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A LOCAL LIMIT THEOREM AND RECURRENCE CONDITIONS
FOR SUMS OF INDEPENDENT NON-LATTICE RANDOM VARIABLES
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Lehman College, CUNY, and University of British Columbia
1. Introduction. A sequence of independent random variables {X,}&, with
distribution functions {F,(x)} generates, in a natural way, a random walk whose
“position” at “time” n is given by S, = > 5_; X,
Since this paper will deal with the case in which not all of the X, take on values
in some fixed lattice, we say that the random walk is recurrent if

(1) for each A > 0 and z.
P{0 < S,—z <A, for infinitely many n}=1.

Here P{ } is the product probability measure on [ [;Z; R, generated by {Fy(x)},
the R,’s being copies of the real line. In effect, the random walk is recurrent if,
with probability one, every interval is “visited” infinitely often. Any tail of the
sequence of random variables generates another random walk where the role of S,
is played by S, = S,.x— Si. It is evident, since the random walk is recurrent if
and only if every interval is visited at least once with probability one by every tail
of the random walk, that (1) is equivalent to

(2) for each integer k, A > 0, and z,
P{0< S, x—Sk—z <A, forsome n}=1.

In the case of identically distributed summands the criterion of Chung and
Fuchs [1] states that the random walk is recurrent if and only if the characteristic
function of the summands, ¢(r) = (2, €' dF(x), satisfies

3) limsupgyq %, [1—s@()] "' dt = oo, for some o> 0.

Otherwise the random walk is transient, i.e. the expression in (1) is zero for all
A>0andz.

In the non-identically distributed case Orey [4] has given conditions under which
the random walk must be either transient or recurrent. We exploit his results to
obtain sufficient conditions for recurrence. The proofs consist of a modification of
the standard renewal argument and employ estimates of the type found in local
limit theorems. Under more restrictive conditions a local limit theorem for non-
identically distributed summands is obtained. Local limit theorems in the identically
distributed case have been found by Shepp [6] and with greater generality by Stone
[7]. Rozanov [5] and Mitalauskas [3] have obtained local limit theorems for non-
identically distributed lattice-valued random variables.
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2. Local limit theorem. Let {X «} be a sequence of independent random variables
with
E(Xk) = 09 E(sz) = Ukz, and ZZ= 1 O'kz = an.

If the random variables satisfy the condition
(o) AM >0 and ¢>030,7 %<y X’ dF(x) 2 c, Y,
then by Chebyshev’s inequality, if M is sufficiently large
(ory) AC' > 03P{|X,| <M} = C Y,
and consequently
(«;) 3 a bounded sequence of numbers {a,}>

infP{|X,—a,| <6} >0 Vs > 0.

Define
A1, e) = {x||x| < M, |xt—mm| = ¢ V integer m, |m| < M}
and suppose
(p)foreach t #0 3 ¢ = ¢(r)2
1/log B, Y i=1 P{X,—a,e A(t, &)} >

with {a,} satisfying ().
The Lindeberg condition states

» 1/Bn2271=1f|x|>eanx2dFk(x)—>0
for any ¢ > 0.

THEOREM 1. (), (B), and (y) imply

(2n)*B, P{S,€(z, z+A)} —Aexp[ —4(z+3A)?/B,2] - 0

for all z and A > 0, uniformly for bounded A.

PROOF. Let ¢,(t) = {2, €"* dF,(x); then by the inversion formula we have
4) @n)*B,P{S,e(z, z+A)} =limy_, B,/(2n)* [T 12t ' sindAte ™ [ [iz; @u(t) dt,
where w = z+1A. We break up the integral on the right side of (4) viz.
) 20 = Josyt<am,t Jaasii<n+s<i<n+[psi

=1, +1, +1, +1,.

From (y) we obtain [[i_; @u(t/B,) = ¢~"/? uniformly for ¢ in a compact set.
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Thus,
(6)  B,/(2m)*I, —Aexp(—4w?/B,?)
= B,/(2n)}, — AY/(2m)* [* . exp(— 412 —itw/B,) d!
= 1j@m)* [2 ,[2(1/B,)" ' sin 4 At/B, [ i~ ou(t/B,) — Ae™/?]
-exp(—itw/B,) dt+A[(2m)? [i,» sexp (— *[2—itw/B,) dt,

and for bounded A and fixed 4 the expression in brackets in the first integral will
approach zero uniformly, while the second integral is made as small as desired by

fixing A large.

We next show that B, I, can be made arbitrarily small for all n by appropriate
choice of the constants 4 and B.

