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OPTIMUM ESTIMATORS FOR LINEAR FUNCTIONS OF LOCATION
AND SCALE PARAMETERS!

By Nancy R. Mann
Rocketdyne, A Division of North American Rockwell Corporaiion

0. Summary. In this paper, loss is taken to be proportional to squared error
with the constant of proportionality equal to the square of the inverse of a scale
parameter, and an invariant estimator is defined to be one with risk invariant
under transformations of location and scale.

For certain classes of estimators, best (minimum-mean-squared-error) in-
variant estimators are found for specified linear functions of an unknown scale
parameter and one or more unknown location parameters. Even when the speci-
fied function is equal to a single location parameter, the best invariant estimator
is not equal to the best unbiased estimator in the class except for complete samples
from certain distributions such as the Gaussian.

1. Introduction. In the following we consider invariant estimators of estimable
functions of the form & = 'y + mo, where u is a p-dimensional column vector of
location parameters, o is a scale parameter, and 1(p X 1) and m are known. It is
assumed that unique (with probability one) minimum-variance unbiased esti-
mators exist in some class of estimators for u;, u2, + ++ , up and o. Then a unique
minimum-expected-loss estimator of ® among estimators in that class with risk
invariant under transformations of location and scale can be determined as a
function of these unbiased estimators. Loss is taken to be proportional to squared
error, with the constant of proportionality equal to o °.

The best (minimum-risk ) invariant estimator of ® is shown to be equal to the
best unbiased estimator of ® only when ® = 'y and the density function for
which w1, g2, -+, and u, are location parameters and o is a scale parameter
is symmetric about I'w. The best invariant estimators of w, ws, --- and u,
for ¢ known are derived as functions of the best unbiased estimators of the u’s and
of ¢ for ¢ unknown,

The results here generalize results of Goodman in [2] and [3] which apply to
scale parameters only. Theorems in [7] which deal with general linear estimators
of ® are also generalized in this paper.

2. Best invariant estimators of ® and o¢. The following two assumptions are
made.

A1l. The r-dimensional random column vector % is such that the distribution of
(x — Qu)/o is independent of 8’ = (w', o), withe > 0, v’ = (u, p2, -+, ko),
and Q a known r X p matrix.

A2. Letl = (, b, ---,1,) and m be known. For (¢, ¢) unknown, there exists
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a vector of unique’ (with probability one) minimum-variance joint unbiased
estimators (®*,¢™) of ('u + mo,¢) = (&, 0) in a specified class £° of estimators of
(®, o). Let the covariance matrix of (®* ¢*) be

UgAB:l
B (|

We let loss be proportional to squared error, with the constant of proportionality
equal to 1/6°, and under the preceding assumptions, Theorem 1 below applies.

TraEOREM 1. Let (u,0) be unknown and 1 # 0. Consider estimators of (I'u + ma,
o) with expected loss invariant under transformations of location and scale. ® =
®* — [B/(1 + O)lo* and & = o*/ (1 + C) are the joint unique estimators of ® and
o, respectively, with smallest expected squared deviation among such estimators in &.
The mean squared errors of ® and & are [A — B*/ (1 +-C)]o* and [C/ (1 + C)],
respectively, and E[(® — &) (7 — )] is [B/ (1 + C)]o".

Proor or THEOREM 1. In the class £ of estimators, consider any estimator
Vof¥ = a(l'y + mo) + co = a® + co (a and ¢ not both zero) with invariant
expected loss (or risk ), that is, one such that the risk function of ¥ is independent
of (u1,u2, ***, kp, o). The risk function R (¥, ¥) of ¥ is equal to

Var (¥)/o* + [ET — ¥)’)/o,

where Var (X) denotes the variance of the estimator X and E (X — z) is the
bias of X in estimating x.

Thus, each of Var (¥)/o” and [E (¥ — ¥)I/s’, being nonnegative, must also
be independent of 8 = (u’, o) for all 6. The bias of ¥ is EFF — a({'y + mo)
+ co]. Therefore, ¥, in order to have risk independent of (', o), must be of the
form

alg + k6 = al's + ms) + ké = ad + ke
for some « and some k = k — m, where @, , and & are unbiased estimators of
u, o, and ®, respectively, and & is independent of ui, pe, - -, up, and o for all
/

0.
The risk of ¥ is thus given by

(1) [d* Var @) + 2ak Cov (@, ¢) + ¥ Var (6)]/o°
+ {[E (a® + k¢ — a® — co)]’} /o,

where Cov (X, Y') denotes the covariance of X and Y, and the second term of
(1) is equal to (& — ¢)’. Furthermore,

(2) (/d*) Var (¥) = (1/6*)[d’ Var (®) + 2ak Cov (d, ¢) + &’ Var (¢)]
must be independent of 0 for all 0.

