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1. Introduction and summary. In this paper, we shall investigate a problem
analogous to the one treated in Prakasa Rao [6]. We shall now suppose that
there is a sample of n independent observations from a distribution F with mono-
tone failure rate r and the problem is to obtain a maximum likelihood estimator
(MLE) of r and its asymptotic distribution.

Grenander [4] and Marshall and Proschan [5] have obtained the MLE of r and
the latter showed that these estimators are consistent. We obtain the asymptotic
distribution of this estimator. The estimation problem is reduced at first to that of
a stochastic process and the asymptotic distribution of MLE is obtained by means
of theorems on convergence of distributions of stochastic processes.

Methods used in this paper are similar to those in Prakasa Rao [6] and therefore,
proofs are given only at places where they differ from the proofs of that paper. We
shall consider the case of distributions with increasing failure rate (IFR) in detail.
Results in the case of distributions with decreasing failure rate (DFR) are analogous
to those of IFR and we shall state the main result in Section 7.

Sections 2 and 3 deal with the definition and properties of distributions with
monotone failure rate r. Some results related to the asymptotic properties of the
MLE of r are given in Section 4. The problem is reduced to that of a stochastic
process in Section 5. The asymptotic distribution of the MLE is obtained in

Section 6.

2. Some definitions and properties of distributions with monotone failure rate.
Let F be a distribution function with density f. The failure rate r of F is defined by

)
1—F(x)

(2.1) r(x) =

for x such that F(x) < 1. Let R(x) = —log(1—F(x)). It is easily seen that R is
convex on the support of F if and only if r is nondecreasing and that R is concave
on the support of F if and only if r is nonincreasing. We say that F is an IFR or
DFR distribution according as r is nondecreasing or nonincreasing. Properties of
distributions with monotone failure rate are discussed in Barlow, Marshall and
Proschan [1].

3. MLE for IFR. Suppose that F is an IFR with failure rate r. Further suppose
that the support of F is the interval [0, 00). Let X, 1 £ i < n be the order statistics
of arandom sample of size n from the population with distribution F. Let # denote
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508 B. L. S. PRAKASA RAO

the class of all IFR distributions. It is not possible to obtain the MLE for r directly
by maximizing the likelihood

L(F) =[[if (X))

since f(X,) can be chosen arbitrarily large. Therefore, we consider a subfamily & M
of & consisting of distributions F with r(x) < M for all x, obtaining

SUPFecgm l_['{f(Xi) < M".

There is a unique distribution F,Me %™ for which the above supremum is
attained. The failure rate #,¥ of F,™ converges to a failure rate #, as M approaches
oo for x < X,. For x = X,, #, = M for all M and therefore #, - 00 as M — co.
This estimator #,, which is infinite for x = X,,, is called the MLE of r. Let X, =0.

From the results of Grenander [4] or as an application of the results of Van
Eeden [8], the estimator #, can be derived and it is given by

PAx)=0 for x< Xy,
= (X} for X;2x<X;y,1Zisn—1,
= 0 for x=X,,
where »
PAX) = min, sy max, g {[v—ul (X520 (=X =X )]}

This estimator has been shown to be strongly consistent at all x at which r is
continuous by Marshall and Proschan [5]. This estimator can also be written in the
form

F(©)-F(u)
fult=F,(»)]dy
where F, is the empirical distribution function. In fact

(3]) ’A'n(Xi)=infvgxsupu<x

,(0)— @,()

(3.2) [F(XD)]™" = SuPyz i+ 1yminfuzim p—
where
(3.3) @,(j/n) =[5/ [1 = F(x)] dx.
Define
() =0, 0=7n<in,
(3.4) —®,(jn), jnSn<(+hin, 1Sjsn-1
= ,(1), n=1L

Let &, be the concave majorant of ®,. It follows that [#,(x)] ™" is the left-hand
derivative of the concave majorant ®, at F,(x) from (3.2).
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4. Some results related to the asymptotic properties of the MLE. Let & be such
that 0 < F(&) < 1. Let #,(£) denote the MLE of r at ¢ and let [r;(6)]”" denote
the left-hand derivative of the concave majorant of @, at F,(¢) when the argument
of @, is restricted to the interval [F(é)—cn™ %, F(€)+cn™*]. We shall assume that
the failure rate r is differentiable at £ with r(£) > 0 and r’(¢) different from zero.
The following lemma can be proved by methods analogous to those used in Prakasa
Rao [6]. We shall make use of Theorem 4.6 (proved later in this section) in the proof
of the lemma. We shall indicate only those steps in the proof which will guide the
reader in constructing a proof of this lemma.

