The Annals of Mathematical Statistics
1970, Vol. 41, No. 3, 894-906

CONSISTENCY A POSTERIORI'

By RoBerT H. BERK?

Hebrew University
0. Summary. Conditions are given under which a sequence of posterior distribu-
tions converges weakly to a degenerate distribution. It is not assumed that the
model being used actually governs the data. Exponential models are studied in
particular and are shown to be well behaved under mild assumptions. Large-
deviation results for U-statistics and posterior odds are also given.

1. Introduction. Let X, X,, X,, -+ be a sample sequence, independent and
identically distributed random variables, having common distribution F on the
(measurable) sample space (%, ). F will refer also to the joint distribution of the
sequence. Let p(x | 0) be a family of probability densities on (&, %), with respect
to the o-finite measure u. 6 ranges in the measurable parameter space (O, &); we
assume p(- | ) is &/ x4 measurable. P denotes a (possibly unnormed) prior
measure on (©, &). We assume there is a probability measure Q on (®, &)
equivalent to P. (This is so if, e.g., (®, &, P) is o-finite.) We consider the behavior
of the sequence of posterior distributions P, where, for 4 €&/

(L1) P, A= [,[1i p(X;[0)dP/fo[ ]} p(X;| 0) dP.

Below we detail assumptions that guarantee that P,, is a.s. well defined. We consider
the question of consistency a posteriori: the a.s. weak convergence of P, to a de-
generate distribution. The following heuristic discussion gives an indication of the
approach to the problem and the results obtained. Here and throughout, expecta-

tions are under F.

Let 1,(0) = n' Y} In[p(X;|0)p*(X,)], where p* is some positive function. If p*
can be chosen so that A() = Eln [p(X | 0)p*(X)] exists, F(I,(0) > 4(0)) = 1 and the
exceptional set of data sequences can depend on 0. In Section 2 we show that this
entails F(I, » A[P]) = 1, where the exceptional 0-set can depend on the observed

data sequence. We may rewrite (1.1) as
(1.2) P,A = [,exp{nl}dP/[gexp{nl,}dP.

(P,A4)!/" is then seen to be a ratio of n-norms (of random functions). In the following
heuristic argument, we replace I, by A in (1.2) to obtain

(1.3) (P, A)"" = [[,exp{ni} dP/foexp {ni} dP]'/" = ||e*1 4||./||€*||n
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P, is a probability distribution and (to the extent that I, resembles 1) resembles P,,.
From (1.3) we see that

(P, A" = ||e*] 4| w/]|e*|| < Viffesssup {A(6):0€ A} < esssup {(1(0):0e©} = A*.

Hence if 4 is a set on which 1 does not (essentially) achieve its essential supremum,
P,A — 0. So if A achieves its essential supremum J* at some point 6* and is essen-
tially bounded below A* off (open) neighborhoods of 6%, then for any such neighbor-
hood, U, P,U — 1. This says that P, converges weakly to the distribution degenerate
at 6%,

This analysis of P, entails the behavior of 1 at its essential supremum. The
analysis of P, involves something more: Accounting for the extra complexity of
(1.2), as compared with (1.3), entails the following: Given a sequence {v,} of
measurable functions on © that converge [P] to v, what can be said about the
behavior of ||v,||,? In particular, does |[2a]]» = |[2]]o ? We consider this question
and other preliminaries in Section 2. In Section 3 we give general results concerning
the consistency of P,. Section 4 deals with the special cases of exponential and
continuous models. There it is (implicitly) shown that under reasonable conditions,
the answer to the last question above is affirmative for the functions that concern
us. In Section 5 we give related large-deviation results for P, Section 6 illustrates
the theory with two examples: an exponential model, the univariate normal
distribution with unknown mean and variance; a continuous but non-exponential
model, the Cauchy distribution with unknown location. In the former case, the
condition 0 < Var X < oo is seen to assure for a large class of prior distributions
that P, converges weakly [F] to the distribution degenerate at (&g, op), where
& = EX, 052 = Var X. In the latter case, E(log|X|)* < co assures weak conver-
gence [F] of P,..

We introduce the following notation:

1.1 Definitions and assumptions. (a) p is jointly measurable.

(b) Let C=(p>0)es/ x B, C, is the cross-section at 0 (C, is the carrier of
(- | 0)) and © = (FC, = 1). Then POy > 0. (The measurability of @ is an easy
consequence of Fubini’s theorem.)

(c) I(x | 6) = In[p(x | 8)p*(x)], where p* > 0. The choice of p* is discussed below.

(d) 1,(0) = X1 (X, | 0)/n.

(¢) When p is an exponential model, ie., I(x | 0) = Ao(0) + Y 7 ai(x)4(0) =
Ao(0)+a’(x)A(0) (' denotes transpose), we write a,= Yha(X/n and o =
Ea(X). Thus I, = a,’/A+ 4.

