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By JEROME SACKS! AND DONALD YLVISAKER?
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1. Introduction. Consider the linear regression model in which one may observe
a stochastic process Y having the form

(1.1) Y(0) =Y {- 1 Bifi()+Z(1), te[0,1].

Here the §; are taken as unknown constants, the f; as known functions and Z is
assumed to have mean function zero and known covariance kernel R. Let T be a
subset of [0, 1] and let B, denote the best linear estimate (if it exists) of p =
(B1, :**, By) based on observing {Y(¢), te T}. When the covariance matrix of fr
is nonsmgular it will be denoted by 4~ !; when T = [0, 1] we will use the notation
AL

In an earlier paper [1], we treated the special case J =1 of (1.1). The problem
posed was that of finding a member T, in the class 9, = {T|T = {to, t;, ", 1 }

O=ty<t; < <t,=1}ofalln+1 p01nt“de51gns”forwh1ch Arl =infr g, AT .
We assumed there that f; = f had the form
1.2) f(@) = [3R(s, )o(s) ds

for some continuous function ¢ and that R satisfied assumptions slightly weaker
than those labelled A, B and C in Section 2 below (see also the Remark at the end
of Section 2). It was then shown that

. - — 4
(1.3) Tmi Art-AT =55 (2"22+ o(1)
(14 Ara—A7 =5 (2"22+ o(1)

where T,* is a set of n-tiles of the probability distribution function with density
¢~ 1(p)¢?. Thus our approximate solution to the design problem in 2, is T,*. We
say when (1.3) and (1.4) are satisfied that sampling according to o? is asymptotically
optimum.

In a second paper [2], the full model (1.1) was discussed. There, for a variety of
criteria Y which would measure the size of A;~! (e.g. the generalized variance), we
sought 7, in 9, for which Y(A7!) = infy g, Y(A7r~"). It was assumed that each
f; had the form (1.2) with associated ¢; and that R was subject to the same res-
trictions as in [1]. Our results then had the following character: given a criterion
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Y, sampling according to (}; ;¢;¢; M;;(¥))* is asymptotically optimum where
M (¥) is a suitable nonnegative definite matrix.

It is our intention here to extend results of this type to a different though related
class of covariance kernels. The main feature of our assumptions on R in [1] and
[2] was that R should be non-smooth at diagonal points in the unit square as
exemplified by kernels like R(s,#) = min(s, ) and R(s, 1) = exp(—|s—¢|). This
guaranteed that the process Z had no quadratic mean derivatives. In the present
paper we permit Z to have such derivatives. In fact, using the notation a.," = a" if
a>0, =0if a £0, we assume that, for some integer k > 0,

(t—u), !

Y du, te[0,1],

1
(1.5) Z() =f X(u)

0
where the process X has mean function zero and covariance kernel K satisfying
Assumptions A, B, C of Section 2. It follows that Z®» = X (in quadratic mean) and
that

! (s_u)+k_1(t_v)+k_1
0Jo (k—1)1

Processes Z which satisfy (1.5) for £ > 0 cannot, of course, be stationary and this
restricts the class of Z’s for which our results are applicable. However, we will note
(see the remark following Theorem 1) that the right side of (2.27) is an upper bound
if Z is any process with Z® = X where X satisfies the above assumptions. For some
practical purposes this may be enough. In a recent unpublished manuscript, G.
Wahba [4] has obtained results like ours for a class of processes not covered by
(1.5) and including some stationary processes.

In Section 2 it will be shown that results analogous to those in [1] and [2] obtain
provided A7~ is replaced by A 1, the covariance matrix of the best linear estimate
of B based on observing { Y (¢), Y'(t), - -, Y®(¢), te T }. With this modification and
J =1, the convergence rate of 4,1 to 4~'is O(n~2*~2) and sampling according
to @?/?**3 is asymptotically optimum. Similarly, for /> 1 we can demonstrate
the asymptotic optimality of sampling according to (¥ ;¢,;p; M, (¥))!/3*3
for various criteria Y. While the observation sets {Y (¢), Y'(¢), - -, Y®(¢), te T}
are not the natural ones, these results do provide us with lower bounds on the
convergence rates of Ay.! to A~!. Further, we can obtain upper bounds on these
rates which are of the same order of magnitude.

