MONOTONICITY PROPERTIES OF THE MULTINOMIAL DISTRIBUTION

By Khursheed Alam¹

Indiana University

0. Summary. Let $X = (X_1, \dots, X_k)$ have the multinomial distribution, given by

(0.1)
$$\Pr\{X = x\} = n! \prod_{i=1}^{k} (p_i^{x_i}/(x_i!))$$

where $x = (x_1, \dots, x_k), \sum_{i=1}^k x_i = n$ and $\sum_{i=1}^k p_i = 1$, and let

(0.2)
$$C(p_1, \dots, p_m) = \Pr\{X_i \ge s_i; i = 1, \dots, m\}$$

where $\sum_{i=1}^{m} s_i \leq n$ and $m \leq \min(k-1, n)$. We show that $C(p_1, \dots, p_m)$ is non-decreasing in p_i for $i = 1, \dots, m$ and that for $s_i = s_j$,

$$(0.3) C(p_1, \dots, p_m) \leq C_{ij}(p_1, \dots, p_m) and$$

$$(0.4) C(p_1, \dots, p_m) \ge C_{ijt}(p_1, \dots, p_m)$$

where $C_{ij}(p_1, \dots, p_m)$ is obtained from $C(p_1, \dots, p_m)$ by substituting $p = \frac{1}{2}(p_i + p_j)$ for p_i and p_j and $C_{ijt}(p_1, \dots, p_m)$ is obtained from $C(p_1, \dots, p_m)$ by substituting t for p_i and $p_i + p_j - t$ for p_j where $0 \le t \le \min(p_i, p_j)$. These and similar results are shown. An application of these results to a multiple decision problem is indicated.

1. Monotonicity properties. Let $C(p_1, \dots, p_m; s_{m+1}, \dots, s_k) = \Pr\{X_i \ge s_i, i = 1, \dots, m; X_i = s_i, j = m+1, \dots, k\}$. From Lemma 2.2 of [1] we have

$$C(p_{1}, \dots, p_{m}; s_{m+1}, \dots, s_{k}) = P\{X_{j} = s_{j}(j = m+1, \dots, k),$$

$$(1.1) \qquad \sum_{1}^{m} X_{i} = n'\} \times P\{X_{i} \ge s_{i}(i = 1, \dots, m) \mid \sum_{1}^{m} X_{i} = n'\}$$

$$= p_{0}^{n'} u \int_{0}^{p'_{1}} \dots \int_{0}^{p'_{m}} (\prod_{1}^{m} t_{i}^{s_{i}-1}) (1 - t_{0})^{n' - s_{0}} \prod_{1}^{m} dt_{i}$$

$$= u \int_{0}^{p_{1}} \dots \int_{0}^{p_{m}} (\prod_{1}^{m} (t_{i}^{s_{i}-1}) (p_{0} - t_{0})^{n' - s_{0}} \prod_{1}^{m} dt_{i}$$

where s_1, \dots, s_m are positive integers, $n' = n - \sum_{m+1}^k s_j, s_0 = \sum_{j=1}^m s_i \le n'$,

$$p_0 = \sum_{1}^{m} p_i, t_0 = \sum_{1}^{m} t_i, p_i' = p_i/p_0 \quad \text{for} \quad i = 1, \dots, m,$$

$$u = (n!/n'!)(\prod_{m+1}^{k} p_j^{s_j}/s_j!)/B(s_1, \dots, s_m, n' - s_0 + 1)$$

and $B(\cdot)$ denotes the beta function. Differentiating (1.1) with respect to p_1 , putting $p_2 = a - p_1$ where a is fixed, we have

(1.2)
$$\frac{\partial C(p_1, \dots, p_m; s_{m+1}, \dots, s_k)/\partial p_1}{= u \int_0^{p_3} \dots \int_0^{p_m} (\prod_3^m t_i^{s_i-1}) \{p_1^{s_1-1} \int_0^{p_2} t_2^{s_2-1} \times (p_{01} - \sum_2^m t_i)^{n'-s_0} dt_2 - p_2^{s_2-1} \int_0^{p_1} t_1^{s_1-1} \times (p_{02} - t_1 - \sum_3^m t_i)^{n'-s_0} dt_1\} \prod_3^m dt_i }$$

Received July 10, 1968.

¹ Now at Clemson University.

where we write $p_{0i} = p_0 - p_i$. The quantity inside the braces on the right hand side of (1.2) can be written as

$$V = p_1^{s_1 - 1} \int_{p_1}^{a} (x - p_1)^{s_2 - 1} (p_0 - x - \sum_{i=1}^{m} t_i)^{n' - s_0} dx - p_2^{s_2 - 1} \int_{p_2}^{a} (x - p_2)^{s_1 - 1} (p_0 - x - \sum_{i=1}^{m} t_i)^{n' - s_0} dx.$$

Let $s_1 = s_2$. As $p_1(x-p_1) \ge (\le) p_2(x-p_2)$ according as $p_1 \le (\ge) p_2$ for $x \le p_1 + p_2$ we have that $V \ge (\le) 0$ according as $p_1 \le (\ge) p_2$. As the above results for p_1 and p_2 hold for any pair (i, j) we have from (1.2) for $s_i = s_i(i, j \le m)$,

(1.3)
$$C(p_1, \dots, p_m; s_{m+1}, \dots, s_k) \leq C_{ij}(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$$
 and

(1.4)
$$C(p_1, \dots, p_m; s_{m+1}, \dots, s_k) \ge C_{ijt}(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$$

where $C_{ij}(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$ is obtained from $C(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$ by substituting $p = \frac{1}{2}(p_i + p_j)$ for p_i and p_j and $C_{ijt}(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$ is obtained from $C(p_1, \dots, p_m; s_{m+1}, \dots, s_k)$ by substituting t for p_i and $p_i + p_j - t$ for p_j where $0 \le t \le \min(p_i, p_j)$. For $s_i = s_j = 0$ equality holds in (1.3) and in (1.4).