(f) Forany random variable I, El exists if El * and El~ are not both co. We assume
p* in (c) may be chosen so that P(E[(X | 6) does not exist) = 0. Further conditions
on p* appear in Section 3.

(2) A(8) = EI(X|). For an exponential model, 1 = ar'A+4o.

(h) If v is a measurable real-valued function on ®, for Aes/ Psup, v =
Pesssup {0(0): 0 A), P||v|| 4n = (J u|t|"dP)'"* and P||v|| 4 = Psup4|v|- The sub-
script A is deleted when 4 = ©. 4" =0 —A4.
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(i) A* = Péupl and 4; = (A*—06 < A < A%).
With the above notation, we may write (1.2) as

(1.4) P, A = (Pj|exp || 4/P||exp L,||)"-
2. Preliminaries. We consider first the convergence of I, to A.

LEMMA 2.1. Assume Condition 1.1(f). Then F(l, — A[P]) = 1, where the exceptional
0-set can depend on the observed data sequence.

PrOOE. Let (Q, #) = (O xX*, o x #*). Here only, x is a point in Z®. Let
C=(l,»A)eZF. The strong law of large numbers implies that for all e ©,
FCy=1=QxF)C=1=FQC,=1)=1;ie, F(l,—» A[P)) = 1.

If p is an exponential model, an even stronger conclusion is possible. For by
hypothesis, Ea(X) exists, hence F(a,— Fa(X))=1=-F(l, > A everywhere) = 1.
When O is a topological space, various continuity assumptions on p(x I +) can insure
everywhere convergence w.p.l. The details are omitted.

A basic fact about the behavior of P||v,||, is given by

LEMMA 2.2. v, » v[P]=liminf P||v,||, = P||v]| ..

Proor. Since v, - v[P], v, = v[Q] and since Q is finite, v, — 5, v. Choose ¢ > 0.
Let O(|v| > P||v||., —/2) = 26 > 0. For n sufficiently large, Q(|v,—v| > ¢/2) < d and
then Q(|v,| > P|[v]|.,—&) > 5. It then follows that for n sufficiently large, P(|v,| >
P||v||., —€) is bounded away from zero, by y < 0, say. (For suppose QC, > d forall
n while PC,— 0. By passing to a subsequence, we may suppose y PC, < 0.
Letting D, =u,>,C,, PD,|0 while OD, > 6. Letting D =nD,, PD =0 while
QD = 9§, contradicting the equivalence of Pand Q.) Finally,

Pl 2 Gt it -a o dP)" > Plloll =7 Pl —e. 1

We consider next an extension of the notion *“Psup’ to random functions. As
the conclusions depend only on the null sets of P, we can suppose PO = 1. Let
0 < (x| 6) be jointly measurable. For xe %, let (x) = Psupu(x|6). We note that
h is measurable since h = limh,, where h,(x) = (jv"(x|0)dP)"/". Thus we may
define Psupu(X | 0) = h(X). Let N=(v(x | 0) £ h(x))eof x B. Letting N,esd
be the cross-section at x, Wxe%, PN,=1. Hence (PxF)N =1, implying
P(FN,=1)=1.1e.,

2.1) P(X]0) < h(X)w.p.1) = 1.

Parenthetically, we also note the following:

If {Y,:0€0} is a collection of random variables defined on (%, %, F), it is
well known that there is a random variable Y = Fsup Y, satisfying: V0, Y, < Y[F]
and if ¥, Y, £ Y'[F], then Y £ Y'[F]. Moreover, Y is the actual supremum of a
denumerable subfamily of {Y,}. Let Fsupu(X|0) =k(X) and N = (v(x|6) =
k(x))e s/ x#B. Then VWOeO®, FN,=1, hence F(PN,=1)=1 or F((x|0) =
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k(x)[P]) = 1, which implies F(([v"(x|0)dP)'" < k(x)) = 1. Le., h(X) < k(X)[F],
hence
(2.2) Psupu(X|6) < Fsupo(X|0)[F].

A parallel development holds for Psup ,, for Ae</.
An immediate consequence of Lemma 2.2 is

COROLLARY 2.3. If v, v, -+ are random functions (i.e. v=uv(X, 0), etc.) and
F(v, - V[P]) = 1, then F(liminf P||v,||, = P|v||.) = I.
We also require the following notion.

DEFINITION 2.4. A sequence of events {B,} is said to be exponentially bounded
if for some ¢ > 0, p < 1, FB, < cp". A random variable Y is exponentially bounded
if the events (|Y| > n) are. Equivalently, for some r > 0; E¢'!¥! < co. We note that
if Y is exponentially bounded, so is rY for every real r. If {B,} is exponentially
bounded, then F(B,i.0.)=0. Hence if s=last time B, occurs, F(s < c0) = 1.
From the relation FB, < F(s 2n) <Y 2 FB,, we see that {B,} is exponentially
bounded < s is exponentially bounded. See Section 3 of Wijsman (1968) for amore
detailed discussion of this notion.

