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A SYSTEM OF MARKOV CHAINS WITH RANDOM LIFE TIMES!

By FREDERICK W. LEYSIEFFER

Florida State University

0. Introduction. The purpose of this paper is to investigate the limiting properties
of random variables associated with a system of random processes. The system is
described as follows. At each discrete integer time n = 0, M, particles enter a
denumerable set of states A at a given state denoted by (0,0). Assume {M,,nel}
to be a sequence of independent Poisson variables with common mean 4. (Here and
throughout, 7 denotes the set of nonnegative integers.) Moreover, at each integer
time n = 1, each particle already in the system may undergo a transition inde-
pendently of the other particles and independently of {M,,neI}. A particle which
entered the system at time k < n, moves according to the probability law of Z(n—k)
where {Z(n),nel} is a random process described below.

1. Preliminaries. Let {X(n),nel} be an irreducible aperiodic Markov chain
having state space I, taken to be the nonnegative integers, and having stationary
transition probabilities P(x,y). Let P,(x,y) denote the n-step transition proba-
bilities and P,(x, B) = Y. ,.sPu(x,y) for sets BST. Let {Y(n),nel} be a random
process with state space {0, 1}, independent of {X(n),neI}. Let p(n) = P[Y(n) = 0],
p = {p(n),nel}, and assume Y(n) =1 implies Y(n+1) =1 for each nel Thus
p(n) = p(n+1) and © = lim, -, p(n) exists. Define Z(n) = (X(n), Y(n)). The process
{Z(n),nel} has state space A = {(x,y):xel,y=0 or 1}. The independence
assumption of the introduction means that the sequence {M,,ne I} is independent
of the processes {X(n),nel} and {Y(n),nel}. One can think of the transition of a
particle in its y coordinate from state O to state 1 as the death of this particle.
Accordingly, transitions of the process {Z(n),nel} through states of the form
(x,0), xeT, can be thought of as the transitions of a particle according to the law
of the Markov chain while the particle is still alive. Two special cases of the Y(n)
process are of interest. If = = 1 no deaths occur and Z(n) is Markov with transition
probabilities P(x, y). If for some nyel,n, > 0,p(n) = 1 if n < n, and p(n) = 0 for
n > n, the particles have fixed life times. In this case it will be seen that the system
of live particles attains a macroscopic equilibrium. See Section 2 for details.

In what follows, B = I' is assumed finite and, to avoid trivialities, not to include
state 0. Let V" denote the time of rth visit to B by X(n) and N,(B) the occupation
time of B by X(n) to time k. Formally,

V! = min {n: X(n)e B}, Vg =min{n:n> V5", X(n)eB}

where if for some integer r > 0, X(n)¢ B for all n > V"1, take V" = 0. Further
N(B) =Y%_,05(X;) where dg(x) =1 (or 0) if xeB (or x¢B). Let N(B)=
lim, —, ,, N,(B) whether finite or infinite. Probabilities for the random variables V',
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N(B), and N(B) are understood to be conditional given X(0)=0. That is,
P[N(B) = k] means P[N(B) = k | X(0) = 0].

The main results of the investigations of these systems are given in the theorems
below. Let B* = {(x,0): xe B}. Let M, (B*;r) denote the number of particles
which have visited B* exactly r times by time n.

THEOREM 1.
P[lim,_, , M (B*; r)jn = A{h(B, r, p)—h(B,r+1, p)} £ i] =1,
where h(B,r,p) = Y - p(k)P[Vy" = k. In particular, if n = 1,
P[lim,_, M, (B*; r)/jn = AP[N(B) = r]] = 1.
THEOREM 2.
(a) Pllim, o Y p-y M (B*;1)/n=Ah(B, 1, p)] = I.

(b) Lety, = Y r—1 EM,(B* ; r). Unless there exists an integer k such that p(k) = 0
for k > ky and P[V' < kol =0,

lim, , o, P[{} "= My(B*; 1) =7,}7, " <] = Qr)"* [ e dz.

(Note that under the condition given no live particle can ever hit B* and
M, (B*;r) =0 for every integer r = 1.)