LEMMA 4.1. There is a function A(c) such that

(i) lim sup,,..,, P[r; (€) # F,(&)] = ) and
(i) (c)—»0 as c¢— .

Let F(&) =1, 4 = @I Q@] and g(&) = [(O]™", and define
1,(8) = n[®,(n+cn™*) —en™H{g(&)— An™ ¥} — ()]
= n[®,(1+cn™ ) = ,()] — endg(&) + Acn’.
Now by Theorem 4.6, it follows that
1(8) = n W, ()g(&) — 3 (O L (OFH(E] ™ +en?g(6)
+0,(n*)—eng(&) + Acn?,
= B [W(g(O) +1r O (@) +0,n )],
= W IW,(g(&) + 3¢ B(n) +0,(n 4],

where B(n) = r'(&)[f(E)r*(£)]™". Notice that B(y) > 0. Let B, = 3c’B(n)+0,(n"*)
and V, = ¢~ 'W,(c). Then we obtain that

1,(&) = n*[cg(&)V,+B,].

Clearly E[V,] =0 and Var[V,] = 1.

It is now easy to see with these definitions of I,, ¥, and B,, one stage of the proof
of Lemma 4.1 can be completed along the same lines as in Lemma 4.1 of Prakasa
Rao [6]. At a later stage in the proof in [6], we have introduced a new distribution.
In an analogous way, we introduce an exponential distribution function F with
failure rate

rx)=0 x=0
= r(§) x> 0.

Let Y be distributed as F. Then ¥, = —[r(é)] 'log(1—F(X;)) form a set of
order statistics from the exponential distribution and (n—i)(Y;,;— Y;) are in-
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dependent identically distributed exponential random variables with mean [r(£)]7*.
It is not hard to see that Y;, ,— Y, < X, — X, for all i £ k(n) where k(n) is chosen
so that Xy, 41 = & < Xyey+2- In view of this fact, it is easily seen that an inequality
similar to (4.16) of Prakasa Rao [6] holds good, since for { < 7,

O,(m—D,(0) = 5”:%5;.11 (" —j)(Xj+ 1 '—Xj)‘

Furthermore, we can introduce a Poisson process as in Prakasa Rao [6] since the
inter-arrival times in a Poisson process are independent random variables with the
same exponential distribution, and ®,(#) —®,({) is the sum of independent random
variables with the same exponential distribution when F is the underlying distribu-
tion. The rest of the proof can be completed in a way similar to that in Prakasa
Rao [6]. With these remarks, we omit the complete proof of Lemma 4.1.

As a consequence of our assumptions, it follows that there exist constants y, a
and K such that

(4.1) fxzy, M)z« and
(4.2) |/ ()| £ K|f(%)]

for x in a neighborhood of &. Let F, (&) =1, and F(&) = 7. It is well known that
Na—n = 0,(n"%). Let

4.3) Uj=F(Xj+1)_F(Xj)"E[F(Xj+1)—F(Xj)lXj]

where X;, 1 < i < n are the order statistics and E[Y [ X1] denotes the conditional
expectation of Y given X. It is easy to see that

(4.4) U, = F(X;+)—F(X)— X)) where
(4.5) X)) = (1—=F(X))j(n—j+1).

We shall obtain the necessary asymptotic expansions in a series of lemmas which
will be combined at the end of the section to give the final result. We mention here
that the approximations which are of the order O, are all satisfied uniformly for
din [—c,c]. Let

(4.6) a=[nn], b=[yn+dn*].