3. Weak convergence of P,. We consider first a criterion that assures P, is even-
tually well defined. We note first that 1.1(b) assures that a.s., the denominator in
(1.1) does not vanish. We may argue this as follows: Assume first ® = @. Then
1.1(b) implies (Fx Q)C = 1; hence F([p(x|6)dP >0)=1. A similar argument
shows that [T [} p(X;|0)dP > 0 w.p.1. If ®, = ©, replace © by O, Cby CN(Z x OF)
and renormalize Q. Then [o, [T} p(X;{0)dP > Ow.p.1.

To avoid pathological behavior, the denominator in (1.1) must eventually
become finite. To this end, we consider the following. Forn =0, 1, -+,

(3.1 Z,= [exp{nl,}dP.
Note that Z, = PO. Let S be the first time Z, < c0; S = + oo if no such n occurs.
Let ¢ be the last time Z, = + c0; we take o to be zero if all the Z,, are finite and to

be + oo if all are infinite. S is a stopping time on the sequence X, X,, *** and ¢
is a reverse stopping time. S < g+ 1.

DEFINITION 3.1. P becomes proper if F(S < o0)=1. P remains proper if
F(6 < o) = 1. The following result, although it does not cover all cases of interest,

is basic.

THEOREM 3.2. Suppose F<u. Then the following are equivalent. (i) P remains
proper. (ii) P becomes proper. (iii) For some s 2 0, F(Z; < ) > 0. (iv) ¢ is exponen-
tially bounded.

Proor. Clearly (i)=-(ii). Also, (ii) clearly entails (iii). Suppose then that (iii)
holds. We note first that if PO < oo,

T pGxi |0y dp" = 1= Z, = ([ 11 p(X; | 0)p*(Xp) dP < o[ ],
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hence a.s. [F]. Thus the event (¢ > ns) is seen to entail the event
(Iexp{zllgisl l(Xli())}dP = +OO, k = 0’ 19 Tty n_l)-

Letting F(Z; < 00) = f > 0, we see that F(e > ns) < (1—p)", showing that & is
exponentially bounded. Hence (iii)=(iv). Finally, if ¢ is exponentially bounded,
F(e < o) = 1, so that P remains proper. []

We will want to consider situations in which the condition F< pu is not necessarily
satisfied. For that reason, further results on P becoming proper are given below

(Propositions 4.3 and 4.4).
The following theorem is our basic convergence result for P,. Under suitable
conditions (discussed below), it entails the weak convergence of P,.

THEOREM 3.3. Choose Aes/. If (i) 1.1(f) holds and A* > — oo, (ii) F(limsup (P
sup4l,) < A*—y) for some y > 0 and (iii) P becomes proper, then F(P,A — 0) = 1.

ReMARK. If condition 1.1(b) fails, A= —w[P], so that A1* = —oo. We also
note that limsup (Psup 41,) is symmetric in X, X,, - - - and, by the Hewitt-Savage
0-1law, is a.s. constant. It is thus no more general to assume F(lim sup (Psup 41,) <
A*) = 1. Before proving the theorem, we establish

LeMMA 3.4. If P becomes proper and for A€o/, F(limsup(Psup,l,) =a) =1,
then F(limsup P||expl, || 4, < €% = 1.

Proor. Let P = Pg; P < P. (P is the first P, that is well defined.) Let Z = Zg and
on(S<n),l,' =Y5 IX;|0)/n. F(0<Z < o) = 1. Then on (S <n),
(3.2 P|lexp L||4, = Z'/"P|lexp 1, || 4n < Z'"exp {Psup, 1, }[F].
Conditional on S, the behavior of 1, is like that of 1,, so by the hypothesis, since

F(S < ) = 1, Flimsup (Psup 4,") = a|S) = 1[F].
This, together with (3.2), implies

(3.3) F(limsup P|lexpl,|[4 S €)= 1. [

PrOOF OF THEOREM. By Theorem 2.1, F(l,— A[P]) = 1. We then see from
Corollary 2.3 that
(3.4) F(liminf P||exp |, = P||exp 4|, = exp i*) = 1.

From Lemma 3.4 we see that F(limsup P||exp 1,|| 4, < exp {A*—7}) = 1. Together,
these imply F(limsup (P,4)''" < e™?) = 1; hence FlimP,4 =0)=1. []
When 4 = A4;, the following stronger condition often holds:

3.5) F(limsup (Psup,l,) £ Psup A S A*=68) = 1.