Let

pt) = My e™dF(x) and h, = [Y dF(x).
Then using the Taylor expansion of e we have
0dOF = b2 =12 {h My x* dF(x)— [ [y x dF,]*} + O(M>F).
Note that
[_ﬂlM xdF(x)]* = ”|x| 2MX dF(x)? <[M~! j|x| =M X2 dF(x)]* =M 2a,*

From condition (=) the ¢, are bounded. Thus we may choose M sufficiently large
so that

h>4 and ¢2/M?* <ic.

Then for ¢ sufficiently small, say ltj < B,
lou®]? £ hP(1—12ca,2[(8M2)).
Therefore
|ou(0)] < (1= h)+hy(1—rta?/hy) £ exp(—ri*e,?),

where r = ¢/16A,,. Thus we may conclude that

[Ti=1 |ou(#/B,)| < exp(—rt?) | <B
and consequently
(7) |B,I,| < A[3Pexp(—ri*)dt < A247 " exp(—rA4?).

In dealing with /5 we shall assume the a, of hypothesis (8) are identically zero.
In effect, we translate the variable X, by the constant g, without altering the
absolute value of its characteristic function: |,(t)| = |,(t) exp (—ig, 1)|. Our method
here is an adaptation of a technique due to Rozanov [5].

The characteristic function of X, symmetrized is given by

lou®)]* = | fcos t(x— y) dFy(x) dF ().
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Since |xto—mn| < |xto—xt|+|yt|+|t(x—y)—mn| we have for |t—t,| <e/4M,
|t(x—y)—mn| < de
o> —1 = [[(cos t(x— y)—1) dF,(x) dF ()
= fiy1<ejan J1x1<n (€08 8(x — y) = 1) dF(x) dF(y)
< f|y| <eapAF ()" jlxtg—mnl >.(cosxto—1)dFy(x)
= Vio Jatoy (COs Xt — 1) dF(x) £ — 1V, e*P{X, € A(t,, £)},

where 0 < V, < P{|X,| < ¢/(4D)}, & = &(t,), and from (a,) V,, is independent of k.
Hence
o) = exp [3(|ou(0)]* - D]
< exp{—1V,e’P[ X e A(ts, €)]}

and from condition (8), B, [j—so|<cjam | i=1|@i(t)|dt = 0. This can be done for
each |fo| in the closed interval [B, D].
So, by compactness,

®) 4 |B, 13— 0.
Let W be a random variable independent of the X,’s with characteristic function
p)=1—f/D || <D
= 0 |t| > D.

By the preceding argument, and the fact that the introduction of ¢ will kill I,
we have

9) (2n)*B, P{0 < S,+ W—z < A} > A,

for any fixed A > 0 and z. For given ¢ > 0, now choose D sufficiently large so that
P{|W| = ¢} < &. Then since

P{|W| <e}P{0 < S,+ W—z—¢ < A—2¢}
SP{0<S,—z<A}
S[P{W| <e}] 'P{0 < S,+ W—z+e < A+2e},
it follows from (9) that
(1—&)(A—2¢) < liminf(27)*B, P{0 < S, —z < A}
<limsup(2n)*B,P{0 < S,—z < A} £ (1—¢)" (A +2e),

proving the theorem.
Condition (f) can be replaced with stronger, but less lugubrious hypotheses.
Note the following corollaries:

COROLLARY 1. In Theorem 1, (B) may be replaced by
(B1) A T 3 F, has a density on (— M, M) bounded in absolute value by T.
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COROLLARY 2. In Theorem 1, condition (B) may be replaced by
(8,) 3d,, d, and d, rationally independent, such that for all ¢ > 0,
inka{|Xk_di|<3}>O i=1, 2, 3.

3. Recurrence theorem. The main result of this section is based on a lemma of
general utility for establishing the recurrence of a random walk. Essentially, it is a
modification of a standard renewal argument (cf., for instance Feller [2], page 313).
A further application of the lemma is made in Section 4.

Let A, = (z, z+A) and y, = (z, z+7). For n = k, define ,U,(z) = P{S,— Sy €A,},
and f,(y,) = P{S,e7,, Su¢ A,, allm < n}.