2 In the discussion that follows, ‘‘unique’” will always be taken to mean unique with
probability one.

3 The class £ may consist, for example, of all linear combinations of sample observations
or all possible estimators based on sample observations.
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Now, one may make use of the fact that the absolute value of the correlation
coefficient p of & and ¢ is less than or equal to 1 to demonstrate that (1/6%) Var (&),
(1/6%) Var (¢), and (1/6”) Cov (&, ¢) must each be independent of 8 if (2) is to
be independent of 8. Let Var (&) = ac’, Var (6) = vo’, and Cov (§, ¢) = Bd’,
where o and v are both positive. Then, since p° = 8°/(ay) and p* < 1, it follows
that 8 £ oy (since @ > 0 and ¥ > 0) and

3) (1/6®) Var (%) £ d’a + |20k(ay)}| + K.

Since Var (¥) is not identically zero unless ¥ = ad + k¢ is identically zero, and
since the left side of (3) is independent of 8 for all 8, it must be true that the right
side is also independent of 8 for all 8 for a and & not both zero. Also, each term on
the right side of (3) is nonnegative. Therefore, for a and k not both zero, each
term must be independent of 8, and «, v, and hence 8 must also be independent of
0, for all 6.

In order to demonstrate that for ¥ = a® + ¢, a and k are not both zero, it is
necessary to determine the form of R (¥, ¥'), where ¥' = a® + co’ has minimum
risk among invariant estimators of ¥ in £ based on a given combination of $ and
¢. This is accomplished by minimizing k%, which is equal to (¢ — aB8)/(1 + v),
which is not zero unless @ = ¢/B8. Hence, ¥ = ad + k¢ is not identically zero
unless a and ¢ are both zero, contrary to assumption. Hence «, 8, and v are each
independent of 0 for all 8 and ¥ is equal to a® + [(c — aB)/(1 + v)]¢ =
ald — Bs/ (1 +v) +c6/(A+v)=ad +co’. R¥, V), with¥' = a® + co’ is
then equal to

4) d’a + 2acB + v — (ev + a8)*/ (1 + v)
or
dla — B/Q + ¥)] + 2ac8/ (1 + v) + v/ A + 7).

It can now be established that (®, ¢) must be the unique best unbiased esti-
mator of (®', ), in the class £ in order that (&', ¢’ ) be equal to (&, 7), the unique
best invariant estimator of (®, ¢) in £. Let a equal 1 and ¢ equal 0 so that ¥ = &
and ¥’ = &'. The changein R (¥, ") induced by changesin a, 8, and v correspond-
ing to change in & and ¢ is now considered.

The change dR (®, ®') in R (®, ®') is equal to

[0R (&, ®')/da] da + [6R (®, &')/0B] dB + [0R (®, &')/dv] dy

and from (4), oR(®, ®)/0a = 1, dR(®, ¥')/98 = —28/(1 + ~), and
OR (®,8')/dy = 82/ (1 + v)°. Clearly, for fixed 8 and increasing o and v, dR (®, &)
is positive and R (®, ®) is increasing. It can be shown also, by once again using
the fact the 8 < ay, that dR (®, ®') is positive for positive do and dvy regardless
of the value of dg. Since 8° < av, d8 = |(v/28) da| and | 3R (@, ®')/38) dB| =
[[—28/(1 4+ v)] Bl = |[v/ (1 4+ v)] da|. Then dR (&, &) = do — [v/ (1 + v)]|da|
s+ [/ (1 + ¥)"] dy or

(5) dR(®, &) = [1 — v/ + y)lda + [8/(1 + v)] dy
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for do positive. Note that the right side of (5) is positive, and hence dR (®, ')
is positive, for da > 0 and dy > 0. Also, if @ = 0 and ¢ = 1 so that ¥ = ¢ and
¥ = ¢, then 6R (¢,0")/38 = R (s,¢")/da = 0 and dR (¢, 5" ) = [0R (s,0" )/dv] dv
= dy/(1 + v)?, which is positive for dvy positive.

Therefore, for the class £ of estimators for which a vector (®*, ¢*) of unique
best unbiased estimators of (®, o) exists, (®, ) = (@ — Bs"/(1 + C),
o*/(1 4+ C)) is the unique best invariant estimator of (®, ¢), where Bo” is the
covariance between ®* and ¢ and Co¢® is the variance of ¢*. The uniqueness of
(®, #) follows from the uniqueness of (®*, ¢*). The expressions for the mean
squared errors of ® and & can be calculated directly from (4) and shown to be
equal to [4 — B*/(1 + C)]¢* and Co’/(1 + C), respectively, where Ao” is the
variance of ®*. In the same manner it can be shown that E[® — &) (5 — ¢)] is
equal to B’/ (1 4 C). The proof of Theorem 1 is now complete.