Provided A* < o0, we then have F(P,4;— 1) = 1. Sufficient conditions for this
are given in Section 4. An important consequence appears in Corollary 3.6.

Suppose now that © is a Hausdorff topological space and that the open sets are
in /. A sequence {P,} of measures on (O, &) is said to converge weakly to P* if
for all bounded continuous v: @ — R, [vdP, — [vdP*. We further say
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DEFINITION 3.5. A collection 7 * of subsets of ® is a weak base at 0* e ® if for
every neighborhood U of 0%, there is a set 4es/* so that A<= U.

REMARK. Since © is Hausdorff, if &/* is a weak base at 6* Nn{4:de/*}
{6*}.

COROLLARY 3.6. If F(limP,A;=1) =1 for all 6 > 0 and if {A;:5 > 0} is a weak
base at 0*€©, then w.p.1, P, converges weakly to P*, the probability distribution
degenerate at 0*.

PrOOF. Let % be the open neighborhoods of 6*. Since {A4;:6 > 0} is a weak
base, for every Ue, there is an A,, <U; k a positive integer. F(P,4,, — 1, k =
1,2,---)=1, hence F(P,U— 1, Ue%) = 1. This last condition entails the a.s.
weak convergence of P, to P*. []

To be assured of weak convergence, two things must be checked. First, whether
the condition of Theorem 3.3 holds for A" (for sufficiently small §) and second,
whether the 4, form a weak based at some 6*. The second condition is perhaps
easier to verify, as it depends only on the nature of 1. For many models, 4 is con-
tinuous, so that the 4, are closed sets. If they are also compact for sufficiently
small § and decrease to {6*}, they form a weak base at 6*. If @ is locally compact, a
necessary and sufficient condition that the' 4, form a weak base at 6* is that for
sufficiently small 8, {c/ A4} form a nested system of compacts decreasing to {6*}.
Or, if © is metric, then diam 4]0 and ¢/ 45| {6*} is necessary and sufficient. If
the A; form a weak base at 6%, then limg_,.A(0) = A*; if A is continuous too, 1* =
AMO%).

Verifying the condition of Theorem 3.3 for 4, is usually more difficult. It is
insured by Wald’s (1949) classical conditions and variants (Berk (1966), Huber
1967) ) for the consistency of the maximum likelihood estimator. At the same time,
these conditions insure that the A4 ; form a weak base at some 6*. (See the discussion
below on continuous models).

4. Special structures. In this section we discuss how the foregoing applies to
certain exponential and continuous models. In the former case, it is relatively easy
to give simple conditions that insure consistency a posteriori.

Suppose p is an exponential model: /(x | 0) = a'(x)A(6) + A4(0). Associated with
p are certain convex functions: For a = (o, ** -, ,,) € R™, let

L (o) = Psup ,{a’ A(6) +2,(0)}.
We write Ly = L. The theory in Section 2 shows that L, is measurable. It is readily
seen that L, is subadditive and homogeneous of order one and is hence convex.
Then D = (L < o0) is a convex cone. Theorem 24 of Eggleston (1968) shows that
L is continuous on D°, the relative interior of D (considered as a subset of #(D),
its linear span, with the relative topology). We note that

(4.1) Psup,l, = L,(a,).

PRrROPOSITION 4.1. Suppose (1) F(a(X)e Z(D)) = 1, (ii) E]ai(X)l <o, i=1,""",m
and (iii), ap = Ea(X)e D°. Then for any Aesd, F(Psup 4, — Psup, 1) = 1.
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Proor. Since a(X)e L (D) w.p.l., the same is true of a,, for all n. Further-
more, since w.p.l. a,— apeD°, w.p.1. a, is eventually in D°. Choose A€ .«.
Since L, <L,D,=(L, < 0)>D. Since L, is continuous on (D ,)°>D° and
a, is eventually in D°, w.p.1. L(a,) = L,(ap). Le. (see (4.1)), F(Psup,l,—
Psup A)y=1. []

COROLLARY 4.2. Under the hypothesis of Proposition 4.1, if P becomes proper,
Vo6>0, FP,A;—~1)=1.

Proor. For an exponential model, ®p = ®, while under Proposition 4.1(ii),
El(X | 0) exists for all e ® and A* > — co. Writing A’ = A, Proposition 4.1 implies
that F(lim (Psup41,) = Psup,A £ A*—0) = 1. Sinceape D°, A* = L(ap) < 00, hence
the conditions of Theorem 3.2 hold. []

REMARK. It is usually easy to verify directly whether the 4; form a weak
base at some 0* e ®. If so, the conclusion of the corollary can be strengthened to
F(P,— ,P*)=1. Such a verification is illustrated in Section 6.