Lemma 4.2.

b MX)+U; e
n[@,,(;)— <>] Z( —j) 7)) '+0,(n"%).

PRrOOF. It is easy to see from (4.4) by Taylor’s theorem, that

@)
(S

) MXp+U;
4.7) Xj+1'Xj=,gj.g;.) d
Jj

—HAX)+U;] 2
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where {; = F"(Bj) and 0; lies between F(X;) and F(X,, ). By definition of ®,,

48) n[d>n (f—z)‘q’" <g>]

b-1

= Z (n—j)(Xj+l —Xj)

bh—1 )»()&vj)'*‘ U,} b—1 f,(C)
= ey (m=i— n—jYey .

,-g.,{ Fxy T (D
Since X;, for a <j< b—1, lies in a neighborhood of ¢ for large n and since
;= F~'(0;) where F(X;) = 0; < F(X;,,), it follows that {; is in a neighborhood of
¢ fora=j=<b—1 for large n. Hence we obtain from (4.1) and (4.2) that f({;) = y
and |f'({;)| £ K|f(¢;)|. It now follows that for sufficiently large n,

(UX)+Up*

Rty K () 5 -,
E Zf (C)(n -DAX)+U;}? £ Ky Z (n—)E[AX)+U,]?
Jj=a J
4.9) =Ky Y (1= DELFCX )~ FX)P
b—1
=2Ky *(n+1)"{(n+2)"! Z (n—j)
=0(n%).

Equations (4.8) and (4.9) together prove the lemma.
LeEMMA 4.3.
n[®@,(b/n)— @, (afm)] = Y33 (n—PU,f (X )+ Y422 r~H(X ) +0,(n ™).
Proor. By Lemma 4.2, we have
n[®,(b/n)—®,(ajn)]
= 2iza (n=Df THXP[AX )+ U;]+0,(n™*)
(4.10) =202 (=DUF T XD+ a(n=n—j+1)"r (X )+0,(n"?)
=2iZdn=DUS XD+ 1520 (X))
=Y (n—j+ DTN X ) +0,(n7Y).
It is easy to see that for large n,
(4.11) EPS(n—j+ D) (X)) SaYbzi(n—j+ 1) = 0(n~H).

This observation together with (4.10) proves the lemma.
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LEmMMA 4.4.
YhZar N X)) = (b—a)yr~ (Zn)—187n* ' (Zn) )r 2 (Z)f ~(Z(n) )+ 0, (n?)
where Z(t) = F~'(t) for 0< t £ 1.

PRrOOF. Let Z; = Z(j/n). It follows by the Kolmogorov—Smirnov Theorem and the
fact that f'is bounded away from zero, that

(4.]2) Supa§1§b|Xj—ZJ| =0p(n_%).

Since r~}(X)—r~(Z) = —r’(CJ)r'Z(Cj)(Xj—Zj) for some {; between X; and Z;,
we have

(4.13) Yizar X )=Yhmar T Z) = = Xima @i -

The term on the right-hand side is O ,(n*) by (4.12) since r'(- )r~2(+) is bounded in
a neighborhood of £. Again, applying Taylor’s Theorem, we get that

(4.14) r7NZ) = rTKZm) = (™= Zm)r~ HZm)f TN Zm) +(n ™ j = mo(1)
which implies that
@.15) YEZarTNZy) = (b—ayr™ N (Zm) — 48 n 3 [Z()]r 2 Zm)]f T [Z2()] )
+o(n?).
Equations (4.13) and (4.15) together prove this lemma.
Lemma 4.5.
§2a(n=PUf 71 X)) =f ' [Z] X524 (n=DU;+0,(n).
Proor. By the Kolmogorov-Smirnov Theorem, it can be shown as before that
(4.16) fTHX) =TI ZP+0,(n™)
uniformly in j. Hence
Yz n—DUL T X)) = Yzh(n=Uf T Z)+ X5 (n=)U;0,(n™ %),
But
417y E|(n—)U;0,(n™)|* < E[(n—)UPE[0,(n )] = O(n™")
uniformly in j. (4.16) and (4.17) together imply that

(4.18) S2a(n=PUf M X)) = 52s (n=DUf ~HZ)+0,(n).

