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ASYMPTOTIC NORMALITY OF LINEAR COMBINATIONS OF
FUNCTIONS OF ORDER STATISTICS!

By GareExn R. SHORACK
Unaiversity of Washington

1. Introduction. Let Xy, ---, Xy be i.i.d. uniform (0, 1) r.v.’s defined on a
probability space (@, A, P). Let Fy denote the empirical df, and let Xy =

-+ = Xuyn denote the ordered X, ---, Xy. We wish to consider statistics of
the form
(1.1) Ty =N Z?;l cwig (Xws)

where g is a specified function and {cy::1 < ¢ = N, N = 1} is a set of specified
constants.

ReMarRk. We may suppose the X’s to have an arbitrary continuous df F
provided we replace ¢ by g(F ).

We define inverses of df’s to be left continuous; thus

Fy'(t) = inf {z:Fy(z) = t};

and we write go Fy ' for the composed function ¢(Fy ‘). Note that
Ty = [3g°Fy " dvy when the signed measure »y puts mass cyi/N at /N for
12 =1, ---, N and puts 0 mass elsewhere. Let » denote a signed measure on (0, 1).
(The signed measures vy will not be used, but » is in some sense their limit.) For
technical reasons to be displayed below, we bound ourselves away from 0 and 1
by an amount 8x where 8y — 0 as N — « at a rate to be specified later. Let

1.2) uv = [ gdv
where [% - dv = [ - dv. Let Jx be defined on (0, 1] by
Jy@) = cyi for (—1)/N<t=<i/N, 1=1i=N.

Let I (t) = t be the identity function on [0, 1] and let [ - dI denote integrals with
respect to Lebesgue measure. Let

(1~3) TN* = N.}(TN - MN)-

Define stochastic processes {Ly(¢):0 < t < 1} for N = 1 by
(14) Ly(t) = Nilgo Fy ' (t) — g(t)].
Then

(L.5) Ty = Sv* + v

where

(1.6) Sx* = [ox" Ly dv
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2042 GALEN R. SHORACK

and
(1.7) YN = N_%[Zliv—l evig (Xwi) — N f}y;ﬁ”’ go Fy ' dv).

We wish to obtain asymptotic normality of statistics of the form N* (Ty — )
where

(1.8) p= [tgd.

However, our technique is tailor-made for Sy*. Thus, after preliminaries in Sec-
tions 2 and 3, we obtain asymptotic normality of Sy™ in Section 4 by first show-
ing that the Ly—processes converge to a natural limiting Ly—process. Lemma 4.3
may be of interest in its own right. In Section 5 asymptotic normality of Tx™*
is obtained by giving conditions under which vy —, 0; from this we go quickly to
N*(Tx — ). The theorem of Section 5 does not apply to the Windsorized mean;
in Section 6 results are extended to include statistics of this type. Section 7
extends the results to get joint asymptotic normality of a vector of statistics of
the type considered. Section 8 extends all results to the case that N, is a random
sample size satisfying N,/v —, 1 as v — .

Related work is contained in [1], [3], [4], [5], [6], [7] and [10]. See Section 9 for a
short discussion of these.

2. The basic identity. Let
(2.1) p(fi, f2) = supocici ,fl(t) — f@)|

for arbitrary functions f; and f2.
LemMma 2.1. We have

(2.2) p(Ly, —AyUx(Fy™) + 6x) = 0
where

(2.3) Uy = N'(Fy — I),

(2.4) Ay= (goFy ' — g)/(Fy " = I)
and

(2.5) oy = AxN¥(Fyo Fy ' — I).

(In (24) Ay is defined by left continuity at any otherwise undefined points.)
Proor. Now at any fixed ¢

Ly = (G2 Fa™ = )/ (Bx™ = DIN[= (Fwo Fy™ = Fy™) + (Fwo Fy™ = D)
= An[—Unx(Fy') + N'Fyo Fy' — I)];

where in dividing by Fy— — I for fixed ¢t we are dividing by a function which is
a.s. never 0. Since the quantity in (2.2) is determined by its values for rational
t, the result follows. []
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3. Some definitions. Let {Uy(£):0 = ¢ = 1} denote a separable tied-down
Wiener process; that is a Gaussian process with E[U, ()] = 0 and E[U,(s)U, ()]
=s(1 —¢)forall0 < s <t =1 Letg (t) = (d/dt)g(t) whenever this deriva-
tive exists. When defined let

3.1) Lo(t) = —¢' @)Us(2), 0<t<l

It is well-known that the Ux—processes (2.3) converge weakly to the Ug—process.
However, in Pyke and Shorack (1968a) the Uy and Ux—processes are replaced
by Uy and Ty—processes on a new probability space (¢, %, P); these new pro-
cesses have the same finite dimensional distributions as do the old ones, but in
addition satisfy the strong condition

3.2) p(Ux, Us) —45.0 as N — oo,

Also Fy = N*Uy + I is a.s. a df having exactly N jump discontinuities each of
magnitude N . It is these new processes on this new probability space with
which we work below; however, we drop the symbol ~ from the notation.