Then for fixed A > 0 and z,

(10) OUm(Z) = Z;cn= 1 ,’.8 kUm(—’Y) dyfk(yz}

where the integral is the ordinary Stietjes integral with respect to f,(y,) over A,.
Summing (10) for 1 < m < r and dividing by the left-hand side, we have

(11) 1= ZZ: 1 .‘.6 { Z'r'n=k kUm("?)[ Zr'::= 1 OUm(Z)]_ 1} dyfk(?z)

which we define to be equal to Y % ; [5 () d, fi(.)-

If now, for each y, k,

(12 lim, .o au(y) = 1; and
for all n and k, and bounded 7,

{13) a,(y) <L < o0

then by the dominated convergence theorem,

Zl:o=1fk(Az) =1,

which is equivalent to (2) with k£ = 0. Note that the argument remains valid if (12)
and (13) hold only for some sub-sequence {»;} of values of n. We have proved

LeMMA. If { X} is such that, for all tails of the sequence, and for all z and
A > 0, conditions (12) and (13) hold, then the random walk generated by the sequence
is recurrent.

Orey has given conditions [4] which imply that 4,(z) = P{0 < S,4,—Si—z < A
infinitely often, for all A > 0} is identically one or identically zero for all k and z.
These same conditions imply that

h(z,A) = P{0 < S,,,—S,—z <A infinitely often}

is identically one or identically zero for all k, z and A > 0. In the next three para-
graphs we give a short proof of this fact.
It is clear that {h,(z, A)} is a solution to the system of equations

dk(z)=Idk+1(z+y)dFk+1(y)’ k=0
and that if

rd2) = [ h(z+y, Mg(y)dy
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where g(y) is a bounded L, function, then r,(z) is bounded and continuous and
{rJ(z)} satisfies the above system of equations. If now one of the conditions
a,, a,, or ay of Orey’s Theorem 3.1 (our conditions é,, J,, and 3, below) are
satisfied then r,(z) = constant, all k. Since g( ) is an arbitrary bounded L, function,
this implies that h(z, A) = c, all k, and almost all z.

IfA; > Aand |x; —x,| < A; —A then

Wlly=x1| <A} = {ylly—xa| <A}

Therefore, if h(y, A) = ¢ > 0, a.e. y, then for all y and A; > A, i (y, A)) = c. A
simple argument shows that this entails that #,(z, A;) = 1: Since (z, A,) = ¢, we
can find an N, such that

P{|Sy+i—Sk—z| > A, forall n<N;}<I—}c
Suppose y = Sy, +x— S We can find an N, = N,(y) such that
P{|Spsn,+x—Sn,4x+¥—2z| > A, forall n<N,}<l-}ec
Continuing, we find that for any &, ‘
P{|S,+x—Si—z| >4, forall n>0}=0

which is tantamount to our assertion.
If now some A > 0, h,(y, A) = 0 a.e., then, since

{(yl0<y—x<nA}c UiZ{ {y/0 < y—x; <A}

implies that h(y, nA) < Y h(x;, A) when the x; are suitably chosen, we have, under
Orey’s conditions, established the dichotomy mentioned above, viz. h(z, A) is
either identically zero for all x, k and A, or is identically one.

The full statement of this result is as follows:

Let {a,} be a sequence of real numbers such that for all ¢ > 0, inf P{|X,—a] <
e} >0.

Let I{a,} = {x| Y52, P{|X,—a,—x| < &} = oo, for all e > 0}.

Let T'* be the closure of the group generated by I'. If either

(6,) I'* = reals, or

(8,) for some d>0, I'* = {nd},, and Y X, is not essentially convergent
modulo d, or

(85) T'* ={0} and ) X, is not essentially convergent,
then {X,} generates a random walk which is either transient or recurrent.

The hypothesis of the previous statement will be referred to as condition M.
Note that it is much weaker than () of Theorem 1, which stipulates not merely
the divergence, but the rate of divergence of a series.

(Orey also gives a weaker version of the hypothesis, a version which we will not
elaborate.)
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THEOREM 2. If {X,} is a sequence of independent random variables satisfying

(@AM >0andc>030,"% <y X’ dF(x) 2 ¢, V,
(BH) liminfo, >0
(y!) letting B, = B2, ,— B2, for any & > 0,
Br;czzzl:lf+1j|x|>eBnkx2dFk(x) —_)09 unl:formly in k
and condition (8%), then {X,} generate a recurrent random walk.