Since f~X(Z)) = f~NZW))+ (™ =) =f"(Zn))f ~*(Z(n))+o0(1)], it follows that
(4.19) Yiza=pUf~NZ) =f 1 Zm) Xz (n=HU;+ M,

where

{4.20) M, = 3520 (=)~ j=m)[ =S Zm))f ~*Zm)+o(1)]U;.
Clearly E(M,) = Oand Var(M,) < K*y™ 2 520 {(n—j)*(n~j—n)* Var (U))} = O(1),
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since Var(U;) = O(n~?) uniformly in j. Therefore, we have M, = 0,(1). Now
(4.18), (4.19) and (4.20) together show that

Liza(n=DUL HX ) =f~HZM)) Li=a (n=)U;+0,(n?) +0,(1)
=f71Zm) L3=a (n=))U;+0,(n*)

which proves the lemma.
We have the following theorem from Lemmas 4.3, 4.4 and 4.5.

THEOREM 4.6. Let & be such that 0 < F(&) < 1 and let F(&) =n. Suppose that
—c=£6=c Let a= [nn] and b = [yn+6n*]. Then

b a n*w,(8)  8*n*r'[Z(n)] ont N
nlo,(-)-0,(-) |= — + +0 (n?)
[ <"> <">] "zon] ~ STzl Tzom T rizan] O
where W,(8) = n}(n—a)™'Y 22} (n—j+1)U;.
PRrROOF. By Lemmas 4.3, 4.4 and 4.5, we have the following result.

"[q’”(g)_q)"(%)] f[zm]z( v r[%)]

—3[0*n*B(n)] +0,(n*)

4.21)

where
(4.22) B(m) =~ (Zm)r'(Zm))r~*(Z(0)).

Therefore
b a n(l—n)btn—j ) on?*
o,(2)-0,(2) =5y "y yr 2
"[ <n> (n)] Fizo] Zn—a V7 " iz
—4[6%n*B(n)]+0,(n*)

where T, = (mn—a)(n—a)~' f~1(Z(n))Y )= 4(n—j)U;. Obviously E|T,|=0(n"?)
since b—a = O(n*) and E|U;| = O(n™") uniformly in j. We obtain now from (4.23),

that
b a no Zln—j+1 on?
"[‘D"(E>‘¢"<E)]= Tzl 2 i-a VR iz

—4[6?n*B(n)]+0,(n*)
where R, = n(n—a)~'r~(Z(n))Y 424 U;. Clearly E|R,| = O(n‘*). Hence

'[‘D (é>_(b (gﬂ ) B+ +0,0n)
"5\ "\n r[Z(n)] 2 1 [Z( )] ’

where B(n) is given by (4.22) and
(4.25) Wy(8) = n*(n—a) ' Y020 (n—j+1DU;.
ReMARK. Note that B(n) > 0 since r is nondecreasing and r’(§) # 0.

(4.23)

4.24)
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5. Reduction to a problem in stochastic processes. In this section, we shall reduce
the problem of calculating the asymptotlc distribution of the slope of the concave
majorant of ®,(y) over [F({)—cn”™ 3 F(E)+cn *]at y = F,(&) to the corresponding
problem of the Wiener process over [—c, c] after suitable normalization. We shall
assume that the failure rate r is differentiable at ¢ with r’ (£) # 0. Furthermore, we
assume that ¢ is such that 0 < F(¢) < 1, r(£) >0 as before.

Let F(¢)=n, F(&)=n,, a=[yn] and b = [rn+¢n?] as before where F, is the
empirical distribution function and —¢ £ J < c. It follows from Theorem 4.6, that

T
(5.1) n [q)”(n D, ” r[Z(n)] B(n)+—= 201 )]+O An7°).

