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1. Introduction and summary. An experimental design is called a multidimensional
(MD) design, if it involves more than one factor; see e.g. Potthoff (1964a, b). A
number of two-, three-, and four-dimensional designs are now in common use. For
example, the ordinary balanced and partially balanced incomplete block designs
are two-dimensional. The Latin squares, Youden squares, and the designs of
Shrikhande (1951) are three-dimensional. Finally, the Graeco-Latin square designs
are four-dimensional. )

The construction of multidimensional designs involving three or more factors has
been discussed by several authors both when additivity is assumed and when inter-
actions are present. To mention a few, we cite Plackett and Burman (1946), Plackett
(1946), Potthoff (1964a, b), Agarwal (1966), Anderson (1968), and Causey (1968).

A general class of multidimensional designs, which are partially balanced (PB),
has been introduced in Srivastava (1961) and Bose and Srivastava (1964). These
designs are called multidimensional partially balanced (MDPB) designs. The
(MDPB) designs are useful for economizing on the number of observations to be
taken, retaining at the same time a relative ease in analysis. MDPB designs for
models containing interaction terms have been considered by Anderson (1968).

The purpose of this paper is to obtain a class of necessary combinatorial condi-
tions satisfied by the parameters of MDPB designs, and to provide a relatively easy
method of determining whether a given design is “completely connected”. This
latter concept, also of a combinatorial nature, is a generalization of the concept of
“connected” block-treatment designs. It signifies that for every factor included
under the design, the “true’” difference between any two factor levels possesses a
best linear unbiased estimate. In a succeeding communication, Srivastava and
Anderson (1968), general methods of construction of MDPB designs are considered.

2. MDPB designs. Consider an experiment involving factors Fy, F,, -+, F,
where F, has s, levels: F,,, F,,, -, F,,.. Denote by S, the set of levels of factor
F.;r=1,2,---, m. In what follows, the terminology of Bose and Srivastava (1964),
heretofore called paper I, will be freely used. For convenience, however, we recall
certain terms: (i) As in paper I, we assume that S;, - - -, S,, have MDPB association
scheme o/ defined over them. (ii) Let F;,€S; and Fj,eS;. Then with respect to
F;, the set S is partitioned into n;; disjoint sets which are denoted in this paper by
Si(i, @), (0= 1,2, -+, n;;), where S(i, «) is called the ath associate class. (iii) ng; =
|S; (i, ®)|, where |Q| denotes the number of elements in any given set Q.
(v) pG, j, a; k, B, y) = |Si(i, BN Si(j, y)| where we assume F;, and F;, are ath
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associates of each other. (v) Bj; is an (s; x s;) association matrix corresponding to
the ath associate class in S; induced by the elements in S;.

Consider any m-dimensional design 7. We denote by N the total number of
assemblies in 7. Usually T'is written as an (m x N) matrix, a column (jy, j,, ***, jm)
of which denotes a treatment combination in which F, occurs at level F,; . Now
as in paper I, let T be an MDPB design. Recall that u, denotes the number of
assemblies in 7" which contain any given level of F,. Similarly d; is the number of
assemblies in T in which F, and F, occur at level F,, and F,, respectively, where
F,,and F,, are ath associates.

. The mathematical model for the design 7T, assuming additivity, may be expressed

(213) E(y) = A,p = Al,pl + T +Amlpm’ ‘where
p, = (pII’ ) pm’)‘ le = (pily pi29 Y piSi)a

(i=1,: -, m), where p* denotes the “effect” of F;,. Thus p(v x 1), where v=
Z’{‘ s,, is the vector of unknown parameters. The matrix A’(N x v) is the design-
model matrix, and 4,'(N X s,) is the submatrix containing the columns of A’
corresponding to F,. Also y(N x 1) is the vector of observations corresponding
to the N treatment combinations included in 7, and we assume

(2.1b) Var(y) = ¢°l,, 0> unknown.

Let M,, = 4,4/, thenrecall from paper I that

2.2) M, = A A =plg; M, =AA =) ,d%B}; rt=1,2,,m
The normal equations for estimating p are

2.3) (AANp = Ay, or Mp = Ay, where M = AA'=((M,)).

3. Combinatorial properties of MDPB designs. We now derive a number of new
and rather stringent relations connecting the parameters of an MDPB design

THEOREM 3.1. If T'is an MDPB design with the ith factor at s; levels, then
(@) N =51y = 58305 =""" = Sypllm;

(b) Yonfjdfy=pus i#j=1,2,,m;

(©) Younfidi=p; i#j=1,,m

Proor. Part (a) follows immediately since each of the s; levels of factor F;
appears exactly p; times, i=1,2,---, m. Thus N is an integer multiple of the
L.C.M. (54, 85, ", S,)- To show part (b), consider any level of factor F;. This level
appears d;; times with each of its nj; ath associates in s;; hence the indicated sum
u; is the number of times this level appears. Part (c) follows from (b) by inter-
changing i and jand noting that df; = d5;.