The case k = 1 is considered in greater detail in Section 3. The result there is
that use of {Y'(¢), te T} does not improve the asymptotic convergence rates, i.c.,
when k = 1 we can demonstrate the asymptotic optimality of our sampling schemes
for the more natural observation sets {Y(¢), te T}.

As was the case in [1] and [2], the behavior of linear combinations of the
functions ¢; around their zeros presents the main obstacle to simple statements of
theorems and short-winded proofs. To counter this, we adopt a somewhat different
approach than the one taken in [2]. We place here a condition on the ¢ ;s which
allows reasonable proofs of all our results. The uniformity this engenders means

(1.6) R(s,t) =

K(u,v)du dv.
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that most of our theorems are true under less restrictive assumptions and, indeed,
we have no example of a function ¢, for which the basic Theorem 1 fails. The
specific assumption we make on the ¢,’s is stated just prior to Theorem 1 in
Section 2.

The proof of Theorem 1 is due to the referee and is an improvement on our
original proof which was less elegant and required a superfluous condition on K.
We thank the referee for his remarks.

What we do in the present paper is related to certain integral prediction problems
and to the theory of spline approximation. These details will appear in [3].

2. Main results. C, is the space of functions r times continuously differentiable
on [0, 1]. D will denote the derivative operator. If G is a function of two variables
on the unit square, we will denote

6?""1

W G(u’ U) | u=s,v=t
by G”“(s, t) and we let, for example, G (s, t,) = liny, g 11,, G7(s, 1).

Suppose {Z(t), t€[0, 1]} is a stochastic process as defined through the process
{X (), te[0, 11} in (1.5). The covariance kernel R of Z is then given in terms of the
covariance kernel K of X by (1.6). Let # denote the L,-space generated by the
random variables {Z(¢), t€[0, 1]}. Since D*Z(¢) = X (¢) in quadratic mean, .# is
also the L,-space generated by {X(¢), 1[0, 1]}. Let H(R) and H(K) denote the
reproducing kernel spaces associated with the kernels R and K. /# and H(R) are
isomorphic under the mapping U — EUZ(-). Let ./, be a closed subspace of .#.
If f, H, are the isomorphic images of U and , then |f—Py f|la® =
E(U-P,,U)? where Py, is projection of H(R) — H, and P, is projection from
M - My. We also note that D*: H(R)— H(K) is an isomorphism since
E[UD*Z(+)] = D*E[UZ(*)].

An alternative way to view the projections is to assume that X is a Gaussian
process (there is no loss in doing so), to let & be the o-algebra generated by the
set of random variables which generates .#,, and then notice that E[U— P, U]* =
Var(U|¥) = E([U-E(U|9)?|9).

The assumptions we make on K are like those used in [1] and [2]. Assumptions
A and C below are identical with A and C in [1] while the present B is a restricted
version of B in [1] which nevertheless covers the examples of most interest. A
discussion of them can be found in [1].

AsSSUMPTION A. Let p and ¢ be nonnegative integers with p+¢g < 2. If s # ¢’
KP9(s, t) exists and is continuous and K%%(t, t), K%L (¢, t), etc., all exist.

AsSUMPTION B. K*9(¢, 1)—K%%(¢, ) = 1 for all te(0, 1). (1 can be replaced by
any positive constant.)