Let a,(n)+ dp,(n) denote the tangent to the concave majorant of

w,{(6) | -
R B+ 0,07
at 8, = (n,—nn*. We note that
(5.2) B.(n) = m¥ [k (Z(m) =~ H(Z(m)]

where r,;'(Z(n)) denotes the left-hand derivative of the concave majorant of
®,(y)over [p—cn~ ¥, n+cn¥laty =n,. Let

(5.3) s=2;  A=2r[ZW]BM] Y Vi) = ATIW).
It is easy to see that

W (0 )
5.) 2O 1520 — () — 6B, (m) + O (n )

r[Z(m]

2 2 2
= i [Z(n)] [Vn(o —<c ¥ f;((?)) —< T ;ff};ﬁg)) ] +o,n7).

We note that 28,(n)A~'B~!(n) is the slope of the concave majorant at { = {, =
A~ 1(n,—n)n* of the process

(5.5 ° X0 =VO-+0,n%

on [—q,q] where ¢ = cA™'. Note that {, =0,(n"*) and 2A7'B™ () is the scale
factor which multiplies the slope B,(7) by applying the transformations in (5.3).

Let C[a, b] denote the space of continuous functions on [a,b] and Dla, b} denote
the space of functions on [a, b] with at most discontinuities of first kind only. Let
us induce convergence in D[a, b] by Skorokhod’s J;-topology. It is well known that
Cla, b] with a supremum norm topology is a closed subset of D[a,b] with J,-
topology. We say that a sequence of stochastic processes X, with trajectories in
D[a,b] a.s. converges in distribution to another process X with trajectories in
Dla, b] a.s. if the measures v, induced by X, on Dla,b] converge weakly to the
measure v induced by X on Dla, b].
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A stochastic process W on [—q, q] is said to be a Wiener process if it is a Gaussian
process with stationary independent increments with (i) W(0) = 0 (ii) E[W(¢?)] =
for |t| < ¢ and (iii) Var [W(#)] = ||. It is well known that the trajectories of W are in
C[—q,q] a.s. and hence, in particular, in D[—q,q] a.s. Proof of this fact can be
found in Doob [3]. ‘

It is obvious that the trajectories of V, are in D[—q,q]. Let u, and u be the
measures induced by V, and W respectively on D[—gq,¢]. Our aim is to prove that
u, converges to u weakly. Some lemmas will be proved which lead us to the required
result.

LemMA S.1. For any 6 in [—c, c], W,(0) is asymptotically normal with mean 0 and
variance |5|.

Proor. Let A;, 1 £i< n+1 be (n+1) independent random variables each with
the exponential distribution with density function

gx)=ne™ xz0,
=0 x <0.

Let D,=A,+ - +A,,; and G;,=D, ' [A;+ - +A],1 £i<n Then G,
1 £i £ nform order statistics of a sample of size n from the uniform distribution
on [0, 1]. By definition,

(5.6) () = n%z ] “U,.
iy ’H[F(x,ﬂ) P(X)_Jlx_f)].
j=a h—a n—j+1

It is easy to see from our earlier observation that W,(6) has the same distribution as

b—1 —C.
G W) =nty " ”1[ re1= Gy .G’]

j=a h—a n—j+1
nt ! I (A i+ +A 1
= —i+1 —Z et BN bt S N

,,(n—a)lZ (n=j+ )[< n> < n—j+1 n

Let
n¥ ot 1
(5.8) A () = —— L (n—/+1)< n>’ and
n¥ b1 n—j+1

5.9 B,(6) = A; A — .
(5.9 2(0) n_aj};a< ST S oA W n

Clearly E(B,(6)) =0 and
Var (B,(0)) = n*(n—a) 2 Var [} b2 (Ajs 1+ + A4 1)]
=nt(n—a) 2 Var[Y ;2 j—a)A;+(b—a) Y ]2} A}]
= o(1)
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since A; are independent, Var(A)) =n"2 and b—a = O(n*). Hence B,(6)—0
in probability as n— co. Furthermore, D,— 1 in probability. Since W,*(d) =
D,” "' [4,(8)—B,(d)], it is enough to prove that A,(d) is asymptotically normal
wtih mean 0 and variance || in order to complete the proof of the lemma, by
Slutsky’s Theorem (See Cramér [2]). Let (1) denote the characteristic function
of A,(5). It is easy to show after some computations that

logy, (1) = —*n " 2(n—a)] > Y5z (n—j+ D2 40(1)
—312{8] +o(1).