Consider now the matrix [M;;—pu,~ ' M, M,;], when the M’s are given by (2.2).
The sums of the different rows of this matrix are the elements of the vector
(M=~ My M,V ;0 =h(@, j, k), say, where J,, is a (4 X v) matrix containing
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1 everywhere. But
(3.1 h(i, j, k) = ;5,4 ﬂk_lMik(#kJsk1) =t Js1— iS50 = 0.

Hence all row (and simllarly all column) sums of [M;;— W~ "My M,;] are zero.
On the other hand, using Lemma 4.2 (paper I), we have

Mij"ﬂk_lMikMkj=z d;‘sz?'_ﬂk_l(Zﬂd )(Zyd i Biy)
(3.2 = Z d;; Bj; /lk_IZp yd dkj[Zap(lsJ, s k, B, y)B;
= Z [dij—.uk IZp ydik k'p(ia J sk, B, 7’)]ng~
Thus, since (see paper I) every row sum for Bf; is n7;, we get

THEOREM 3.2. We must have, for all permissible i, j, and k,

(33) Z du :] _”k IZa'lg[Zﬁ,ydgcd%jp(isjs o k’ lB’ 7)]
In view of Theorem 3.1, (3.3) is equivalent to
(3.4) Bt = Y gy Ao ALY S Gl J, a5 ke, B, 9)].

The above results are a generalization of well-known identities involving the
parameters A, - - -, 4,, of a PBIB design, where 4, is the number of blocks in which
two ath associates occur together.

4. Complete connectedness of multidimensional designs. The purpose of this
section is to derive necessary and sufficient conditions on an MD design 7'(whether
PB or not) such that all desired linear functions of the parameters are estimable.
Recall that a linear function of the parameters is said to be estimable if there exists
some linear function of the observations which is an unbiased estimate of this
function. The usual requirement on a design T is that, for every factor F;, all linear
contrasts of the parameters p;*, p;%, - - -, p;** are estimable.

DEFINITION 4.1. Let T be any MD design. (a) T is said to be a “non-singular”
design, if and only if all the linear contrasts

“.D Zj"=1 aijpij; (Zj';laij:o); i=1,2",m;

are estimable. (b) T is said to be connected with respect to the factor F; if all linear
contrasts of the parameters p;', p;%, -, p;* are estimable. (c) T'is called completely
connected if and only if it is connected with respect to each factor. (d) Thus, the
design T'is “nonsingular” if and only if it is ““completely connected”’.

THEOREM 4.1. An MD design T (whether PB or not) is completely connected if and
onlyifrank (M) =v—m+1,where M = (AA"),andv = s;+5,+ *** +8p

PROOF. Suppose first that rank (M) = v—m+ 1. It is sufficient to show that the
normal equations

“4.2) Mp = (44)p = Ay
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subject to the side conditions

(4‘3) Z] lpz" 5 i=1’2"“9m
have a unique solution. Let I" = ((I";;)) be a v x v matrix, partitioned as M, where
rii=(m—1)‘]s,s,-; i=1,2a”‘am
rij=_‘]s.-sj; l¢]=1a2’9m

The side conditions (4.3) imply that I'p = 0, and clearly rank (I') =
We now show that (M +T') is nonsingular. To see this we observe that Theorem 3.1
implies that

4.5) MI'=TM =0,,,

44

the rank of the product being zero. Since M and I' commute, the roots of any
rational function of M and I'" are the same rational functions of their roots, where
the roots are arranged in some fixed order. Since rank (MT) = 0, the (m—1) zero
roots of M in the ordering must correspond to the (m—1) non-zero roots of I.
Thus all the roots of (M +1I') must be non-zero and (M +T') is nonsingular. Now
(M +T) being nonsingular implies that 7'is completely connected since in this case
the normal equations can be uniquely solved. Thisshows thatifrank (M) = v—m+1,
then T is completely connected. If T is completely connected, then M +I" must be
nonsingular. Now rank (M +I') < rank (M)+rank (I'). Hencerank (M) = v—m+1.
On the other hand, rank (M) < v—m+ 1. This completes the proof.

In most cases, the condition given in Theorem 4.1 is computationally very
difficult to check, and more practically usable conditions are therefore needed.
With this aim, we introduce now a concept called “connectedness of MD designs”,
which is a generalization of the well-known concept of “‘connected” block-
treatment designs (which are 2-dimensional). Below y, denotes the observed
response corresponding to any assembly t.