REMARK. Results obtained below which involve convergence stronger than
convergence in law may apply only to the specially constructed process. Thus
the conclusion Sy* —, N (0, ¢°) in Corollary 4.1 yields only that Sy™ converges
in law to a N (0, ¢°) rv when viewed on the original probability space.

Let Ly™, Uy (Fy"), Ax™, 65" equal Ly, Uy (Fx ), Ax, 8y respectively for
By <t =<1 — By and let them equal 0 otherwise. Let

ps (f1, f2) = supecica [f1(t) — f2(t)|/¢(t)

for arbitrary functions fi, fo and any fixed positive function ¢.

DeriniTion 3.1. Let Q denote the class of all non-negative continuous func-
tions ¢ defined on [0, 1] which are bounded below by functions § non-decreasing
(non-increasing) on [0, %] (on [3, 1]) with f S[g@) P dt < .

’Ewo examples are worth noting: ¢ (¢) = [t(1 — t)]H forany 6 > O0and q(t) =
—t* log t.

Let go denote a fixed function in the class Q for which ¢o(¢)/t increases as ¢ i 0.
We now suppose that Bx satisfies B = 1/N, NBy is an integer and

33) 900 (Bx)q0(1/N)/By >0 as N — .

ReMARK. One useful choice is qo(t) = —¢ log ¢t and By = [N’]/N, where
[ ] denotes the greatest integer function and where 6§ > 0.

4. Convergence of the Ly~processes in integral metrics.

Lemma 4.1. Let g £ Q. Then pg(Ux*(Fy "), Us) =, 0 as N — «.

Proor. This is essentially Theorem 2.2 of [8]; though slight modifications in
the proofs of Lemmas 2.3, 2.4, 2.5 and Theorem 2.2 of [8] must be made to make
the present proof completely rigorous. A proof based on 13.17 and 13.8 of Breiman
(1968) is also possible. []

Let |»| denote the total variation measure for ».
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Lemma 4.2. If [v| ({t:g’ ) fails to exist}) = O, then a.s. P we have
Ay — g as. s as N— .
Proor. Now Ay = (goFy — ¢)/(Fx™ — I) where
p(Fx 1) S p(Fx " FxoFy ')+ pFxoFx,I) < p(Fx,I)+1/N—>0as. P.

Thus Plw: Ay (t) — ¢ () for all ¢ such that ¢’ (¢) exists] = 1. [J
For q £ Q let

(4.1) pa* (fi, f2) = supsysisign [fi(t) — fa(0)]/q(2).

We also write Zy = 0, (by) if Zy/by —, 0 as N — « and Zy = 0, (by) if for all
¢ > 0 there exists M. and N, such that for each n > N, |Z,/ba| exceeds M. with
probability less than . We use the fact that 0, (1)0,(1) = 0,(1).

LemMMA 4.3. Given 8, € > 0 and 0 < N < 1 there exists an integer N. and sets
Sy.e having P (Sx,e) > 1 — e such that

t— |Fx(t) —t| = N\ forall By St}

provided N > N. and w e Sy,e.
Proor. Now (N?‘qo (1/N))™ — 0 as N — «. Thus

paFx ™, I) < N oy (Un(Fx™), Uo) + 02y (Us, 0)] + Ngo(1/N)I™
= 0, (9 (1/N)).
Thus for N exceeding some N, and 8y < ¢ < 3
IFv () — 1l < @0(®)ae(1/N)

on some set Sy, whose probability exceeds 1 — e.
Thus for N > N., w £ Sy.e and By < ¢ < % we may assume by (3.3) that

t— [Fy (@) —t) 2 1 — q(t)q1/N)/1]

= i1 — ¢(Bx)0(1/N)/Bx]
= M. [
For a given function h and 0 < A < 1 define
4.2) @) = h(N) for 0<¢t=3%
=h(l—A1—=1¢)) for 3 <t=1

For functions f on (0, 1) define
(4.3) Ifll = Jolfldlvl.