Hence by the continuity theorem for characteristic functions, it follows that A,(9)
is asymptotically normal with mean 0 and variance |6|, which proves the lemma.

LEMMA 5.2. For any { in [—q, q), V,(0) is asymptotically normal with mean 0 and
variance |(|.

PrROOF. This follows immediately from the previous lemma since V()=
ATEW(5).

REMARK. In a similar way, it can be shown that for any collection{;, 1 S i £ K,
|¢.| < g, the joint distribution of [V,(C,)," V,(¢,)] converges to the multivariate
normal distribution with mean 0 and variance-covariance matrix (8(¢;, ;) min (|C ,-|,
|¢;])), where

dola,b) =1 if a, b are of the same sign
=0 otherwise.

Define V,*() = A~ *W,*(8) for {e[—q,q]. Clearly V,* has the same distribution
as V,. The next lemma shows that the family of processes {D,V,*} on [—q,q] (D, s
as defined in Lemma 5.1) satisfies an equi-continuity condition. In other words, the
class of measures induced by the processes {D,V,*} on D[—g,q] forms a tight
family. See Sethuraman [7] for the definition of tightness of family of probability
measures.

LeMMA 5.3. For any {1,{, in [—q,4],
E|D,V, () = Du Vi * G| £ Lt =G +16 =Ll o)
where C is a constant independent of n, {; and {,.
PRrOOF. Define 4,(5) and B,(d) as in Lemma 5.1. Consider
(5.10) E|D,V,*C)=Du V" @I
= A72E |D, W,*(8,) = D, W,*(32)[*
= 172E|{4,00,) — 4,(3:)} — {B,01) = B0} *
< 847 2{E|A,(8,)— A,(0,)|*+ E |B,(81)~ B,(02)["}
by the elementary inequality E|X+ Y |* < 8[E|X|*+E| Y|*l
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Let b, = [nn+6,n%] and b, = [nn+5,n*]. Let us first compute
(5.11) E|4,8)=AL8)|* =n 31 —an Y *E Y52 (n—j+ 1)(Aj4, —n~ Y%

Since A; are independent and identically distributed with E(A))=n"",
Var(A) =n"% and E(A;—n~")* = 9n%, it follows from (5.11), that

(5.12) E|A,0)—A8)|* =n" (1 —an™) {9 (n—-j+1)*n"*
6n= Y2t S L (n—i+ 1) (n—j+1)*}
Lo~ 1BU—an~ ) (n—j+ 1))
<9 1B (L—an"Y) "4 by,—by)?n* £ C,|6,—6, ]
for some constant C, independent of n, 6, and 4,. Now consider
(5.13) E|B(5,)—B,,)|*
=n"¥(l—an )T E|Y (A =T Y+ (A —n T DY
=n"f1—an ) *E[Y5 (A4 j—n7Y)
+(by =) YEs, 1 (A —n7 Y[
8n ¥ (1—an™ ) THE|Y 5 (A4 j—nH]*
+(b2=b) E[L) 041 (A;—n"H[]
S 72n7 1981 —an )T {Y P 212 + (b, — by)*(n—b,)?]
< 720711 —an™ ) 4(b,— b)) *n* +(b,— by)*n?]
< Cy[|6,—6,|*+38 |6,—6;|n~3c]

for some constant C, since |52—5,| < 2¢. Combining (5.12), (5.13) and (5.10), we
get that there exists a constant C independent of n, {, and {, such that.

E|D,V,*(C) =D, V¥ (C)]* £ ClL=Cf* + (L= Li| o(D).

REMARK. Since D, converges to 1 in probability, D,V,*({) is asymptotically
normal with mean 0 and variance |{|. Similarly [D,V,*(y), ", D, V,*(x)] is
asymptotically multivariate normal with mean 0 and variance-covariance matrix

(8(¢3» ¢y min (|8, |2;D)-

We notice that the process D, V,,* is a process with independent increments since
D, V,* can be represented in terms of sums of independent exponentials from (5.8)
and (5.9).