THEOREM 3. Let A,(B*) denote the number of particles in B* at time n, and
Su(B*) = Y k=1 A(B*).

(a) If either (i) X(n) is transient or (ii) X(n) is persistent, lim,_,, EA,(B*) < oo
and for each xe B, ) -, p(k)Y%_{ P40, x) < an'~° for some « > 0,0 < & < 1, then

Pllim, o, n™'S,(B*) = 2221 p(k)P(0, B)] = 1.
(b) Pllim,,n~'Yn_ym™'4,(B*) = iru(B)] = 1
where u(x) = lim, P,(x, x) and u(B) =) .. pu(x).

(c) Suppose X(n) is persistent and lim,_, , EA,(x*) = co. Let f(n) = nE~*S,(x*)
and assume for some integer v > 0, Y =2, f(n") < 00 and lim,_, , f(n")[f([n+1]") = 1.
Then Pllim,_, S, (x*)/ES,(x*) = 1] = 1. Furthermore, if the hypotheses hold for
each x* in a finite set B*, P[lim,_ . S,(B*)/ES,(B*)=1]=1.

THEOREM 4. If for some 6 > 0
(i) lim,_, , n’p(n) = o and
(ii) there exists an o > 0 such that k* *°JEN,*(B) < o for k = k, where
' ko = min {j| P,(0, B) > 0}
then
lim,, , P[{S,(B*)—ES,(B*)}{VarS,(B*)} * < ] = Qn) ¥ [ , e **1*dz.
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In an investigation of a similar type Derman [2] and Port [4] consider a system of
transient Markov chains. At time 0, M, particles are placed in each state x of the
state space of a transient Markov chain P. The M, are assumed independent
Poisson with means u(x), where {u(x),xel} is a stationary measure assumed to
exist for P. At each time n = 1 all particles in the system are allowed to move, each
independently of the others and each according to P. No further particles are added
to the system nor do deaths occur. The system is found to be in macroscopic
equilibrium. The techniques used by Port are applicable in the study of the system
of the paper. The results obtained here are without reference to the dual chain nor
is the Markov chain assumed necessarily transient. In Port [5], he has extended his
previous work to general discrete time Markov processes.

2. Distributional results. The probability distributipns of several random
variables associated with this system are established as a consequence of the follow-
ing lemma. The proof is one used by both Derman [2] and Port [4].

LEMMA. Let {M,,nel} denote a sequence of i.i.d. Poisson random variables,
EM, = . Let {Y;(o),aeLkel,0 £ j £ M,} denote a sequence of random variables,
independent in j and k for fixed o and independent of the sequence {M,,neI}. Further
assume :

(i) p(0) = P[ Y () = 1], 1 =py(a) = P[Y () = 0] for 0 < j < M,;
(il) Y20 Y (2) = 0 or 1 a.e. for each pair (j,k).

Let Sy(a)=Yr=y Y 1%, Y,(a). Then for each integer n 21, {S(0),a€l} is a
sequence of mutually independent Poisson random variables with ES, (o) = 1) j = pi(®).

Proor. It suffices to calculate the characteristic function for the vector
(S,(2), ", S,(,)) for an arbitrary finite sequence {«;el,1 <j < m}. Note that
(i) and (ii) imply at most one Y;() can equal one for each pair (j, k). Using this
observation and that (i) and (ii) imply ) ;% opi(e) < 1 for each k one finds the joint
characteristic function of the vector Y, = (Y (), -, Yj(e,)) is given by

Bty s t) = [Pl )€ =D+ - + pla)(e™ =1+ 1].

Since the M, are Poisson variables with parameter 4, it follows that the charac-
teristic function of ) %, Y, is given by exp A{p, (o )(€"' = 1)+ -+ - +pp(s,) (™= 1)}
and finally that the desired characteristic function is exp A{(e"' — 1) Y s pi(ot;)+ -
+ (e —1) Y k=0 pi(e,,)}, which is a product of Poisson characteristic functions as
required.

Consequences of this lemma pertinent to this paper are:

(2.1) For each nel, {A,(x*), x*e*} is a sequence of mutually independent
Poisson random variables with EA,(x*)= 1) i-op(k)P,(0,x), where I'*=
{(x,0)| xeI'} and x* = (x,0).