For exponential models, it is often easy to determine that P becomes proper via
the following. Let

4.2) h(«) = [exp {n(lo+od'A)} dP

and H,=(h,< ). h, is easily seen to be convex, hence so is H, Let
H =liminf H, = U,1,, where I, = (>, H,. Since H is the union of increasing
convex sets, H is also convex.

ProposITION 4.3. If (i) F(a(X)e £(H)) = 1, (ii) E|a(X)| < o0, i=1,, m and
ape€ H®, then P remains proper.

PROOF. As in the proof of Proposition 4.1, we may conclude that w.p.1., a,
eventually remains in H°. Let s—1 be the last time a,¢ H. Then F(s < o0) = 1.
Since H = |JI,, there isa random positive integer t so that a,e I, w.p.1. F(t < o0) = 1.
Hence on (s vt < n), by the definition of s, a,e [,cl,. Thus Z, = A,(a,) < 0. We
thus see that ¢ <sv t; hence Fl6 < 0) =1. []

ReEMARK. The combined hypotheses of Propositions 4.1 and 4.3 require that
w.p.l, aX)e L(H)n L (D) = L(HnD). We note that H,nD = I,nD, since if
exp {do+o'A} is essentially bounded and its nth power is integrable, so is any
higher power. Thus we have the simpler representation: HnD = |J (H,n D).

Although not used in the sequel, we include here another result similar to
Proposition 4.3. By strengthening Assumption 4.3(i), it is possible to drop as-
sumption 4.3(ii) and still conclude that ¢ is finite a.s. In fact, that it is exponentially
bounded. Let H denote the closure of Hin Z(H).

PROPOSITION 4.4. If for some positive integer s, F(a,e H) = 1 and F(a,e H°) > 0,
then o is exponentially bounded.

PrOOF. Let t be the first n = s for which a,e H®, or be + oo if no such n occurs.
For n = s, a, is an average of (%) points, all a.s. in H and hence is itself a.s. in H.



CONSISTENCY A POSTERIORI 901

To wit: a, is the mean of the averages of the (§) possible selections of s from
{a(X}), -+, a(X,)}. Moreover, if any one of these (5) averages is in H°, a,e H°® a.s.
for all k =n. Thus the event (t > ns) is seen to entail the event

QisiiaX)/s¢H, k=0,1,--,n—1).

Letting F(a,e H°) = f >0, F(t > ns) < (1—p)", showing that t is exponentially
bounded. We also see from the above that ¢ <t. []

Under the following conditions we may also verify Condition (ii) of Theorem 3.3,
for A = A,

ASSUMPTIONS 4.5. (a) O is a separable metric space and &/ contains the open
sets. (b) p(X | ) is a.s. continuous in 6. (c) For all §e ® there is a neighborhood U
of 6 so that EPsupy [[(X|)| <oo. (d) 4* > — oo and for §>0 there is an integer
s = 1 and a compact K< © so that EPsupy.l, < A*—4.

PRrROPOSITION 4.6. Conditions (i) and (i1) of Theorem 3.3 are met if, in addition to
Assumptions 4.5, 1.1(f) holds.

ProoF. (A fuller treatment of this demonstration may be found in Berk (1966).)
Condition (i) is subsumed by the hypotheses. Write 4, = A. Choose é > 0 and
then s and K as in Assumption 4.5(d). For fe K’, A(0) = El(0) < A*—4; hence
A>DK’', or A =(AnK)UK’'. We note now that the set of real-valued continuous
functions on K is a separable Banach space under P||-||g. (This norm is the ordi-
nary sup-norm over the compact subset of K that supports P.) By the strong law
of large numbers for Banach-valued random variables,

F(P||l,— A||g= = 0) = 1.

(It must be checked that EP||I(X|-)||x. < o0. Since K is compact, this follows from
Assumption 4.5(c).) For 6eK’, 1,(0) £u,, where u, is the U-statistic based on
Xy, **, X, formed from the kernel u(x,, -, x;) = Psupg. Y 5 I(x; | 0)/s. As shown
in Berk (1966), F(u, » Eu, < A* =) = 1. Since Psupg- I, < u,,

4.3) F(lim sup (Psupg- I,) < A*—=9) = 1.
Also, by (4.2),
(4.4) F(Psupyngl,— Psupy x A< A*=6)=1.

Together, (4.3) and (4.4) imply F(limsup(Psup,1,) < A*¥—3) = 1. It follows from
Assumptions 4.5(c, d) that A* < oo, hence Condition (ii) of Theorem 3.3 holds. []

5. Large deviations. Under further conditions, Theorem 3.3 can be strengthened
to give a large deviation result for n~'logP,4. We consider first exponential
models.