We shall now state a theorem connected with convergence of distributions of
stochastic processes with independent increments in Dla, b].

IIA

THEOREM 5.4. Let {X,} be a sequence of stochastic processes with independent
increments in Dla,b] and X be another process in Dla,b)] such that (i) for any t;,
1 £i £k, the joint distribution of [X,(t,)," ", X, (t,)] converges weakly to the joint
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distribution of [X(t,), ", X(t,)), and (ii) there exist constants © > 0, C > 0 indepen-
dent of n such that for every ty, t, in [a,b],

E|Xn(tl)—Xn(t2)|t = C|t1 _tz|2+|t1 —t2|0(1)'

Let v, and v be the measures induced by X, and X respectively on Dla,b]. Then v,
converges to v weakly.

Proor. From the condition (ii) of the hypothesis of the theorem, it follows that
there exists a constant 4 independent of , ¢, and ¢,, such that E|X,(t,)— X,(t,)|" <
Al|t,; —1,|. Therefore, for any A > 0,

P{X (1) =X (t2)| > A} S AL |t,—1,| S A8A°

for all #,,¢, in [a,b] such that |r,—r,| < 8. Let ¥(6,4) = 46A7". Notice that
Y(5,2) =0 as  —» 0. Now from the remarks on page 140 of Sethuraman [7], it
follows that the sequence of measures v, converges weakly to v.

As a consequence of Lemma 5.3, and the remarks made following the lemma, it
follows that the sequence of processes D, V,* converges in distribution to the Wiener
process W on [—g,q]. Since D, converges to 1 in probability, it follows by an ex-
tension of Slutsky’s theorem for processes that V,* converges in distribution to W.
In other words, V, converges in distribution to W since the finite dimensional
distributions of 'V, and V,* are the same. Clearly, {*+O,(n"*) converges to {*
uniformly in { since |{| < ¢ and O, is uniform for |{| < ¢. Hence, by a simple ex-
tension of Slutsky’s Theorem (Cramér [2]) for processes, we obtain the following
theorem.

THEOREM 5.5. The sequence of processes X, on [—q,q] given by X, ({)=
'V,,(C)—C2+0p(n_*) converges in distribution to the process X cn [—q,q] given by
X(O) = W()—* where W is the Wiener process on [—q,q].

6. Asymptotic distribution of the MLE for IFR. Define

(6'1) !//(t) =1 Ux(tzs t)Ux(t25 - t)
where u(x,z) = P[W(t) > t* for some ¢ > z| W(z) = x] is a solution of the heat
equation $U,, = — U, subject to the boundary conditions (i) u(x,z) = 1 for x = z2

and (ii) u(x,z) = 0 as x - —co. Here U, denotes the partial derivative of u(x, z)

with respect to x.
In view of Theorem 5.5, the following final result can be obtained by methods

analogous to those in Section 6 of Prakasa Rao [6].

THEOREM 6.1. Let F be an IFR with failure rate r. Let & be such that 0 < F(&) < 1.
Further suppose that r is differentiable at & with non-zero derivative and r(&) > 0.
Let #,(&) denote the MLE of r() based on n independent observations. Then the
asymptotic distribution of

n%{r'(é)f“(f)}'%{ 1 __lw}
2f(©) P& 1)

has density $y(3x) where  is given by (6.1).
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7. Asymptotic distribution of MLE for DFR. In this section, we shall state the
main result for DFR distributions. Proofs are analogous to those in the IFR case.

THEOREM 7.1. Let F be a DFR with failure rate r. Let & be such that 0 < F(&) < 1.
Further suppose that r is differentiable at & with non-zero derivative and r() > 0.
Let #,(&) denote the MLE of r(£) based cn n independent observations. Then the
asymptotic distribution of

" {—r’(é)r“(é)}-* { 11 }
ZI6) EEEG

has density $y(4x) where \ is given by (6.1).
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