(2.2) Let I(B*;r), nel, rel denote the number of particles in B* for the rth time
at time n. Then for fixed B* and rel, {I(B*;r),nel} is a sequence of mutually
independent Poisson random variables with EI(B*;r) = 4y s, p(k)P[Vy = k].
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(2.3) For each fixed B* and nel, {M,(B*;r),rel} is a sequence of mutually
independent Poisson random variables with

EM,(B*;r) = Y1 Yh=1 p(){PLVy = k]—-P[Vy "' = k]}.

In (2.1) and (2.2) the expressions for the expected values given in terms of quan-
tities already defined follow in a natural way from the lemma. This is not so in
(2.3). However, EM,(B*;r) can be calculated from (2.2) and the observation
M(B*;r) =Y I(B*:r)=Y_ L;(B*;r+1).

To prove (2.1) let X, denote the state at time n of the jth particle to enter
the system at time k. Let Y (x*)=1 (or 0) if X; =x* (or X;; # x*). The
sequence Y ;(x*) satisfies the hypotheses of the lemma with P[Y;(x*)=1]=
p(n—k)P,_, (0, x). Conclusions (2.2) and (2.3) follow similarly.

ReMARK. If for some integer d > 0, p(k) = 0 whenever k > d, the lifetime of a
particle cannot exceed d with probability one. Thus for each n > d, {4,(x*), x*e'*}
is a sequence of mutually independent Poisson random variables with EA4,(x*) =
AZLO p(k)P, (0, x). Thus, d time units after the system began, it has attained a state
of macroscopic equilibrium of the sort exhibited by the system investigated by
Derman and by Port. Note if p(k) > 0 for all k that since {X(n),ne I} is irreducible,
the sequence Y r—,p(k)P, (0, x) is nondecreasing and tends to Y ;2 o p(k)P; (0, x).
This limit is not attained and therefore the system does not attain equilibrium
unless p has only finitely many non-zero terms.

3. Proofs of Theorems 1 and 2. The random variable M, (B*;r) is the number of
particles to visit B* exactly r times by time n. Thus ) '_, M, (B*;r) is the number of
particles to visit B* at least once by time n and ) ;_, M,(B*;r)/n is the average
number of particles to visit B* for the first time per unit of time. Some limiting
properties of these random variables are established in this section.

ProOOF OF THEOREM 1. Note first that
M (B*;r) =Y  I(B*;r)— Y- [(B*;r+1).

From (2.2) observe that each sum on the right is a sum of independent random
variables and moreover that lim,_,, Y _ VarI (B*;s)/j*> < oo, for s =r, r+1.
Thus the strong law of large numbers is used to conclude that

lim,_, o M,(B*;r)/n = lim,_, , A{h(B,r,p)—h,(B,r+1,p)}/n a.e.

where h,(B,r,p) =) i (n—k+Dp(k)P[Vy = k]. Since > > P[Vy =k] <1 and
p(k) £ 1 it follows that lim,_, ., #,(B, r,p)/n = h(B,r,p). Thus lim,_, , M (B*;r)ln =
A{h(B,r,p)—h(B,r+1,p)} £ A{p(1)P[Vy" < wo]—7P[Vy*' < 0]} £ 4, a.e. Finally
observe that if © = 1, then p(k) = 1fork = 1,2, --and A{i(B,r,p)—h(B,r+1,p)} =
APIN(B) = r].

PROOF OF THEOREM 2. For part (a) note

Z:=1 M(B*;r)=371_, Z'}=1{Ij(B*;")—1j(B*;r+ D}
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Interchange the order of summation and observe that I;(B*;r) =0 when j<r.
Thus lim,_, Y 7_y M(B*;r)/n=lim,_,, > "_ I(B*;1)/n. As in Theorem 1, the
strong law of large numbers applies and with probability one this limit is equal to
lim, o AY %=y Yhoy p(k)P[V' = kl/n. Since Y2 P[Vy' =k]<1 and p(k) <1,
this last limit equals (B, 1, p).