PrOOF. The argument of Theorem 1 shows that («!) and (y') imply that, if
A is larger than some fixed constant and y is in a bounded set, then for # sufficiently
large,

0<i; £ByUsii(d)) S, <0

where /, and /, do not depend on k.
By (') and (), for n sufficiently large

0<l,<Byn*<l, <o,

independently of k. Hence for n sufficiently large, and all &
(I /ln™* < WUnii(Qy) = (12/13)n“%,
which implies that a,,(y) is uniformly bounded for 0 < y < A.
To prove the first hypothesis of the lemma, (12), note that

(14 Bn[O Ul A)— kUn(Ay)] = limy, Bn/znjop(t) H?=k+ 1) 2t !sin 1At dt
where p(t) = Hf= LoneTiE—emin,

Since |p(r)| < 2, and |p(t/B,)| = O(B,”") uniformly for bounded z, y and ¢, the
estimates of Theorem 1 show that for any & > 0, the upper limit of the left-hand
side of (14) can be bounded by

Hm sup, . o Bu/27 o< 1) <75, OB~ ) [ Ticis 1 @) 2t ' sindAt| dt + &

by choosing A sufficiently large.
Therefore, given ¢ > 0, there is a constant ¢, 3

‘OUn(Az)_kUn(Ay)‘ é can_2+an—17

proving (12).

Thus, for arbitrary z and for A larger than some fixed constant, (2) is verified.
This means that the random walk cannot be transient, and hence by condition (y')
and Orey’s result, the random walk is recurrent.

We note that analogous theorems can be proved whenever the random variables
{X,} follow a local limit theorem associated with a stable law of index a = 1.

4. A further application of the recurrence lemma. In this section we consider
{X,} where X, = Y"1 Y;,0=ng<n, <ny -+ <m < -and {¥;}isasequence

i=np-1

of independent identically distributed non-lattice random variables. In effect, we
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consider a random walk with stationary increments which is “observed” only at a
certain sub-sequence of times {n,}. The results depend on a local limit theorem
obtained by Stone ([7], Corollary 3). The special case of his theorem which we
require is as follows: If {Y,} is a sequence of non-lattice random variables in the
domain of attraction of a stable law of index «, with density function p(x), in the
sense that

P{n= VY0 Ye< x} > |2, p(t)dt, all x,
then for all zand A > 0,
n'%,U,(A,) > Ap(0).

Using this result and the recurrence lemma of the previous section, the following
theorem can be obtained:

THEOREM 3. If {Y,} is a sequence of independent identically distributed random
variables, Y, is in the domain of attraction of a stable law of index o = 1, with density
Sunction p(x) and if {n,} is an increasing sub-sequence of integers satisfying either

(15) limsup,o o, k>0 or
(16) liminf,_,  inf,,5 1, " *(Mpex—ng) >0 and

Z("k)—”a =

then the random walk generated by {X,}. X, = Z;‘i;,:_, Y;,is recurrent. In particular,
if o > 1, the random walk is recurrent if n, = k°.

ProoF. Since (15) entails that Y (m)”'/* = o0, and since, defining a,(y) and
«U(2) as before, (n)'*[,U(z)—,U(y) 1= 0, it is clear that in either case, Stone’s
result implies that lim, _, , a,(y) = 1, for all £ and y.

If (15) is satisfied, let {n,.} be a sub-sequence of {n,} such that inf,.k'/n,, = 6 > 0.
Then, by Stone’s result, if n = k' > k,

au(y) = 0{(2’;:’:“ 1(ny—ny)”~ 1/.1)(21';': 1(ny)” 1/.1)- 1}
= Of(n,)! ek ng 1))
= 0{1/s},

where the bound is independent of k. Thus (13) is established for the sub-sequence
{k'}. If (16) is satisfied, the verification of (13) is even simpler.
The conclusion of the theorem follows now from the recurrence lemma.

REFERENCES

[1] CHUNG, K. L. and Fucns, W. H. J. (1951). On the distribution of values of sums of random
variables. Mem. Amer. Math. Soc. 6.

[2] FeLLER, W. (1957). An Introduction to Probability Theory and its Applications, 1. Wiley, New
York.

[3] MiTaLAUSKAS, A. A. (1962). Local limit theorems for stable limit distributions. Theor. Prob.
Appl.T7180-184.



600 J. MINEKA AND S. SILVERMAN

[4] OrEy, S (1966). Tail events for sums of independent random variables. J. Math. Mech. 15
937-951.

[51 Rozanov, Y. A. (1957). On a local limit theorem for lattice distributions. Theor. Prob. Appl.
2 260-265.

[6] SnEPP, L. (1964). A local limit theorem. Ann. Math. Sratist. 35 419-423.

[7] Stone, C. (1965). A local limit theorem for non-lattice multidimensional distribution functions.
Ann. Math. Statist. 36 546-551.