TaeorEM 4.1. If
(C1) g is absolutely continuous on (¢, 1 — ¢) for all ¢ > 0 and lg] < hae.
|v| where the function h is increasing (decreasing) on [3, 1) (on (0, 3
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and

(C2) [omgdy| < © for someq e Q and some0 < \ < 1, then

| Ly* — Loll, =0 as N — .

Proor. Now
IZy* = Lolls < po(Un™Fx™), Uo) [ |Ax"lg dly] + po(Us, 0) [3 |4x™ — g'lg dlv]
+ Np* (Fwo Fy ™, 1) [} |Ax™|g dly|
Jsld'ladlvlos (1) + [5 145" — g'lqdlr|0,(1)
05 (1) + [314x™ — ¢'lgd]r|0, (1),

using Lemma, 4.1 and Lemma 2.2 of [8] in the first equality and [5|¢|gd|s| <
by hypotheses in the second. (Everything so far in the present proof is also true
if the symbol * restricted the range of a quantity to1/N <t <1 — 1/N. What
follows is not.) Since an absolutely continuous function is the integral of its
derivative, (C1) gives |Ax (t)| < max [A(¢), h(Fx ' (¢)]. Thus by Lemma, 4.3 for
N>N.,weSy.and By =t < % we have [Ax ()] £ h(\t) = h\(¢); with a sym-
metric result for 4 < ¢ < 1 — By. Thus we may suppose that for N > N,
weSy.eand By St =1 — By |Ax(t)| = M (t). Now a.s. P we have Ay — ¢’
a.e. |v| by Lemma 4.2. Thus

ISIV,e f‘% IAN* - g,,q d,”, —a.s. 0

by applying the dominated convergence theorem, with dominating function
2hg by (C2), separately to each w point. Thus

Ji14x™ — g'lgdlp| —, 0. 0

ReMaRrk. If for some M and § > 0 the function M[¢t(1 — ¢)]° can be used for &
in Theorem 4.1, then A, < M for some M > 0. This is very useful because often
¢ and a bound on the Radon-Nikodym derivative of |»| with respect to Lebesgue
measure can also be taken to be of this same functional form. Thus, often, the
integral in (C2) can be bounded by a constant times f o[t — )" dt for some
6>0.

ProposrTioN 4.1. If [|Ly™ — Lo|y =, 0 as N — » and if [3|¢'|gdls] < « for
some q € Q, then

Sy* =y [iLedv  as N — oo,
The limiting rv is N (0, ¢*) where
44) @ =25[0d @y @u@d —v)d@w)dv@®).

If, moreover, yy —, 0 as N — o then Tx" —, [§ Lo dv.

. Proor. Now [Sy* — [§Ledy| < || Ln™ — Lo ||, = 0, by (1.6). The limiting
rv is normal since ¢* = EJ[ (f% Lo dy)?] is finite by the hypotheses. The final claim
follows from (1.5). []
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The remainder of this section constitutes a digression.
TuroreM 4.1, If
(C1") g is absolutely continuous on (e, 1 — €) for all e > 0 and ¢’ exists a.e. |v],
and ©f
(€2) (a) Jilgladi| <  for some g Q
(b) for some 0 < N < 1 there exists 0 < M < o such that

lg' )/g @) < M

whenever Xt < u < t/N < 1/2\or whenever N\(1 —t) <1 —u < (1 —t)/A S 1/2),
then

|Ly™ — Lo|ly =0 as N — .

Proor. From the proof of Theorem 4.1 it suffices to show that Is, JAx™ — ¢
times ¢ is a.s. bounded by a |»|-integrable function. But by (c1')

Av@® =g @ = [I" ¢ @ dw/[Fx" (@) — 0~ ¢ @)
so that on the set Sy, of the proof of Theorem 4.1 we have

[Av* @) — g @O = lg OISOy @)/g' @) duw/IFy @) — 4] + 1)
S 9Ol + 1);

where the last inequality uses (C2') (b). Finally (C2') (a) shows that |¢'|q is
the desired |v|-integrable function. []
Tueorem 4.17. If
(C1") g satisfies a first order Lipschitz condition on (e, 1 — €) for all ¢ > 0
and ¢ exists a.e. |v| and
(€2") (a) Jolg'lgdl] < o for some g Q,
(b) there exists 6 > 0 such that for some 0 < N < 1 there exists
0 < M < o suchthat |g’ (w)/g (t)] < M whenever Nt < u < t/\ < 8/\ or when-
ever N\(1 —t) <1 —u< (1 —1)/N=08/\Orthere exists 6o > 0 such that cy: = 0
fori £ Nogandz =2 N1 — &) and N exceeding some N, ,
) (61,1 — &]) < o for some 0 < & < §,
then

|Ly™ — Lollp =, 0 as N — w.