AssuMPTION C. K%% (s, -)e H(K) for each se[0, 1] and

SUPo<s<1 ”Ki'g-(& ')”H(K) < o.
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An example of particular importance (Lemma 1 below) is obtained by taking
K(s, ) = min (s, t)—the Brownian motion covariance kernel. In this case we get

from (1.6)
L(s—u) MHt—u).*
— du.
0 .
Let Z be an associated Gaussian process, i.e. the kth integral of a Brownian motion
process and define

@1 R(s,t) =

2.2) W(t) = Z(t)— E[Z(t) | D'Z(1), r = 0,1, -, k].
Then
(2.3) By(s,t) = EW(s)W(t) = EZ(s)Z(t)—y(s)’ B~ '3(t)

where B is the covariance matrix of {D°Z (1), DZ(1), ---, D*Z(1)} and y(s) is the
vector with rth coordinate E[Z (s)D"~'Z (1)] = R% (s, 1). (2.3) is easy to obtain
because E[Z(s)|D'Z(1), r=0,1, -, k] is a linear combination of the D"Z(1)’s
and the vector of coefficients of this linear combination can be written as B~ 'y(s).
The point of introducing the kernel By is the following

LeMMA 1. If he Cqpy 5 and D'h(0) = D'h(1) = 0 for 0 < r < k, then
2.4 [§ D+ 2h(s)B,(s, ) ds = (—1)** 'h(t).

PRrOOF. It is not hard to obtain from (2.3) that B,°(0, ) = B,"°(1, 1) = 0 for
0 < r < k. This and the assumptions on / yield, after successive integrations by

parts,
(2'5) j(l) D2k+ Zth( ., t) = (_ 1)k+ 1 j(l) Dk+ lthk+ 1.0( . t)

— (_ 1)2k+ 1 5‘1) Dth2k+ 1,0( . I).
On the set where s # t we have from (2.1)
(2.6) D**1EZ(-)Z(t) = D**'R(-, 1) = (= 1)"o,i(*)
where ;o (*) is the indicator function of [0, #]. Since R¥**Lp(s ) =0if s # ¢ and
p>0and R**1°(-, 1) = (—1)* on [0, 1) we have D**!y(-) is constant on [0, 1)
so that D2**1y(-YB~'y(¢) is constant on [0, 1). This last fact together with (2.6)
gives B2 10(s, 1) = (— 1)*Io q+c if s # , s # 1. This and the assumption that
h(0) = k(1) = 0 allows the evaluation of the right-hand expression in (2.5) giving
(2.4) and proving Lemma 1.

For later use we want the following version of Lemma 1.

COROLLARY. If 0<a<b =1, heCyyo(la, b)) and D'h(a) = D'h(b) =0 for
0 < r £ k then, putting

2.7 0,4, ¥) = (b—a)’“‘Bk("’”,y—’—“—),
’ b—a b—a
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we have
2.8 §aD?* 2h(x)Qy,p(x, y) dx = (— 1)** ().

Note that by choosing A(x) = (x**1(1—x)***(—1)**1)/(2k+2)! we can apply
Lemma 1 and its corollary to obtain
(2.9) §aJaQap(x, y)dxdy = (b—a)™*2 [§ [§ B(x, y) dx dy

(k+1)1?

(k+2)!12k+3)! "
We now turn to the general setup and suppose that K satisfies Assumptions

A, B, C and that R is given by (1.6). Let ¢ € C, and let fe H(R) be of the special
form

= (b_a)2k+3

(2.10) f(s) = Jo R(s, (1) dt.
In case K(s, t) = min (s, t) we have
(211) ) =(—1)k+1D2k+2f.

Let T={ty, ty,""",t,} with O0=¢,<t, << t,,= 1. Let L(k, T) be the
subspace in H(R) spanned by {R(-, 7), R®'(, 1), ***, R%(-, 1), teT}. P ¢ will
denote the projection operator from H(R) onto L(k T). For a given fe H(R),
P, 1 fis characterized by the fact that

2.12) D'(f—=Pyrf)®) =0 ifteT and 0L r<k.
When K (s, £) = min(s, t) and fis of the form (2.10) we get (see (2.11) also)
(2.13) D**2(f—P, +f) = D**2f = (—1)**1p on [0,1]-T.

LeEMMA 2. Let K(s, t) = min (s, t) and let f be of the form (2.10). Then

214) ||f=Perf|lFm = X320 S i+ @)1 Q1,11 (%, ) dx dy = Bi(9) (say).
If k =0, K satisfies Assumptzons A, B, C, and f is of the form (2.10) then, setting

0 =SUPogjcn-1{tjs1—1)s

(2.15) 1-a,6 = “f—PTfH?I(x)/Q-o((D)é 1+ao0

where ay is a constant independent of ¢.