Taking D and H, as in Section 4, let A, =DnH, and A = DnH. A, and A are
convex and, as remarked after Proposition 4.3, A,1TA. For any Ades/, L, is
continuous on A°,
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THEOREM 5.1. Suppose (i) Fa(X)eZ(A)) =1, (i) for i=1,---,m,a(X) is
exponentially bounded and (iii) apeA°. Then for all y <1, {(P,4, > e ™%} s
exponentially bounded.

PrOOF. We first argue that there is a positive integer ¢ so that apeA,° and
L(A,) = Z(A). For since apeA°, there is a neighborhood, U, of o, open in Z(A),
so that UcA. Because A is convex, we may suppose that U is the interior of the
convex hull of k points, oy, * -, o, say. Here k—1 < m is the dimensionality of A.
Since oy, **, &, €A and A,TA, there is a positive integer 7 so that ay, -+, o EA,.
It follows that U= A,. Thus azeA,° and ZL(A,) =Z(U) = ZL(A).

Write A, = 4 and let N = {o:|a;—op| <&, i=1,""-, mjnZL(4,), where ¢ is
chosen to satisfy three conditions: N<A,° (possible, since apeA,°), & < B/ Mm
(B>0 and M >0 are specified below) and for aeN, L (o) < Ly(oap)+B6 =
A*—54pBo. .

From (1.4) we see that

(5.1) (P, )" = P||expL,|| 4n/P||exp L] |-

Considering first the denominator, let U = (|A,-| <M,i=1,--+,m).Since PAz; > 0,
by choosing M large enough, we can assure that P(Un4;;) > 0. Let V= Undg;
and v=PV. Then on V, |l,—4| £ Y7 |au—ar| |4 £ Mm sup; |a,;—ap;|. Hence
a,e N implies |l,— | < B on V, which implies P||expl, ||, = (Jy expnl,}dP)'"" =
exp {A*—2B 5 }v1/". Hence for n sufficiently large, a,e N implies

(5.2) P||expl,||, = exp {4*—3p}.

Considering now the numerator of (5.1), let # = supy /,(«) < co. Note also that
by adjusting p* if necessary, we may suppose A* > 8. Then a, € N implies

faexp{nl,}dP = | exp {na, A+Ao}dP
(5.3) < exp{(n—1)L,(a,)}fsexpt{a, A+ o} dP
< exp {(n— )L ,(@,)}1 < exp {n(A* —6+26)}
for n sufficiently large, since on N, L, < A*—38+ 4. Thus (5.1), (5.2) and (5.3)
show that if a,e N, P, 4 < "1 759,

Since a(X)e Z(A) = Z(A,) w.p.1, a,e £(A) w.p.1 for all n. The usual large
deviation result for sample means then shows that {(a,¢N)} is exponentially
bounded. Thus, choosing B so that 1—5p > vy, {(P,4 > e¢~"°)} is exponentially
bounded. []

REMARK. The first inequality in (5.3) shows that as soon as a, enters A,, P
becomes proper. Since N<=A,, we see, in fact, that g is exponentially bounded here.

As a prelude to the next theorem, we establish a large deviation result for

U-statistics, a fact that may be of independent interest.
Let u: &° — R be measurable and symmetric in its arguments and for n 2 s, let

u, = zu(xi" Tt Xxs)/('s'),

where the sum is over all i; < -+ < i selected from {1, -, n}.
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THEOREM 5.2. If u, is exponentially bounded and Eu, =0, then for all ¢ > C,
{(Ju,| > €)} is exponentially bounded.

Proor. Following Hoeffding (1963), for n = s, let
vn(xh R xn) = u(xl’ T xs)+u(xs+1’ Ty x2s)+. ' '+u(xks—s+1’ ) xks)a
where k = [n/s], the largest integer contained in n/s. Then
u, =YX, -, X)) kn!,

the sum being taken over all n! permutations of {1, -*-, n}. Since ku, is an average
of (n!) identically distributed statistics, inequality (5.2) of Hoeffding (1963) shows
that for ¢ >0, F(ku, > ke) < Eexp {t(v—ke)}, where v = v,(Xy, -, X,). Since v
is a sum of k independent identically distributed random variables, Eexp{tv} =
(Eexp {tu,})* = ¢*(t), say. Thus P(u, > ¢) < exp { —tke}¢*(¢). Since ug is exponen-
tially bounded and Eu, = 0, ¢(t) = 1+ O(¢?) for ¢ near 0; thus for some ¢, ¢’ >0
and y, p < 1 P(u, > &) < cy* < ¢’p". The same argument applied to —u, shows that
{(u, < —¢)} is also exponentially bounded. [J

We now give a version of Theorem 5.1 for certain continuous models. We take
S as in Section 3, 5, U and K as in Assumptions 4.5. Let Z = Zg and P = Py,

THEOREM 5.3. If Assumptions 4.5 hold, if P assigns finite measure to every
compact subset of © and if P supU|l(X| ')|, S and (InZ)* are exponentially bounded,
then for ally < 1, {(P,A4,' > e™")} is exponentially bounded.