DEFINITION 4.2. Two levels of factor F;, say levels F;, and F,, are said to be
connected with respect to factors F,, Fs, -, F,, if there exists a sequence of
assembliesin T, say tg, t;, t5, =, t, te4 1, such that

(4.6) STUEQE (= D'y = (pd' = i)

where 8( # 0) is a constant. The sequence of assemblies (to, ty, "+, t;4 1) is said
to be a chain connecting levels 1 and 2 of factor F;. A similar definition may be made
for each factor, and each pair of levels.

THEOREM 4.2. The sequence of assemblies (to, ty, ty, ***, i, tys 1), With k even, is
a chain connecting the levels F,, and F,, of factor Fy if and only if the following
conditions hold. Let Ty = (to, ty, ty, "+, t)yand T, = (t, ts, ts, ", tiyy). Then

(a) A'rjr(Tl) = j'rh'(T'Z); 1 é]r é Sr; 2 é r é m;
(b) A7(Ty) = A7(T); jy # uorv;
(©) 4(Ty) = L,"(T,)+96, and A,*(Ty) = 2,°(T,)—9;
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where 0 is some non-zero integer, where for any design T*, A,"(T*) denotes the number
of assemblies in T* in which F, occurs at level F,,.

PROOF. Suppose conditions (a), (b), and (c) hold, and consider the expression
EQ %23 (= 1)'y,). By condition (a), each effect p,/* (r = 2, - -+, m), will appear in
this expression the same number of times with a plus sign as with a minus sign.
Likewise, by (b), p,’*, j; # u or v, appears in the sum with a plus sign and a minus
sign the same number of times. Then by () it is seen that

(4.7) E(XiZo (= D'y,) = 8(p1" = 1)

Conversely, suppose that tg, t;, ---, t,,; is a chain connecting levels « and v of
factor F,;. It follows directly from Definition 4.2 that conditions (a), (b), and (c)
must hold.

THEOREM 4.3. The contrast p,*—p,® is estimable if and only if there is a chain
connecting Fy, and F,,.

Proor. If there is a chain connecting F,, and F;,, then by Definition 4.2,
(p“—p.") is estimable. Conversely, if (p,*—p,") is estimable, then there exists some
linear combination of E(y,), such that Y a; E(y,) = p,“—p,°, where the coefficients
a; are rational numbers. To see this, we observe that since p,*—p,"” is estimable, we
have that its best linear unbiased estimate is p,*—p,” where p,", p,” are obtained
from the solutions to the normal equations, viz. p = (M +1")~ ! 4y.

Now the matrices (M +1I') and 4 have integer elements, and thus the elements of
(M+T)"! are rational. Then we see that, p,* and p,” are linear functions of the
y’s with rational coefficients. Let & be an integer such that a; = ¢;6 ™!, where ¢; is
an integer for all i. Then

(4.8) Y a;E(y,)=0""Y ¢, E(y,) = py"—p1"

We claim that the sequence of assemblies (t,, t,, ts, - - *), where the t; is included
¢; times in this reference, can be rearranged so that it is a chain connecting F,, and
F,,. To do this, denote by T, the set of assemblies which appears with a plus sign
in the above sum, and by T, the set appearing with a minus sign. Then the new
sequence T* is obtained by alternately placing in the elements of 7, and T),.
Finally, it is easily shown that conditions (a), (b), and (c) must hold for this sequence
T*, so that it is a chain connecting F;, and F;,. This completes the proof.

Clearly, as a result of Definition 4.1b and Definition 4.2, and the above theorem,
any MD design T is connected with respect to the factor F; if and only if every pair
of levels of F; is connected. Now, if F,, is connected to both F;, and F;,, then F,, is
connected to F;,. Hence it follows that T is connected with respect to factor Fj, if
and only if some level of F; is connected to each other level of F;. Thus in order to
show that T'is connected with respect to a factor F;, one level of F; may be chosen
and chains constructed connecting it with each other level. If m is small this may be
accomplished with relative ease. However, if m is large, this may be practically
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difficult. Also, to show complete connectedness of 7" it must be shown that T is
connected with respect to each factor. The following result is designed to help in
this direction.

DEFINITION 4.3. Let T; be the (m—i+ 1)-dimensional design obtained from T by
ignoring the factors Fy, F,, -- -, F;_;. Then F; is said to be connected with respect
to factors F;,, ‘-, F,, in the original design T, if T; is connected with respect to
F;. (Thus here we are introducing the concept of the connectedness of one factor
with respect to a proper subset of the remaining factors.)

THEOREM 4.4. An MDPB design T is completely connected if and only if the factor
F;is connected withrespecttoF;, , F;y,, ", F,, fori=1,2,--+ , m—1.