PROOF. Abbreviate @, , ,, by Q,. Since P, rf is orthogonal to f— P, rf we can
write, using (2.10),

|[f=Pezf|* = <f=Purhif> = [5 0N S Pz f Xy dy

= Y128 [ o) f = Pop )3 dy.

Now use (2.8), (2.12), and (2.13) in the last expression and obtain (2.14).

To obtain (2.15) we appeal to Lemma 3.2 of [2] which is applicable directly
when ¢ = 0. For arbitrary ¢ the proof of Lemma 3.2 of [2] is easily adapted to give
(2.15) when a(f) = K*°.(¢, )—KY¥%(t, 1) = 1.
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"For h a continuous density on [0, 1], let T, = {¢on, t1m ***» t,a} b€ defined by
(2.16) 4nh(x)dx = ifn, i=0,1,2,:",n,

with the convention (in case of ambiguity) that ¢y, = 0 and #,, = 1. In other cases
of ambiguity (which will arise if 4 is zero on some intervals) take any ¢;, which
satisfies (2.16) e.g., the smallest such. The sequence {7}; n = 1} so defined is called
a Regular Sequence generated by h (RS (h)). By parroting the proofs of Lemma 3.3
and Lemma 3.4 in [2] and using (2.9) we can prove

LeMMA 3. If K(s, t) = min(s, t) and {T,} is RS (h) then

12 1
liminfn®**2||f= Py 1, f||* 2 (k+ ! ‘[

n 2 Bkt D12k +3)! P*(x)[A***(x)] " dx.

[1]
(If the right-hand side of this inequality is infinite, so is the left-hand side. Also,
the integrand is O at any x for which 0 = A(x) = ¢(x)).

We would like to demonstrate that

(2.17) lim n2*2 ”f— Pk,T,.f”2 _ (k+1)!? Jl P ()[h**2(x)]~ ! dx

oo T QRk+2)12k+3)! ],
for {T,} a RS (k) but have been unable to do so without restrictions on ¢ and/or .
We choose therefore to restrict ¢ in such a way that (2.17) holds for all A4 (in
contrast to placing a variety of assumptions on 4 as was ultimately done in [2]).
This enables us to prove all consequent results with little further ado. Specifically,
we will assume ¢ satisfies the condition

(*) ¢ has at most finitely many zeros (perhaps none) and if ¢(z) = 0 then in some
neighborhood of z there are numbers 0 <m =m(z) <M = M(z) and p = p(z) >0
so that for any x in this neighborhood, m|z—x|? < |@(x)| £ M |z—x]P.

It may be observed below that we use only the consequence (2.21) of (*). Amongst
other possible assumptions on ¢, (2.21) holds (with a slight modification) if ¢ has
finitely many intervals of zeros and around these zeros ¢ behaves as required in
(*). We will not spell this out.

To prove Lemma 5 we first establish

LEMMA 4. Suppose ¢ satisfies (*). There exists ay > 0 and a B > 0 so that for any
interval (a, b) with b—a £ y,

(2.18) 122 0(x)0(1)Q, 5(x, y) dx dy < B(fo@?/3** 3(x) dx)***3.

PROOF. Let the zeros of ¢ be z;, -+ -, z, and cover the z;’s with disjoint intervals
I; on which m;|x—z|" < |p(x)| £ M,|x—z,|" for choices of 0 <m; < M; and
p; >0 as provided by (*). We may suppose these intervals are symmetrically
placed around the z;’s which are in (0, 1) and that the shortest /; has length 4y.
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Suppose 7 is such that |p(x)| 2 n > 0 for x¢ U(z;—7, z;+7). Using (2.1), (2.3)
and (2.7)