ImpricATIONS OF THEOREM 1. If p = 1,1 = = 1,and m = Othen & = pand
®* = u*. In the case of a single unknown location parameter, Q is a column
vector of 1’s and x may be a vector of ordered observations. Note that if
y = (x — u)/o, then E(x) = u + ¢E (y). For this model ® may also besimplyo
or the 100 P percent point zp of the distribution of the random variable X when
l=10=1,u = u,and m = yp, the corresponding percentile of the distribution
of the reduced parameter-free variate ¥ = (X — u)/o. Thus, z» is given by
u + ypo, where yp can usually be calculated and for some distributions is tabu-

lated. If
o2 [a ﬁ]
B v

is the covariance matrix of (u*, ¢*), then the variance of X, = u* + yeo™ is
[a 4 2y#B8 + yr'v]o’, and the mean squared error of the best invariant estimator
of zp in £ is [a@ + 2ysB + yrvle® — [(wey + B)/(1 + 7))o if X»" is the best
unbiased estimator of xp in £.

The covariance between ®* and ¢* will not in general be zero. An exception is,
of course, the case in which @ and ¢ are respectively equal to p and o, the mean
and standard deviation of a Gaussian distribution, and there is no censoring of
the sample (or location and scale parameters of any distribution with density
symmetric about x). For an uncensored sample from a Gaussian distribution,
best unbiased joint estimators p* and ¢ exist for u and o, respectively, and have
covariance zero. If, however, ® = u + yso, where y» is a standard normal devi-
ate and ® is the 100 P percent point of a normal distribution with mean u and
standard deviation o, then for P # .50, the covariance between ®* and ¢*, the
joint best unbiased estimators of @ and o, respectively, is not zero.

Suppose p is equal to 1 and (u, o) is a general location-scale parameter, as de-
fined in Assumption 1. Suppose either that the distribution of X is such that no
complete sufficient statistics exist or that absence of complete sufficient statistics

_is due to censoring of the sample. In either case no best unbiased estimator of
(u, o) exists. Let (u*, ¢™) be the unique vector of best linear unbiased estimators
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of (u, o) as specified by the generalized Gauss-Markov Theorem (see Lloyd [6]).
Then the unique best linear invariant estimator of » = p + y»o, the 100 P per-
cent point of X, is u* + (y» — B)0™/ (1 + v) where 8 is the covariance of u* and
o™ and v is the variance of ¢*.

Suppose that ® = I'y where Qisp X n. Thenif e = (x — Qu)/o, E(x)=
Qu + oE(e) and if E(e) = 0 and & is estimable, as discussed by Scheffé [9],
the ordinary Gauss-Markov Theorem applies (since, by Assumption 1, E (ee’)
is independent, of ¢*). We therefore let u* be the vector of unique Gauss-Markoy
estimators of the elements of y and o* be k[D iy (@i — D2 s ) = k()Y
where the optimality properties of s* have been demonstrated by Hsu [4].

Let Ao” be the p X p covariance matrix of u*, bo® the p X 1 covariance matrix
of w* and ¢* and Co® the variance of ¢*. Then, by Theorem 1, the estimator &
given by

' —Tbe*/14+C)=1p
has smaller mean squared error than 'y*. The mean squared error of & is
T4l — b’/ (1 + C)o"

If X is from a Gaussian or any other distribution with density symmetric about
u, bis equal to 0.

The theorem thus extends both the Gauss-Markov Theorem and the Lehmann-
Scheffé Theorem, as given in [1] and [5], respectively, indicating how unique esti-
mators with uniformly smaller risk may be obtained from those specified by these
classical theorems. Theorem 2 and Theorem 3, which follow and which also
extend these two well-known theorems, apply to cases in which either g or ¢ is
known.

3. Examples of use of Theorem 1. As an illustration of the manner in which
Theorem 1 can be used to obtain estimates which will, on the average, lie closer
to the parameters estimated than those obtained by using best unbiased esti-
mators, we consider the exponential distribution with location parameter 8 and
scale parameter o. The best unbiased estimators of the two parameters and the
variances and covariances of these estimators are, for a complete sample:

F=m—-1)"n@E—-m), V() =m-1)"
0" = n— 1)y — &), V() =0t — 1)
Cov (6%, ¢*) = n'(n — 1)7'".

These estimators are inadmissible; uniformly better estimators are given below
with their risk functions.