PROOF. Suppose that F, is connected with respect to F,, F5, --*, F,,. Then for
any linear contrast Y ;a,;p," there is a linear function of the observations, say ¢,’y,
such that

(4.9) E(c,'y) = Zalipli'

Suppose F, is connected with respect to F3, F,, - -+, F,,. Then for any pair of levels
F,,and F,, there exists a sequence of assemblies (t;) in 7 such that

(4.10) E(Z(— 1)in,) = Z aziP1i+(P2u—sz) 01, (61 # 0 is a constant),

with ) a,; = 0, since half the assemblies in the summation occur with a plus sign
and the other half with a minus sign. Then

(4.11) ‘E(Z(—l)iJ’:,')—E(c2'Y) =(py"—p2") 01,

where ¢,’ corresponds to the a,;. Thus all contrasts of the p,’ are estimable. Like-
wise if F; is connected with respect to F,, - -+, F,, then for any pair of levels of F;
there is a sequence of assemblies in T such that

(+.12) EQ.(— l)iyr.-) = d,(p5"—p3") +Z as; py’ +Z ayp;

where 6, # 0 is a constant, and ) ;a;; = ) ;a,; = 0. Thus since contrasts of the
p," and p,’ are estimable, the contrast p;*—p,® is also estimable. This procedure
may obviously be continued to factor F,_,. Hence the condition given in the
theorem is sufficient. Also, the necessity part is obvious.

It should be noted that simple pairwise connectedness is not sufficient for
complete connectedness.

5. Example. To illustrate the above theory, consider an MDPB design of the
4 x 6 x 8 x 12 type, with 48 treatments. The values of the different parameters,
and the design itself, are exhibited in Table 1.

In Table 1, the levels of the various factors are represented by symbols as follows:
F(AG, BH, CE, DF), F,(x° x!,)° y!,2°%z'), Fs(4,B,C,D,E,F, G, H). and
F(AB, BC, CD‘ DA, FF, FG, GH, HE, AE, BF, CG, DH. These sets of symbols
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correspond respectively to the diagonals, faces, vertices, and edges of a (3-
dimensional) cube.

The idea behind this notation, and the association scheme behind this design is
not explained here due to lack of space and to avoid repetition. A more appropriate
setting for this discussion would appear in the paper by Srivastava and Anderson
(1968), mentioned earlier. It may be remarked here that, for any given factor, the
association scheme is quite simple, and would be apparent to the user while
attempting to solve the reduced normal equations corresponding to that factor.

TABLE 1
A 4 x 6x 8 x 12 design

N=48; u; =12, u, = 8, us = 6, yy = 4; Fsth replicate; 7, = 21.
di,=2,d},=0,d?,=2,d},=0,d2, =2,

dis=di;=1,d;,=2,d}, =d}, =0,d;,=dj,=1,d}, =0.

Assemblies

x! »° 1

» z

AG F D D F H B . B H C E E o
BF EF DH CD DH EH BF BC CD BC EF EH
BH E o o E A G G A D F F D
AE EF CG CD AE AD FG CG CD AD EF FG
CE B H H B D F F D A G G A
AB BF GH DH AD DH FG BF AD AB GH FG
DF A G G A E C C E B H H B
AB AE CG GH EH AE BC CG BC AB EH GH

From Table 1, the different assemblies of the design (like (4G, x°, F, BF),
(BH, x', C, CG), etc.) are obtained by combining a pair of levels of F; and F,
with one pair (out of the two pairs) of levels of F; and F, in the corresponding cell.
To check that the design is connected, we first observe that the following three
chains show that the level AG of F, is connected with the levels BH, CE and DF:
(4G, x°, D, EF),(BH, x°, C,EF), (4G, z°, C,CD), (BH, z°, D, CD); (AG,x°, F, BF),
(CE, x°, H, BF), (AG, y°, H, DH), (CE, y°, F, DH); and (4G, )°, B, EH),
(DF, y°, E, EH), (AG, z°, E, BC), (DF, z°, B, BC). Next ignoring F;, we show that
the level 4 of F; is connected with the levels B, C, - - -, H respectively. This, how-
ever, is obvious from the following seven chains, where each chain consists of just
a pair of assemblies: (x°, 4, AB), (x°, B, AB); (3°, 4, AE), ()°, C, AE); (z*, 4, FG),
(z', D, FG); (), 4, CG), (', E, CG); (z°, A, AD), (z°, F, AD); and ()*, F, FG),
(', G, FG); (x', A, GH), (x*, H, GH). Finally, ignoring F, and F;, the connected-
ness of F, (and hence also of F,)is obvious. Hence, by Theorem 4.3 and Theorem 4.4,
the whole design is completely connected.

The authors are thankful to the referees for pointing out some misprints in an
earlier version of the paper, and for their comments.
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