From (1.3) and (1.4) we have for $s_1 = s_2 = \cdots = s_m$,

(1.5)
$$C(p_1, \dots, p_m; s_{m+1}, \dots, s_k) \leq C(q, \dots, q; s_{m+1}, \dots, s_k)$$
 and

$$(1.6) C(p_1, \dots, p_m; s_{m+1}, \dots, s_k) \ge C(t, \dots, t, p_0 - (m-1)t; s_{m+1}, \dots, s_k)$$

where $q = p_0/m$ and $0 \le t \le \min(p_1, \dots, p_m)$.

From (1.5) and (1.6) we have, putting m = k - 1 and $s_1 = s_2 = \cdots = s_k$,

(1.7)
$$\Pr\{X_i \ge X_k, i = 1, \dots, k-1; p_1, \dots, p_{k-1}, p_k\}$$

$$\le \Pr\{X_i \ge X_k, i = 1, \dots, k-1; q, \dots, q, p_k\}$$
 and

(1.8)
$$\Pr\{X_i \ge X_k, i = 1, \dots, k-1; p_1, \dots, p_{k-1}, p_k\}$$

$$\ge \Pr\{X_i \ge X_k, i = 1, \dots, k-1; t, \dots, t, p_0 - (k-2)t, p_k\}$$

where $p_0 = \sum_{1}^{k-1} p_i$, $q = p_0/(k-1)$ and $0 \le t \le \min(p_1, \dots, p_{k-1})$.

It is seen that (0.3) and (0.4) follow from (1.3) and (1.4), respectively. As a corollary to (0.3) and (0.4) we have from (1.5) and (1.6) for $s_1 = s_2 = \cdots = s_m$,

(1.9)
$$C(p_1, \dots, p_m) \le C(q, \dots, q)$$
 and

(1.10)
$$C(p_1, \dots, p_m) \ge C(t, \dots, t, p_0 - (m-1)t)$$

where q, p_0 and t are defined following (1.6).

From (1.1) we get

(1.11)
$$C(p_1, \dots, p_m) = \{ \int_0^{p_1} \dots \int_0^{p_m} (\prod_{i=1}^m t_i^{s_i-1}) (1-t_0)^{n-s_0} \prod_{i=1}^m dt_i \} / \{ B(s_1, \dots, s_m, n-s_0+1) \}$$

where s_1, \dots, s_m are positive integers. It is clear from (1.11) that $C(p_1, \dots, p_m)$ is nondecreasing in p_i for $i = 1, \dots, m$.

For the opposite tail probabilities of the multinomial distribution we have from Lemma 2.3 of [1]

(1.12)
$$D(p_{1}, \dots, p_{m}) = \Pr \left\{ X_{i} \leq s_{i} - 1; i = 1, \dots, m \right\}$$

$$= \frac{1}{B(s_{1}, \dots, s_{m}, n - s_{0} + 1)} \int_{p_{1}}^{1 - \Sigma_{2}^{m} p_{i}} \int_{p_{2}}^{1 - \Sigma_{3}^{m} p_{i} - t_{1}} \dots$$

$$\int_{p_{m}}^{1 - \Sigma_{1}^{m-1} t_{i}} (\prod_{1}^{m} t_{i}^{s_{i} - 1}) (1 - t_{0})^{n - s_{0}} \prod_{1}^{m} dt_{i}$$

where s_1, \dots, s_m are positive integers, $s_0 = \sum_{i=1}^m s_i \le n$ and $m \le \min(k-1, n)$. It is clear from (1.12) that $D(p_1, \dots, p_m)$ is decreasing in p_i for $i = 1, \dots, m$. As we proved (0.3) and (0.4), we can show that for $s_i = s_i$,

$$(1.13) D(p_1, \dots, p_m) \leq D_{ij}(p_1, \dots, p_m) \text{and}$$

$$(1.14) D(p_1, \dots, p_m) \ge D_{ijt}(p_1, \dots, p_m)$$

where $D_{ij}(p_1, \dots, p_m)$ is obtained from $D(p_1, \dots, p_m)$ by substituting $p = \frac{1}{2}(p_i + p_j)$ for p_i and p_j and $D_{iji}(p_1, \dots, p_m)$ is obtained from $D(p_1, \dots, p_m)$ by substituting t for p_i and $p_i + p_j - t$ for p_j where $0 \le t \le \min(p_i, p_j)$. From (1.13) and (1.14) we have for $s_1 = s_2 = \dots = s_m$,

$$(1.15) D(p_1, \dots, p_m) \le D(q, \dots, q) and$$

(1.16)
$$D(p_1, \dots, p_m) \ge D(t, \dots, t, p_0 - (m-1)t)$$

where q, p_0 and t are defined following (1.6).

2. Application. The inequalities in Section 0 have application in a problem of selecting the "least probable event", that is the cell with the smallest probability, from a multinomial population with K cells. The application will appear in a forthcoming paper.

REFERENCES

[1] OLKIN, I. and SOBEL, M. (1965). Integral expressions for tail probabilities of the multinomial and the negative multinomial distributions. *Biometrika* **52** 167–179.