PROOF. Let A;' = A.
(5.9 P,A = [,exp{nl,}dP/[exp {nl,} dP.

Considering first the denominator, choose K as in Assumption 4.5(d); 4, K.
We establish first that for ¢ >0, {(P||l,—4||xe > &)} is exponentially bounded.
(The only property of K we require is that it is compact.) Since EP supy|(X| )| < o0
and /is continuous at 6, as U> V| {6}, EPsup,/(X|-) | E((X(6) = A(6). Replacing
I by —1I shows also that EPinf, [(X|-) 1 A(f). For each 6 we may thus choose an
open set ¥ so that e V<= U and so that

(5.5  max {|EPsupy [(X|*)—A(0)|, |EPinfy (X |-)— A(0)|} < &/2.

There is a finite number of the {V}, say Vi, -+, V,,, that cover K. From (5.5), it
follows that

(5.6)  Psupyil,—A| < max, <<, max {|Yi-, Psupy,I(X;|")/n—EPsupy I(X|-)|,
|¥i=1 Pinfy, I(X;|*)/n—EPinfy I(X| )|} +¢/2.

Let B, denote the RHS of (5.6). The usual exponential bounds for sample means
(a special case of Theorem 5.2, e.g.) implies that {(B,>¢)} is exponentially
bounded. (Note that Psup, /(X |-) is exponentially bounded since Psupy | (X |-),
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is, by assumption, and V'« U. From (5.6) follows the exponential boundedness of
(5.7) {(Psupg |l,— 4| > &)}

We use this result to obtain bounds on the numerator and denominator in
(5.4). Treating first the denominator, for § > 0 we have
(5.8) fexp{nl,} dP 2 |,,, exp {nl,} dP.

For <1, Ay;<= Kand hence is compact (see Berk (1966), Lemma 2). From (5.8) we
see that Psup 4, |l,—A| < B6 implies that [exp {nl,}dP 2 exp {n(A*—28 )} PAy;.
Since {(Psup,,|l,— 4| > B8)} is exponentially bounded, the same is true of
(5.9 {(Jexp {nl,} dP < exp {n(A*=35)})}.

We consider next the numerator of (5.4). We note that 4 = (K— A4;)uK’, while
(5.10) [x—4,exp{nl,} dP < exp {n(A* =5+ BS)}PK < exp {n(A*—5+2B5)}
if Psupg |l,,—l| < B0 and n is sufficiently large. We thus have that
(5.11) {(Jx-a,exp{nl,} dP > exp {n(A* —6+25)})}

is exponentially bounded.

Forn>sandon (S <n—s),letl, =%, I(X; I 6)/n and let u,’” be the U-statistic
based on Xg,;, ' ", X,, formed from the kernel u(X,, -, X;) = Psupg’l,. Then
on (S <n-—y),

(5.12) {xexp{nl,} dF = Zfy exp{nl,'} dP < Zexp {(n—S)u,’}

From Theorem 5.2 and the independence of S and u,’, we may conclude that for
somec>0and p< 1, Flu, >A*-5+f6 | S) < ¢p"~S. Again, by adjusting p*(x),
we may suppose A* > §. Since S is exponentially bounded, by increasing p if
necessary, we have that Ep~5 < oo, hence that {((n—S)u, >n(A*—3d+))} is
exponentially bounded. (We take u,’ =0 on (S = n—s).) Since also (InZ)* is
exponentially bounded, the same is true of

(5.13) {(Jx-exp {nl,} dP > n(A*—5+2B9))}.

The exponential boundedness of (5.9), (5.11) and (5.13) then imply that {(P,4 >
exp{—nd(1—6p)})} is exponentially bounded. Choosing f so that 1—6f >y

concludes the proof. []
An immediate consequence of the foregoing is

COROLLARY 5.4. If the A; form a weak base at 0* and the conditions of either
Theorem 5.1 or 5.3 hold, then for every neighborhood U, of 0%, there is a f >0 so
that {(P,U’ > e™"*)} is exponentially bounded.

6. Examples. We illustrate the foregoing with two examples.

L. Exponential model. Let p(x|0) = exp{—(x—¢&)*/26}/o(2n)*, — o0 < x < o0,
0 = (¢, 6%). Choosing p*(x) = (2n)?,

(6.1) I(x]0) = —x?/26*+ ¢éx[o?— E2[26% —Ino.
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Since the carrier of p(- | 0) is (— oo, o0) for every 0, 1.1(b) is automatically satisfied.
The relevant expectations in 1.1(f) certainly exist if EX? < co. Of course then
A¥ > — 0.

