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THE RELATION OF THE EQUIVALENCE CONDITIONS FOR THE
BROWNIAN MOTION TO THE EQUIVALENCE CONDITIONS FOR
CERTAIN STATIONARY PROCESSES!

By BenxNETT EISENBERG
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Random processes are called equivalent if the measures they induce on the
path space are mutually absolutely continuous. Since Gaussian processes are
determined by their mean and covariance functions alone, it should be possible
to formulate equivalence conditions involving these functions alone. This has
been done in several cases. In particular, Shepp [6] has given the following neces-
sary and sufficient conditions for a Gaussian process with covariance R and mean
m to be equivalent to the Brownian motion on the interval [0, T7:

(1) min (s, t) — R(s, t) must be representable as f 0 ff) H (u, v) du dv, where
H is in I’ and when considered as the kernel of a Hilbert-Schmidt operator on
L ([0, T]), its spectrum does not include the value one;

(ii) m (t) must be representable as [ f(u) du, where f is in L.

Feldman [1] and Rozanov [4] consider stationary Gaussian processes X and Y
with covariance functions R () and S (u), respectively, and show that if ¥ has a
spectral density (this condition can be improved, see Feldman [2]), and if the
process X has a spectral density f such that

0 < lim infyoe AF(A) = lim sUprse Nf(A) < oo,

then X is equivalent to ¥ on [0, 7] if and only if R (u) — S (u) has a derivative
which is absolutely continuous on (—7, T) with [§ [§ (R — 8)" (s — t)*dsdt
finite.

There is an obvious resemblance between these sets of conditions. Both require
that the difference of the covariance functions should be signed distribution func-
tions with densities in L, but whereas Shepp’s result has the difference written
as a specific definite integral, Feldman’s result does not. On the other hand,
Feldman’s conditions are more restrictive than Shepp’s in that the definite
integral [§ [0 H (u, v) du dv is not necessarily differentiable as a function of s.
There is also a difference between the spectral condition on H in Shepp’s theorem
and the condition that the spectral function of ¥ be absolutely continuous in the
Feldman result. In this paper we show why these similarities and subtle differ-
ences occur and equally important extend the results and the theory along the

way.
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1. General theory.

Notation. X and Y will always denote mean zero Gaussian processes with
covariance functions R and S, respectively.

Y 4 m will denote the process with covariance S and mean m.

uz Will denote the measure on B* corresponding to the process X on [0, A].

X ~ Y means that u, and g, are mutually absolutely continuous.

X (t) will denote the equivalence class in L’ (du,) of the random variable z, (o).

H_ will denote the subspace of L’(du,) spanned by the functions X (¢), ¢ in
[0, A].

If T is a linear operator on H,, TX will denote the process ¥ such that the
random variables Y (¢) have the same joint distributions as the random variables
TX ().

H.~ H, means the map taking X (¢) into Y (¢) extends to a bounded invertible
linear operator from H, onto H, .

H. Sato [5] gives a version of the Feldman-H4jek Dichotomy Theorem for
Gaussian measures from which we begin.

Dicuoromy THEOREM. X is equivalent to Y + m of and only if Y = TX, where
T is a bounded invertible operator from H, onto H, with I — T*T Hilbert—Schmids,
and m(¢) = E(X (t)g), where g is in H, . Otherwise, p, and u, . are singular.

This paper rests on the following corollary to this theorem.

ProrosiTion 1. X 4s equivalent to Y if and only if R(s, t) — S(s, t) =
EHX (s)X (t)), where H vs a Hilbert-Schmidt operator with I — H invertible.

Proor. Assume X is equivalent to Y. Then ¥ = TX, with T as in the Di-
chotomy Theorem. Then R (s, t) — S(s,¢t) = EX ()X () — EY ()Y (¢)) =
E((I—T*T)X(s)X(t)) = E(HX (s)X (t)). Since T is invertible, ] — H = T*T
is invertible.