F=n"n — 1) — 1)0@E —2) = F — o, R(s, &) = n''d,
b=m—1) "z —2)+n'n—1)"GE—21) =n " ((n+ 1o — Z),
“RO,6) =n"n—1)"" —[-nn— D] —1) = 0@+ 1)
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Suppose that one wishes to estimate the 90 % point of such an exponential
population. Then, since P = ®(u) =1 — ¢ “F,up = In[1/(1 — P)] = In10. If
the sample size is 4, then

R@s0, Xo0) = 0830 + [2(—.083) In 10
+ .333(In 10)* — (.083)%.75¢° = 1.124°.

The risk of X’ = u* + (In 10)¢™ is 1.476%, which is more than 30 % greater than
that of X g0 .

In [8] the near optimality of best linear invariant and maximum-likelihood
estimators with respect to known estimators of the parameters of the first asymp-
totic distribution of smallest (extreme) values is demonstrated.

4. Best invariant estimators of o for u known. In order to derive the best
invariant estimator of ¢ when the vector y is known the following assumption is
made.

A2'. A unique best unbiased estimator ¢,* with variance C,o” exists in ¢ for o.

Theorem 2 below holds under Assumptions 1 and 2" when the loss function is
squared error divided by ¢°, as defined earlier. The term “invariant” in Theorem 2
and those following should be taken to mean invariant under transformations of
location and scale.

THEOREM 2. For uw known and o unknown, the unique minimum-risk invariant
estimator of o in £ s &, = o, /(1 + C,), with expected squared error equal to
[C./ (1 + CM)]02-

Proor or TarorEM 2. The proof of Theorem 2 can take the form of that of
Theorem 1 with I = 0, m = 1, and ® = ¢. In such a case, o,” is substituted for
both ¢* and ®* and C, is substituted for 4, B, and C. Then A — B*/(1 + C),
B/(1 + C), and €/ (1 4 C) are replaced in the proof by C,*/ (1 + C.).

5. Best invariant estimation of ® for ¢ known. Theorem 3 applies to the
case where o is known, but u is unknown. It holds under Assumptions 1 and 2.

THEOREM 3. For o known, w unknown, and 1 % 0, the unique minimum-risk in-
variant estimator of ® = U'w + mo in £is &, = ®* — (B/C)(¢* — o), which is
unbiased. The variance of &, is (A — B*/C)d".

Proor or TaEOREM 3. The form of the proof of Theorem 3 is similar to that of
Theorem 1. For ¢ known, an estimator ®, of ® in £, in order to be independent of
0 for all 8, must be of the form I's + mé + (ks — m)é + (ks + m)o = & +
(ky — m)é + (ks + m)o, where i is a vector of unbiased estimators of the re-
spective elements of w and ($, ¢) is a vector of unbiased estimators of (®, o) for
¢ not known. Again, as in the proof of Theorem 1, it can be demonstrated that
for &, any invariant estimator of ®, the variance of ®, is a function of ac’®, 8o°,
and v¢®, with «, 8, and v independent of 8 for all 8, and as” and yo® the variances
of & and &, respectively, and Bo” their covariance. R (®, &,) is thus of the form

a+ 20 —m)B+ (ke —m)y + U + k)
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Minimizing R (®, ®, ) with respect to % and k., one obtains k, = —k =
8/y — m. Thus &, , the invariant estimator of ® with minimum risk among those
based on & and ¢, is given by &, = & — (8/y) (6 — o) with R(®, ®,’) equal to
o — B%/~. Then since dR (&, ®, )/da is equal to 1, dR (®, ®, )38 is equal to
—28/v, and OR (®, ®, )/ is equal to 8/~%, R (&, ®,’) = da — 28/~ dB+B"/+"d.

Making use of the fact that 8’ < av, one can then demonstrate that

dR(®, ®,) = da — |da| + /4" dvy

and that R (®, ®,) is increasing for da and dy both positive. Thus if ®* and o*
are the unique best unbiased joint estimators in £ of ® and o, respectively, when
¢ is not known,

& =" — (B/C)(" — o),

with variance [A — (B?/C)]¢’, is the unique minimum-risk invariant estimator
of ® when o is known. This completes the proof of Theorem 3.

ImpLicATIONS OF THEOREM 3. Theorem 3 is of practical interest when a dis-
tribution scale parameter is known, there is censoring of a sample, and coeffi-
cients for obtaining best linear unbiased (or best linear invariant) estimates of
both the distribution location and scale parameters are available. One can then
convert these coefficients to new coefficients from which one can obtain the best
linear invariant estimate of the location parameter for a known scale parameter.
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