(b) From (2.3) one concludes Y 7_; M,(B*;r) is a Poisson random variable. It is
known that the distributions of a sequence of normalized Poisson random variables
with means tending to infinity tend to the standard normal distribution. Thus to
prove part (b) one need only show lim,_, , 7, = c. Note y, = > 7_ EM,(B*;r) =
Y4 EIL(B*;1) =231 Yi_1 p(k)P[Vs' = k]. Thusunless Y ;2 ; p(k)P[V' = k] =
0 which can happen only under the condition given, lim,_, ., y, = oo as required.

REMARK. One can interpret lim,, , Y r—; M,(B*;r)/n as the rate at which particles
hit B* for the first time. If X(n) is persistent and = = 1, this limit equals

A, PV = k] = AP[V, < o] = A,

the rate at which new particles enter the system. In all other cases this rate is, not
surprisingly, less than A.

4. Proof of Theorem 3. For X(n) persistent two cases for the strong law of
large numbers for the random variables S,(x*) are pertinent. The case where
lim,_, , 4,(x*) < co and consequently lim,_, , n~'S,(x*) < oo is considered in part
(a). The case where lim,_, , 4,(x*) is infinite and consequently where

lim,, ,n~ 'ES,(x*)
is infinite is considered in part (c).

(a) From (2.1) it is known that Var 4,(x*) = 1Y i_, p(k)P,(0, x). For a fixed
state x* e B*, under either hypothesis (i) or (ii) the sequence {Var 4, (x*),nel} is
bounded. A law of large numbers for dependent random variables is applicable.
See Parzen ([3] page 420). For P[lim,_,, S,(x*)/n = lim,_, , ES,(x*)/n] = 1 to hold,
it is sufficient that there exist positive constants a and y such that |C(n)| <a/n’,
where C(n) = Cov (4,(x*), S,(x*)/n). Finding an expression for C(n) is a tedious
exercise in calculating moments and can be accomplished with the use of the
following observations. First note

E(A,(x*)A,(x*)) = E({Z;c";()l _JIV="0 Xjk}{ZZ;é D )]

where X, (or Y;) equals one if the jth particle to enter the system at time k is in
state x* at time m (or n) and equals zero otherwise. Now use the properties that
X;. and Y,, are independent unless j = u and k = », and that {M,,kel} isa
sequence of independent Poisson, 4, random variables independent of X and
Y, to find

E(A,(x") A (x*)) = A3 02d p(n—k)Pp (0, X)P, (X, x) + EA,(x*)EA,(x™).
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Thus

nC(n) =AY -1 3 %0 p(n—k)P,,_(0, X)P,_(x, x)
4.1 =AY 321 Pj0, X)YrZ] Pu(x, x)p(k+)
4.2 = A2 k=2P(k) Y521 PO, x)Py_ {(x, x).

From (4.1) and under hypothesis (i), nC(n) < Ay Py(0, X)Y % Pu(x,x) < o0
since X(n) is transient. Under hypothesis (i) use (4.2) to note that nC(n) < an™°.
Hence under either hypothesis |C(n)| decreases sufficiently quickly.

Note ES,(x*) = 23 %=1 5= 1 p(j)P;(0, x)/n. Under either hypothesis (i) or (ii) the
series Y 2, p(k)P(0, x) is convergent. Hence it follows that lim,, , ES,(x*)/n =
A2 p(k)P(0, x). Finally since A,(B*) = Y wrent A,(x*) and P(0, B) = Y, P(0, x)
part (a) is proved. )

REMARK. Note that if = = 1, ES(B*) = EN(B).

(b) It is easily seen that for x* eI'*, the sequence {Var4,,(x*)/m,m=1,2,---}
is bounded. The same law of large numbers used in part (a) applies here. It must
be shown that there exist positive constants a and y such that |C*(n)| < a/n’ where
nC*(n) = Cov(4,(x*)/n,Y -1 A,(x*)/m). Using the calculation of the proof in
part (a) to note n*C*(n)=2AYn_1Yr=d p(n—k)P, _(0,x)P,_,(x,x)/m < n.
Hence |C*(n)| < A/n and

n * n %
P[uml 3 D g L Bl )]= 1.