ProorF. As in the previous proofs, we seek to bound [Ay™ — ¢'| on Sy, by a
|v|-integrable function. (C1”) and (C2”) (c) yield the bound on [5, 1 — §]
with probability exceeding 1 — 2e for large N and (C1”) and (C2”) (b) yield
the bound on (0, 8) and (1 — 8, 1) by the argument of Theorem 4.1". []

ReEmMark. This form of the theorem corresponds closely to Theorem 3 of
Chernoff, et al (1967 ) which gives asymptotic normality under conditions labeled
A*, B** and E. Our (C1”) is essentially slightly weaker than their A*, our (C2")
(a) (c) is essentially slightly stronger than their B** and our (C2") (b) is
essentially their E. The statistics to which the conclusions apply are different.
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Remark. The proof of Theorem 4.1 shows that || Ly™ — Lo||, —, 0 as N — o
provided we have ¢ exists a.e. [v], (C2') (a) and [§]|4x™ — ¢'lgd|y| —, 0 as

N — «.

6. Limiting distribution of Ty™. Throughout this section we assume » = v,
for some function J; that is », is given by v, ((a, b]) = [ ®J dI for all (a, b] C
(0, 1). Note that |v,|((a, b]) = [4|J| dI. Now by (1.7) v& = vm + Vw2 + vas
where

Yn1 = N—_7 1 Cnig (Xm), YNy = N_% E§=N(1—3N)+1 Cnig (Xm‘),
w2 = N7# Z”ibﬂm lews — N [(20)n T dI]g (Xw:).

TueoreM 5.1. Suppose that || Ly™ — Lo, —, 0 as N— o (see Section 4),
[olg'lgdly| < o for some qeQ and

(C3) N [3P% [Ty — JlkndI — 0 as N — » for some 0 < N < 1, where |g| < k,
k is increasing on [%, 1] and k is symmetric about %;

(C4) (a) For some K and 6 > 0 |g(u)| < Ku(l — w)]° 0 < u < 1 and

(b) N7 220 |ewil i/N) " — 0

and N7 3 va g lewil 1 — 4/N)? > 0as N — «;
and

(05) N f(ﬁNl—ﬂN] gdv —0as N — o,

Then N*(Tx — u) is asymptotically N (0, o*) with u = [sgdv and o® given by
(44).

ReEmark. (C4) (b) may be replaced by

(C4) (b') there exists K, A and a sequence By (see Section 3) such that |cx:| <
K[(@/N)1 — 3/N)]* for ¢ < NBv and = > N (1 — By) and N3y 5 0 as
N — oo,

Remark. (C4) (a) implies [5]g["dl < K™ [6[u(1 — )] ™ du and hence
implies the existence of absolute mth moments of g(X) provided m < 6
(C4) (b) and (b") shows that if the constants cy; for extreme values of 4 are of a
small enough order, then certain moments of ¢(X) need not exist.

Proor. Now by definition of Jy in Section 1

v = N* [52 [Tw — Jlgo Fy " dl.

Thus, as in the proof of Theorem 4.1, for N > N, and w ¢ Sy, with P (Sy,.) >
1 — e we have

Loy, Jvwe| = Nt —ﬁN |Jw — J|kx dI;

80 that vz —, 0 by (C3). ym + vw3 —» 0 under (C4) as in the proof of Theorem
4 of Stigler (1967); which is a short, self-contained theorem. Thus by Proposition
4.1 we have Tx™ —, f 3 Lodv as N — . Under (C5) the constant u may replace

uv . ]
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6. Point mass in the limiting measure. In this section we apply Theorem 4.1
to statistics of the form

(61) TN, = TN + TN
with Ty of the form (1.1) treated in Theorem 5.1 and
6.2) v = D i1 dwig (X, wpir1)

where the constants dw; satisfy (dys — d;) = o N—%) with 0 < d; < « for
1=7=swhere0 <p <p:< -+ <p, <1landwhere[ ]denotesthe greatest
integer function. We suppose that ¢’ (p;) exists for 1 < 7 < s.

