0,952 ()

where fi © (z) = Me ™,

We have thus expressed (3) as a mixture of one exponential function and ¥ — 1
Erlang densities of the second order. If the conditions of Theorem 1 are satisfied,
all of the coefficientsin (6) are non-negative. If some of the partial sums, ZLl DiNi,
are negative the corresponding p, @s will also be negative. We may then hope
to treat the second sum on the right hand side of (6) in exactly the same way as
we dealt with (1) since it too is a mixture of densities.
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Let us write
) HP@/NP = @)/ + Qe — MED @)/ P

where &, ® = Ay, @, ¢ = 1,2, -+ k — 2), and , ® (z) is the Erlang density
for independent exponential variates with parameters A, Arja1, Aj2. A further
summation by parts applied to (6) now gives

®) (w) = n%7 P @) + p2P1 @) + 2 0 O (@)
where M 99, @ = (\p2 = M) 2 pi ON®, (= 1,2, -+ & — 2), and piy =

PN ® Since f» @ (z) is positive for all 7 and z another set of conditions

i=1

for f(z) to be a density is thus
) n®z0, Xiap®u®20 ¢r=12--k—1)

If the conditions of Theorem 1 are satisfied then those of (9) are obviously satis-
fied also. However, the converse is not necessarily true. The conditions (9) are
thus better than those of Theorem 1.

The same method can now be applied repeatedly. At each stage the Erlang
densities in the mixture are expressed in terms of those of higher order. Thus for
any j < k — r we have

f ) (x)/)\r o _ ff'fl-)l (x)/k,- (€] + ()\1-+i _ >\r)fr (+1) (x)/k (7+1)

where f, ¥ (z) is the (j + 1)th order Erlang density with parameters ),
Art1, + Apj and where A, G = TTi—o My . After 7 repetitions of the procedure

we have
10) f@) = 2 @ P (@) + PSR () + -+ + Pl <x>
+ 'i=l pi (]+l)fi (741) (x)

where

(11) AP0, ® = (s — M) i TN, R —1< k)
=2 iap: PN (r+h—1=k).

Sufficient conditions for f(x) to be a density are thus that

(12) n®z0 pPz0 (=12 ---j—1)
ps’ 2 0, r=5j+1,--k~—1)

If these conditions hold for j = m they will certainly hold for j > m so the best
result obtainable by this method is found by putting j = k¥ — 1. We then have:

TaroreM 2. The following conditions are sufficient to ensure that f(z) in (1) is a
probability density function.

@20, P20, (r=12--k—-2), p®=zo0.

The conditions of Theorem 2 can be expressed in various forms. Two such,
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which facilitate calculation and give some insight into the nature of the condi-
tions, are given in the following corollaries.
CoROLLARY 1. The conditions of Theorem 2 are equivalent to the following

Dhapi =0, i [ Domiris O — )\') =20 (r=12---k—1).

Proor. It is clear from the definition of px ® in (5) that px ® = 0 implies
de Pk = 0 and conversely.
In order to establish the equivalence of the remaining conditions we proceed as
follows. We have expanded f(z) in the form

(13) @) = 2 o @) + n AP @).
Now

f @) = Dohiii M Timiitmen {An/ O — M)},

Hence, substituting this expression in (13) and reversing the order of summation
we have

(14)  f@) = 2EINe T D b it piits L i ittimssi {3/ (v — M)}

(k+1)

where p; = ® Comparing this with (1) we see that

15) i D Tt P/ O — M)} = ps (G = 1,2, --- k).
On solving this system of equations for the p” ++1 we find
16) P = i pahi [ Tombrsr O — M)/ T omie s (r=1,2, -k —1).

The equivalence of the conditions of Theorem 2 and those of the Corollary follows

at once.
CoROLLARY 2. The conditions of Theorem 2 are equivalent to the following:

2 8f P (0) 2 0, (r=1,2 k)
where S,; is the coefficient of &* in the product
an=k—r+l ()\m + x).

This result follows at once from Corollary 1. It is interesting to see from this
corollary that the conditions can be expressed in terms of the derivatives of f(x)
at the origin.

Our derivation of the condition of Theorem 1 required that the terms p:\; be
taken in increasing order of their A’s. The argument leading to Theorem 2 as-
sumed that this initial ordering would continue to yield the best conditions ob-
tainable by this method. It will be proved in the Appendix that if the conditions
of Corollary 1 (and hence of Theorem 2 and Corollary 2) are satisfied for some
other ordering of the \’s then they are satisfied for \; < Ay < -+ < A. The con-
ditions stated there are thus the best of their kind.