nsooly—y M nsoo M y—y m

From (2.1) note E[}, -, A, (x*)/m]=2AY"n_ Y  p(k)Py(0, x)/m. Further
limy, ,, p(k)P(0, x) = nu(x). Thus lim,,., ., 0,(x) = lim,, . > 7y p(k)P(0, x)/m =
mu(x). A repetition of the argument yields lim,, ., AY =1 O(X)/n = dnu(x).
Finally, since 4,(B*) = Y cp: 4,(x*) and u(B) = ¥,z u(x), part (b) is proved.
Before proceeding with the proof of part (c), note that
Var S,(x*) = Yr_, Var A,(x*)+2 Cov NPy A(x*)A(x*)
= AES,(x*)+ 243522 Y25 p(k) YFZ{ PO, X)P,_(x, ).

The last equality is found using (4.2). Since Py(x, x) <1 and p(k) < p(i) for
i<k one obtains VarS,(x*) < AES,(x*)+243 ", Yio, Y p(i)P0, x) £
AES,(x*)+2AnES,(x*) < 3nES,(x*). From this it is easy to see that

%
limP[ Sux™) >s]=0

ES,(x*)
\ *\ | a1 -k
p S,(x*) sy Sle S,(x*) < 3in ,
ES,(x*) T e2E2S,(x*) T 2ES,(x*)
and since the hypothesis lim, ., ,, 4,(x*) = oo implies lim,_, , nE~1S,(x*) = 0. Now
for the proof of part (c).

-1

since
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(c) Let v and f'be as in the hypothesis. Use the Tchebychev inequality as above to

obtain
1S ax®) ‘ ,
Pl s e <o
[IES,,V(x*) | sy

where c is the constant factor. Since by hypothesis Y, f(n") < oo, one has, using
the Borel-Cantelli Lemma that lim,_, ,, S,\(x*)E~'S,.(x*) = 1 a.e. The theorem is
proved if it is shown that

= ()] =1.

Sk(x*) _ Sk(X*)
ES,(x*) ES,(x*)

It will be shown that lim,_, U, =0 a.e. and lim,_, , ¥, = 0 a.e. Since the S,(x*)
are increasing random variables in n, U, < {S,(x*)—S,_ ;) (x*)}E~1S,(x*).
Note that from above lim,_, ,, S,«(x*)E~'S,.(x*) = 1 a.e. It is also easily seen using
the hypothesis lim,, . f(n")/f([n—1]") = 1 that lim,_ Su-1y(XF)E~1S,(x*) = 1
a.e. Thus lim,,,U,=0 a.e. Since ES,(x*) and S,(x*) are increasing in n,
Vo S Sp(x*){E™'S(-1y(x*)—E~'S,(x*)}. Similarly as in the case for U,,
lim, ., ¥, = 0 a.e. Hence (4.3) holds. Thus lim,_, , S,(x*)E~ S (x*) =1 a.e.
Finally if the hypotheses hold for each x* e B*

Sn(B*)E_ 1Sn(B*) = E_ lsn(B*) Zx*eB* {Sn(X*)E_ lsn(X*)}ESn('X*)

Since B* is finite, ES,(B*) = ) .v.p. ES,(x*), and since each term in parentheses in
the sum above tends to one a.e., it follows that lim,_, , S,(B*)E~'S,(B*) =1 a.e.

: . Su(x*) Si(x*)
4.3) P| lim max ——
3 l:n—mo - ty+1zksn ES(X®)  ES(x*)

Define

V,= max
(n—1)V+1=<k=<nv

Spl(x*)— S (x™),
Un — max ~n ('X ‘) :(x )
(n—1)+15k<nv ES,.(x%)

COROLLARY. Let X(n) be persistent non-null and let n > 0. The conclusion of part
(¢) of the theorem holds.

Proor. Under these hypotheses for ¢ > 0, there exists a K > 0 such that & > K
implies
k™15 s ()P0, X)—u(x)m| < e.
Thus

limn—wo n_ZESn(X*) = limn—'oo n_ZZZ=K+ 1 Z‘;=1p(])Pj(Oa x)'
However,

”_ZZZ=K+1k(”(x)”_3) = ”_222=K+1 Zl;=lp(j)Pj(Oa x) = n_ZZZ:K+ 1 k(u(x)n+e).