Conversely, assume R(s, £) — S(s, t) = EHX(s)X ()) with H Hilbert—
Schmidt and I — H invertible. Then since R and S are symmetric, H is self-ad-
joint. Also E(Y (s)Y (¢)) = E((I — H)X (s)X (t)) implies that I — H auto-
matically has no negative eigenvalues. It follows that ¥ = (I — H)!X with
I—-—{I—-H )* (I-H}=H being Hilbert—-Schmidt. Furthermore, since I — H
is invertible, (I — H)! is invertible. []

There are several ways to verify the invertibility condition on I — H in Propo-
sition 1. Assume it has been shown that R(s, t) — S(s, t) = E(HX (s)X (¢))
with H Hilbert-Schmidt. Then I — H is invertible if and only if I — H or
(I — H)* has kernel zero. But this says that the kernel of the linear operator
taking X () into Y (¢) is zero. If, furthermore, it is assumed that H, ~ H, , then
(I — H)*and hence I — H is automatically invertible.

CororLrARY (Shepp’s Theorem). Let X be Brownian motion. Then X ~ Y + m
if and only ¢f min (s, ) — S(s, ¢) = [§ [0 H (u, v) du dv with H in L’ and one not
m thze spectrum. of the operator on L’ ([0, T) with kernel H, and m () = f of (w) du, f
wn L.

"Proor. The map taking X (¢) into the characteristic function of [0, ¢] in
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L*([0, T]) is an isomorphism of Hilbert spaces and the equivalence conditions in
Proposition 1 only depend on the Hilbert space structure of H, . []

Shepp proved the necessity of the conditions in his theorem from general
principles, but needed a separate proof of their sufficiency. The non-trivial half of
Proposition 1 ensures the existence of an operator T' as in the Dichotomy Theorem
from the existence of the operator H in the expression for B — S.

Additional notation. M, will denote the set of functions m (t) = E (X (¢)g) with
gin H, .

a, will denote the set of functions A (s, t) = E(HX (s)X (t)), H Hilbert—
Schmidt on H, .

The equivalence conditions now take the simple form.

ProrosiTiION 1A. X ~ Y +mifandonlyif H.~ H, ,R — Sca,andm e M. .

In this form we can say that equivalence conditions for homeomorphic processes
take the same form. More precisely, we have

ProrosrtTioN 2. H, =~ H, implies M, = M, and a. = a,.

Proor. Let T: Y (s) — X (s) be the linear homeomorphism taking H, to
H,. Then E(HX ()X ({&)) = E(T*HTY ()Y (t)) = E(H,Y (s)Y (¢t)), where
H, = T*HT is Hilbert-Schmidt when H is.

Similarly E (X (s)&) = E(Y (s)T*% ), where T*& is in H,, . []

This proposition will be used in the following way. Assume we can describe the
set a, and can show H, = H, . Then we can say Z ~ Y if and only if H, ~ H,
andS — T¢ea,.

The next proposition gives a method for deciding when processes are homeo-
morphic.

ProposiTioN 3. If there is an isometry of H. taking X () into f.(-) in L’ (dw)
and an isometry of H, taking Y (t) into f,(+) in L*(dv) with c1 < du/dv < ¢2, 0
less then ¢ , then H, =~ H, .

Proor. Obvious.

2. Applying the principles.

ProposITION 4. Let Y be a stationary Gaussian process with covariance ke ', If
X s a process with corresponding random variables X (t) with the same joint dis-
tributions as the random variables Y () — Y (0), then X is equivalent to Brownian
motion b on [0, T] for all finite T.

Proor. The covariance of X is 3 (¢ ™" — ¢ !*' — ¢ " 4 1), which we denote
by B. We see that min (s, t) — R(s, £) = [¢ ¢ 277 du, dv, which is in as,
where b stands for Brownian motion. The problem is to show that one is not in the
spectrum of the operator H on L*[0, T] with kernel 17! Since H is Hilbert—
Schmidt it suffices to show that the null space of I — H is zero.