4. Concluding Remarks. All of the conditions obtained are sufficient to ensure
that f(x) is a probability density function. Except when & = 2, when they coin-
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cide with conditions (a) and (b), they are not necessary. A simple example will
illustrate the point. It is obvious that

f) = 3Me™A — 27) = 3™ — 120 2 + 12067

is a density function. However, to satisfy the conditions of Corollary 2 we require
that 7(0) = (0) and f  (0) 4+ N\sf(0) = 0. For this example f ® (0) + 3\f(0) =
—15) 4 9A* < 0. This curve has a zero ordinate when ¢* = % and we may use
our conditions to show that f(z) is positive to the right of this point. If we let
y = 2 — (In 2)/\ then, from (2),

{17 F@ly > 0) = 3™ — 6re™ + 3ne™.

Since f(0) = 0 and f ¥ (0) = 0, the conditions are now satisfied.
Our method can also be used to find conditions for f(z) to be a monotonic de-
creasing (J-shaped) density. For this to be the case we require

_f(l) (37) — E?:l pi)\t?e—)\;a: g 0

for all . The methods of this paper can obviously be applied with only minor
modifications. For example, the conditions of Corollary 2 become

(18) 2 8 P (0) 2 0, (r=1,2 k)
The condition —f ® (z) = 0 for all z together with f(0) = 0 is also sufficient to
ensure that f(x) is a density function. Conditions (18) are thus sufficient for
f(x) to be a density although they are not as general as those of Theorem 2.

It would be very useful if some simple conditions could be found which were
necessary as well as sufficient. Research towards this end has so far proved fruit-
less. One possibility, suggested by a referee, is as follows. The Laplace transform
of f(x) is

¢(s) = 2t phi(hi + 8)7
and ¢ (s) belongs to a non-negative function if and only if
(_l)m¢<’”)('g) 207 8>O: (m=0) 1; 2; "')'
Thus a set of necessary and sufficient conditions for positivity is
Ddhaph/i+ )"0, $>0, (m=0,1,2---).
This device converts the problem into one concerning the zeros of an infinite set
of polynomials but does not appear to yield simple and easily applied conditions.

APPENDIX

Here we shall show that if the conditions of Corollary 2 are satisfied for some
permutation of the ’s then they are satisfied for the permutation Ay < A < -+ <
M . Let S,; now denote the coefficient of «* in

Iimiers Gn + )
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where »1, v, - - - v 18 & permutation of Ay, A - - Ay . We are given that
(A1) 208 fP(0) 2 0, r=1,2 k).

Let G denote the set {vi, vi_1 - - ve—rs1} and G the set {vj—r, ¥e—r1, - -+ 11}. Our
method of proof is to show that the value of the sum in (A1), for given r, is not
decreased if the smallest member of G is replaced by the largest member of the
union of G and min {v;, »e1 -+ v_r1}. By repeating the argument for the set G
thus obtained we shall arrive at the conclusion that if (A1) holds then it holds
also when the set G becomes {A;, Ne—1, *** Ao—rt1}.

First we observe that permuting the »’s does not affect the derivatives f @ 0).
The proof is by induction on r. The result is certainly truewhen » = 1 because then

0 S1if 0 0) = wf @ 0) + £¥(0).

Since £ (0) = 0 it follows that replacing », by max {v, 1, - - - »} cannot de-
crease the sum. Assume now that the result holds for » ='m — 1. It follows from
the definition of S,; that

(A2) Xt Snf P (0) = " 2 810, 7 (0) + X St T 0)

where »* = min {v, ves *+ vepa} and Sp; is the coeficient formed from
(v *++ vh—ppa} with »* deleted. Replacing »* by max {+*, vi_,, -+ »} will either
increase the expression, or leave it the same if the first sum on the righthand side
of (A2) is positive. We are given that

o Sma i P (0) = 0.

The first sum on the right hand side of (A2) is identical with this if »* = vp_p41 .
If this is not the case it differs from it only in that min {vs, vs_1 * =+ ve—pya} = »*
has been replaced by 7:_41 which is greater than »*. But, by hypothesis, this has
the effect of not decreasing the sum. Hence

T S fP0) =0

also. The argument can be repeated until there is no member of G which is greater
than any member of G in which case G = {MMe, * *+ M—ms1}. At each stage the
sum either increases or remains the same so that if (Al) is satisfied with
G = {vi, vk, - Vi—my1} it must also be satisfied when G = {A\y, MNe—1, * * * Mo}
Our hypothesis is true for » = 1; hence, by induction it is true for all r.
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