We verify consistency a posteriori via Propositions 4.1-4.3. We assume P domi-
nates Lebesgue measure on ©. Replacing x by «, and x? by «, in (6.1), we have

(6.2) Ao+ A A = —a,20% +ay Jo* — E2j26% —Ino
= —(a; —&?20% —(ty—,})j26* ~Ina.

It can be readily seen from (6.2) that D = («,% < «,) (and that the maximizing
values in (6.2) are ¢ = «, and 0% = a, —«,?). Letting a,(x) = x, a,(x) = x?, we see
that F(a(X)e £(D)) = 1, while ape D° unless X is degenerate. EX* < oo also
assures that Proposition 4.1(ii) holds. Referring to Corollary 4.2, we see that if P
becomes proper, F(P,4; — 1) = 1. We note that, if, e.g.,.dP = ¢°d¢ do, P becomes
proper if X is not degenerate (in fact, as soon as n > a+ 2 and at least two observa-
tions differ). This may be established directly, but we do so using Proposition 4.3:
From (6.2), one sees that for n > a+2, H,> D; hence for n > a+2, I,o>D. Thus
Fla(X)eZ(H)) =1 and if X is not degenerate, apeD°c H°. Thus P remains
proper.

We examine the 4;. Let ¢ = EX and vp = EX?.

WO0) = —vp[20% +EEp[0? — E2[20% —Ino.

Since P dominates Lebesgue measure on O, it is easily verified that A* = A(6%),
where 0* = (&g, 0f2), 052 = vp—Ep2. Thus for the univariate normal model, we
have, asymptotically, for a large class of priors, consistency to the true mean and
variance, even though the data are not normal, provided 0 < g < 0.

We turn to Theorem 5.1, working with dP = ¢° d¢ do as an illustration. Since for
n>a+2, A,=DnH,= D, A= D. Moreover, the hypotheses of Theorem 5.1
hold if X? is exponentially bounded and not degenerate. Thus (see Corollary 5.4)
for any neighborhood U, of 0* = (&5, 6;2), for some B >0, {(P,U >e ")} is
exponentially bounded.

II. Continuous model. p(x|0) =f(x—0), —0 < 0 < oo, where f(x) = 1/n(l+x?),
—w <x<o. We choose p*(x)=mn(l+x?), so that I(x|6)=In[(1+x%)/
(1+(x—0)*)]. Since |I( - | 0)| is bounded, E/(X | 0) always exists and the requirement in
Proposition 4.6 that A*# — oo holds. To verify Assumption 4.5(c), let U = (—g¢, ¢),
¢> 0. For 0eU, |I(x|0)| < In(1+¢?) if |x| < &, while In[(1+x)/(1+(|x|+&)»)] =
I(x]6) < In[(1+x?)/(1+(|x| —&)?)] if |x|> &. Thus EPsupy |(X|6)| < 0. By trans-
lation, the same is true for U = (0 —¢,0+¢), for all 8e®. Taking s =1 and K =
[-M,M],M >0, in Assumption 4.5(d), for 6eK’, l(x| 0) < In[(1+x?)/
(1+(M—|x|)»] if |x| < M, while supgl(x|6) = In(1+x?) if |x| > M. Thus if we
assume E(In |X|)* < oo, by dominated convergence we see that E'sup. /(X |0) | — oo
as M 1 co. Hence the required K exists. Proposition 4.6 and Theorem 3.3 then apply
if P becomes proper. (E.g., if P is Lebesgue measure on @ = R, P becomes proper
after one observation. This is generally true for a location family.)
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Assumptions 4.5(b), (c) insure that A(6) is continuous in 6 and the above analysis
shows that 4(6) » — o as |6 — oo. Hence if A has a unique maximum, at 0*, say,
the 4, form a weak base there. We note in particular that if the model holds
(F ~ p(+|6%), say), then E(In|X|)* < oo and A has a unique maximum at 6*.

Turning to Theorem 5.3, we note first that if P is Lebesgue measure, Z = Z, =
n(1+X,?). Hence (InZ)* as well as the remaining quantities in the hypothesis are
exponentially bounded provided E|X|" < oo for some r > 0.

Unhappily, it is not known whether Assumptions 4.5 can be verified for
the Cauchy location/scale family. The trouble spot is Assumption 4.5(d).
Choosing s=1 gives supg l(x] 0)= +o for all K. Choosing s=2 gives
supg-I, = n[(1+ X;2)(1+ X,2)/(X, — X,)?] for all K which cannot be given an
arbitrarily small expectation. It is not known if choosing s = 3 will do.

We note too that the normal model could be analyzed as a continuous model.
One then finds that more stringent assumptions about X are required.

Acknowledgment. The author is indebted to Professor R. A. Wijsman for
suggesting many improvements that are incorporated into the exposition.
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