Since the set of differentiable ¢ vanishing off [0, T] are dense in L’[0, T, it is
enough to show that ((I — H)e, ¢) is uniformly bounded from O for all such ¢
with |lo| = 1. Let f denote the inverse Fourier transform @em) [ e ™f(x) da.

 Then the inverse transform of ¥¢ ™'is (2r)™*(1 + \*) " and
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(I —Hee)=1— (1+N)"%,8) =[N+ ) gl dn
Bl = @) [ o) du < (T/27)%
Hence [\ <q 6] dN < aT/7 and [1x13q [6]° dX > 1 — aT/x. Thus
XA+ )7 elfdN > A + @) A — aT/r).
For any T by choosing a so that aT is less than one, we obtain a lower bound. []

More notation. A process X derived from a process Y as in Proposition 4 will

be denoted by ¥ — Y (0).
H, . will denote the Hilbert space spanned by the random variables

X@) — X(0),¢tel0, T].

H & {£) is the Hilbert space spanned by H and &.

ProrosITION 5. If X (0) £ Hooy and Y (0) £ Hy_y(o) then

() X —-—X0)~Y—-Y0)>X~Y and

)X —-—X0)~X—-X0)+m—X~ X + m+ c for any constant c.

Proor. Let H; and H, be the Hilbert spaces generated by X (¢) — X (0) and
Y () — Y(0), respectively, t ¢ [0, T]. Let X (0) = & + m, & L Hy with m & Hy
and Y(O) = 22 + N2, 52 iR H2 with N2 &€ H2 . Let To . H1 i H2 be the extension
of the map taking X (¢) — X (0) into Y ({) — Y (0). By hypothesis we have that
T, is a linear homeomorphism with I — To*T, Hilbert—-Schmidt. Let T extend
Towith T (£,) = & + 72 — m so that TX (0) = Y (0). That is, T becomes the ex-
tension of the identity taking Hy @ (£1) to Hy @ (£).

T remains a homeomorphism since [|&|| and [|&| are both greater than zero.
We need only show I — T™*T is Hilbert-Schmidt.

Choose an orthonormal basis {y} for H; . Then £ /||£]| and {yx} form an ortho-
normal basis for H, . Denoting &/||&| by yo we must show that

Doki (I — T*Ty, y5)* < .
This becomes
e (I = T*Tyi, y0)* + 22209 (A — T*Tyo, )
+ (T = T*T)yo, %)™
The first summation is finite since I — To*T, is Hilbert-Schmidt. The second

summation is finite since >, ((I — T*T)yo, yi)* is less than or equal to

I — T*T)yi".
To prove (ii), assume X — X (0) + m ~ X — X (0). Then

m(t) = E[(X () — X(0))¢]

for ¢ € Hyy with X (0) = & @ m as above.
Then

’ EX(@#) (¢ + k&)l = E[(X(¢) — X(0) + & + m) (¢ + k&)l
=m(t) + k&’ + Emgl.
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Since ||&]|* # 0 we can choose & so that k [|&]]° + E (mé) = c for any constant c.
Thus X ~ X + m 4+ ¢ for any constant ¢. []

These propositions lead to a partial extension of the Feldman—Rozanov result.
Addenda then ecomplete the extension.

TueorEm (Extended Feldman—Rozanov). Let X be stationary with spectral
density f(\) satisfying the relations ¢, < (1 4+ N)f(\) £ ¢ for ¢, and c; positive
numbers. Then'Y + m is equivalent to X on a given inierval [0, A] if and only if:

(i) R — 8 is a signed distribution function in [0, A] x [0, A] with density in L.
(i) m(t) = m (0) + [og(u) du, g in L".

(iii) The map T taking H, to H, with X (t) going into Y (t) has kernel zero.

Proor. Consider the process X; on [0, A] with covariance Ry (u) = ¢ "' and
spectral density (27)*(1 + A\*). We show X;(0) £ Hx,_x, (0) by breaking the
process into the sum of a non-zero variable £ and an independent process X .
R;(u) is convex and positive in [0, 4] and hence can be written as R;(4) +
(Ri(w) — Ry(A)), where Ry (4) is positive and Ry (u) — R1(A4) is convex and
hence a covariance. Let E(£°) = R(4) and let X, be a process with covariance
Ry(u) — R (4).