THEOREM 6.1. Under the hypotheses of Theorem 5.1 and the assumptions of
this section N* (T’ — u — ps) is asymptotically distributed as a N (0, ) rv where

ps = Dtz dig (ps)

and

o = Var [[ALoJ dI + Y01 diLo(p:)]
2[5 [td @)g @u@ — v)J ) @) du dv
+ 225 di [i g (w)g @:)[min (u, ps) — updd (u) du
+ 2ialdig @)Ppi(1 — pi) + 2 2icididig’ (pi)g (0i)ps(1 — p3)-

Proor. Now
Ni(rw — ps) = N* 20 (dwi — di)g (X, wpsian)

+ N Xt dilg X, wvpasa) — (i)l

I

Now
NYg (Xw,wpa41) — g@:)] = N'[go Py~ (((Np] + 1)/N) — ¢ (ps)]
N'go Fy™ (ps) — g (p:)]
—p Lo(pi),
by Lemma 6.1 below and (1.4). Thus

N¥ (1w — ns) —p 2tz diLo(ps).

I

I

Thus
NYTY — u — us) = [iLoJ dI + 2 icadiLo(pe);

where the limiting rv is N (0, ¢*) with ¢ as given. []
Lemma 6.1. If ¢’ () exists for some to in (0, 1), then

Ly (ts) —p Lo(ts) as N — .
Proor. Now at £, we have
|Lw* — Lol < [Ax¥[Ux* Fx™) = Ubl + [4x™ = |0 + N7 |Ax"
= [Ax* = ¢'10,(1) + 0,(1) = 0,(1)
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where the first equality uses Lemma 4.1 and the second equality uses Lemma
4.2. [J

7. Joint asymptotic normality. Suppose the conclusion of Theorem 6.1 applies
to each to the statistics Twi, & = 1, - - -, K of the form (6.1). Then the vector

WVH(Tw1 — w1 — pioy), o5 NP (Tox — px — bag))
is asymptotically multivariate normal N (0, =) where the j, kth element of = is
Gj = Cov [f(l) LondI + Ziil di mLo(pi (ﬁ), f«% LeJydl + Z:il i(k)LO(pi ® )];

the meaning of the above notation is clear. This is true since the convergence in
probability of a vector is implied by the convergence in probability of each of its
coordinates.

8. Random sample size. All results of Sections 1-7 carry over if N is replaced
by N, and N — o is replaced by » — « where the stochastic process {N,:v > 0}
satisfies N,/v —, 1. (All of the previous sections may be recopied except for
Lemma 4.1. To prove Lemma 4.1 in the case of random sample size we cannot
modify Theorem 2.2 of [8]; rather we must make slight modifications in the
random sample size version of it which is given in [9].)

9. Comparison with other results. The results of this paper are a straight-
forward application of the results and techniques of [8] in which the value of re-
placing weakly convergent processes by a.s. convergent equivalent processes is
demonstrated. However, bounding the coefficient Ay (see the proof of Theorem
4.1) introduced a problem not encountered in [8]; and Lemma 4.3 provided the
key to a solution. But in order to prove Lemma 4.3 we found it necessary to intro-
duce By . This in turn required conditions in Theorem 5.1 which would make
ya1 + vws negligible.

In the expository paper [7] Pyke also uses the technique of [8] to obtain some
results for this problem; however a different basic identity was exploited.

Bickel [1] also uses an approach in which the statistic is viewed as a functional
over a stochastic process. His technique uses weak convergence of the stochastic
processes, rather than the stronger versions in [8]; and he uses the metric cor-
responding to ¢ = 1. He proves asymptotic normality when i<t Cyi CODVeErges
to a function J (¢) of bounded variation, F has a continuous density positive on
its support, and either no weight is put on observations below the pth and above
the gth percentile, or the more extreme observations are not weighted more than
in the sample mean.

The techniques used by other authors are quite different from those in the
papers cited above. Charnoff et al [4] use a device of Rényi to express T’y as a
linear combination of exponential rv’s plus a remainder term. Stigler [10] uses
a projection technique due to H4jek. The results of these two papers and the
present one seem to be of approximately equal strength. (A remark in Section 4
compares our results with [4].) Moore’s [6] result is an elegant proof of a special
case. Mark Brown [3], by a neat application of a theorem of Sethuraman on the
convergence of stochastic integrals, also obtains a special case.
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