Thus taking limits as n— oo, it is clear that lim,_ , n~2ES,(x*) = u(x)n/2. Thus
f(n) is asymptotic to cn~! and the hypotheses of the theorem holds for v = 2.

5. Proof of Theorem 4.
LeEMMA. If limn{Var S,(B*)} ~* = 0, then
fim,., P[{S,(B*)— ES,(B*)}{Var S,(B*)} "* < B] = (2n)"* [, e™"/2 dz.
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PRrOOF. Observe that S,(B*) =Y 7_, rM,(B*;r). The random variable
{rM(B*;r)—rEM,(B*;r)}{Var S,(B*)} %

is of Poisson type and is thus infinitely divisible. Using the Kolmogorov canonical
form, the logarithm of its characteristic function is given by

log ¢, (1) = [2 (e —1—itx)x ™2 dG, ,(x)
where
G,,(x)=0 for x < r{VarS,(B*)} %,
= {r’EM,(B*; r)}{VarS,(B*)} ™! otherwise.
Thus the logarithm of the characteristic function of
(S,(B¥)— ES,(B*)}{Var S,(B*)}*
is given by log ¢,(f) = [*_(¢"™*—1—itx) dG,(x) where
G, (x)=0 for x < {VarS,(B*)}?%,
= {Y -1 *M(B*; H}{VarS,(B*)} ™! for k{VarS(B*} *<xx
(k+1D{VarS,(B*)} %
where 1 £k <n—1,
=] for x> n{VarS,(B*)} %

Thus using the hypothesis, lim,_, , log ¢,() = —¢%/2, and the lemma is proved.
To prove Theorem 4, first use (2.3) to note that

VarSy(B*) = AYr_ 12 Yiy p({P[Vy = k]=P[Vy"* ' = K]}
2 ip(n) Yrey 1 Yoy PIN(B) = r] = ap(n) Y- EN(B).

The inequality above follows by first bounding p(k) below by p(n) and then
observing P[Vy" < j]—P[Vy ™' < j] = P[N(B) = r]. Using hypothesis (ii) of the
theorem one finds

n"2Var Sy(B*) z n” 2 da” p(n)Y ] cps 110 2 207N 2+8) " p(m)(n° — ko)),

Taking limits as n tends to infinity and using (i) in the hypothesis of the theorem
one finds the hypothesis of the lemma is satisfied and hence the theorem is
proved.

COROLLARY. Let X(n) be a persistent non-null Markov chain and let
lim, ., , np(n) = co.
Then the conclusion of the theorem holds.

PrOOF. It is known from the strong law of large numbers for Markov chains that
lim, ., ,n"'N,(B) = u(B) ae. (See Chung [1], page 93.) Therefore, since also
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lim,_,,n 'N,(B) = u(B) in probability and n~'N,(B) <1 with probability 1, it
follows that lim,_n~ 2EN,*(B) = u*(B). Hence the hypotheses of the theorem
are satisfied for § = 1.

6. Possible applications. In investigating this system no serious attempt has
been made to consider applications. It would appear, however, that models of
this type can be used to simulate the flow of objects within a set of states. One
example of an operations research nature is given tentatively. The movement of
rental automobiles within the set ' of agencies of a national firm if unregulated is
Markovian in nature. The removal from service of an auto corresponds to the
death of a particle. Since eventual removal is certain, = = 0. Times are picked as
appropriate, (say the beginning of the nth week corresponds to time #.) Then in this
example 4,(x*) denotes the number of automobiles in the territory of agency x at
the beginning of the nth week the system is under observation.

According to Theorem 3a, the average number of autos at agency x tends to
A o p(k)P(0,x) with probability one, and by the remark of Section 2 the
distribution of A4,(x*) tends to that of a Poisson random variable with parameter
A o P(k)P(0, x). This last observation suggests a question in control theory.
Specifically the natural macroscopic equilibrium of the system may not be a
desirable one for the operators of the system. Considering the costs involved, how
can one optimally regulate the system by the redistribution of particles to maintain
a desirable distribution within the system?
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