By Proposition 4, X; — X;(0) is equivalent to Brownian motion b on any
finite interval so in particular Hx, x,0) & H,. But by the assumption on the
spectral function of an arbitrary X in the hypothesis of the Theorem and Propo-
sition 3 it follows that X (0) is not in Hx_x«y and Hx_xy ~ Hp .

Now applying Proposition 2, Y — Y (0) is equivalent to X — X (0) if and only
if (R—8)(s,t)+ (BR—8)(0,0) — (R—8S)0,s) — (BR—S)(0,¢)isinasand
the kernel of T taking X ({) — X (0) into Y (t) — Y (0) is zero.

Finally, applying Proposition 5, X is equivalent to Y if and only if X — X (0)
is equivalent to ¥ — Y (0) and the kernel of 7 taking X (¢) into Y (¢) is zero.
Since ker T' = {0} implies ker T is automatically zero, the result takes its stated
form.

The result about the mean follows since m — m (0) must equal fé g) du. []

This theorem is an extension of the original in that Y is not assumed stationary.
The description of M, should be compared to the general result of Grenanaer [3]
for translates of stationary processes, which says that m (¢) must be expressible as
Je™g(\)/ (1 4+ N*) d\ for some g in L’[(1/1 4+ X*) d\]. The following lemma,
shows the Theorem is truly an extension of the Feldman—-Rozanov Theorem, for
if Y is assumed stationary it reduces to that form.

LemMA. If A is continuous with

[PfAG—0f ) @) dsdt = [5[LK (s, 0)f (s)g(t) ds ds

for all f and g infinitely differentiable with compact support in (a, b), where K is in
L’, then A has an absolutely continuous derivative in (@ — b, b — a) such that
[o[a (A" (s — t))* ds dt is finite.

Proor. Define B(s, t) = [ A(u —t) du = [37° A(£) d&. Then (3B/ds) (s,t) =
“A(s — t) and (9B/dt) = —A(s — t). Hence on integrating by parts twice we
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obtain
—[h A (s — )" (s)g(t) dsdt = [b [ K(s, t)f(s)g(t) ds dt.

Thus — [¢ A (s — t)f" (s) ds = fZ K (s, t)f(s) ds, almost all £. Henceby a theorem
of distribution theory (see Rozanov [4] page 228) we have that for those ¢,
A(s — t) has an absolutely continuous derivative for s in (a, b) and
8°/9s’A (s — t) = K (s, t). This says that for almost all ¢ in (a, b), A’ (u) exists
and is absolutely continuousin (@ — ¢, b — ¢). By choosing ¢ arbitrarily near b and
a wesee A’ isabsolutely continuousin (@ — b,b — @) and —A" (s — t) = K (s, ¢)
for almost all ¢. []
To apply this we note that if

A(s—t)+A0) — A(s) — A@) = [i [ Hdudy
then :
J§ JT AGs — 0f (s)g' t) ds dt
= [0 [0 A —1t)+ A0) — A(s) — A@®))f (s)g' (t) dsdt
= [T JTH(s, t)f (s)g(t) ds dt

for f and ¢ satisfying the conditions of the Lemma. Letting A = B — S we see
that (i) takes the form that [7 7 ((R — S)" (s — t))* ds dt must be finite.

(iii) is obviously satisfied if the spectral function of Y is absolutely continuous.
Thus the spectral restriction on H in Shepp’s Theorem has become the condition
that Y have a spectral density.

To weaken the hypothesis on the spectral density of X to say

0 < lim infr,e NF(N) < lim supx... f(A\) <

ratherthanc; < (1 4+ N)f(\) < ¢, wenote that if f» = f off of a compact set then
process X, with spectral density fo can be shown equivalent to X. (This follows
easily from [2].) By the general method of Proposition 2 we can then transfer the
equivalence conditions (i), (ii), and (iii) to the process X .
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