Ja§a@(x)0(y)Qap(x, ) dx dy
b (*b _ _
= [![[otroone a5, (32, 2= Yaxay

b (b 1/x—a \(y—-a \
()
219 = P(xX)p(y)(b—a)**! - = du |dxdy

0 k'?
1 b (x—a )k 2
——u

=(b—a)2"”j ,:j @(x) \bza_ ). +dx:| du

1) a k'

1 k 2
=(b—a)2"+3f [fl¢((b—a)v+a)(v_u)+ dv] du

ol Jo k!

b—a)?**+3[ [t 2

< %[L |p((b—a)v+a)| dv] )

Since

(2.20) (jz P2/¥3(x) dx)2k+3 = (b—a)*+* 3(.‘-(1) @+ 3(b—a)v+a) dp)?+3
to obtain (2.18) we need only find an upper bound for the ratio

(2.21) (15 |o((b — a)o+a)| dv]?/(f§ @*/** >((b— a)v + @) dv)**3

for all (a, b), b—a < y. If (a, b) intersects no (z;—y, z;+7), (2.21) is no larger than
max ||*/n2. If (a, b) intersects (z;—y, z;+7) then for all xe(a, b), my|x—z,|P <
|o(x)] £ M;|x—z,|". Suppose first that z;¢[a, b], say z; <a, and write 0 =
(a—z;)/(b—a). Using the bounds on ||, (2.21) is bounded by

2

M.
(o a0 o2

2k+3 2k+3
_2( [(1+0)l+(2p‘/2k+3)_01+(2pi/2k+3)]2k+3
! 2pi+2k+3>

and this ratio is bounded in 6 = 0. If on the other hand z;€[a, b], write 0 =
(z;—a)/(b—a) and bound ¢ as before to get (2.21) bounded by

(2.22)

M"z 1+p; 1+pi2
(1 +p.)2 [0 +(1 _0) ]
(2.23) L
n;,z(ﬂ_>2k+3[01+(2P1/2k+3)+(1_0)l+(2p4/2k+3)]2k+3
"\2p;+2k+3

(2.23) in turn is bounded on 0 < 0 < 1. The existence of B follows and this finishes
the proof of Lemma 4.
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"LEMMA 5. Let K(s, t) = min(s, t) and let f be of the form (2.10) with ¢ satisfying
(*). Then (2.17) holds for any continuous h.

PROOF. Because of Lemma 3, we need only consider /’s for which ¢?[h2**2]~1

is integrable and it will suffice to show

(k+1)1?
= (2k+2)\(2k+3)!

If @?[h***2]7! is integrable and {T,} is RS (%) then, from Lemma 2,
limsup,., , n***?||f— Py r,f||?
= limsup,. , n?** 23724 i+ i1 () (1) D1y, , (X, ¥) dx dy.

In the sum on the right-hand side let 7, = {i|h(x) > ¢ for all x€[z;, #;,,]} and let
L=1{0,1,--,n—1}—1I,. As in (3.27) of [2] we have

(2.25) n**r2Y a1 o)1) Qe (X ¥) dX dy

k 12
- (’2—1»:2—;(12)71”5' L PR3] dx+o(1).

(224) limsupn®**?||f=Py 1 f||* £

n—»oo

jl Z(x)[h2k+2(x)]—1 dx .

The uniform continuity of # and the fact that §, = supg<j<s—1(tj+1—12;)—0
implies that, for n large enough, A(x) < 2¢ for xe[t;, t;4+,] and all iel,. For iel,,
Lemma 4 and then a Holder inequality give, provided »n is large enough that
0=,

e [t o(x)P(1) Qi (%5 ) dx dy
< B(Il‘ul @212+ 3(x) dx)2k+3
< B(I:,“ h)2k+2jn+1 ¢2(x)[h2k+2(x)]-1 dx
= (BIn?*2) [ ([ 2(x)] " dx.
Thus
n2H2S e [ ()@ Qur s (X, ¥) dx dy

(2.26) ZBY o, it ()[R 23(x)] " dx

< B <z 92 (0[H* ()] dx.
(2.24) follows from (2.25) and (2.26) if we let n'—v oo and then ¢ — 0.

THEOREM 1. Let Z satisfy (1.5) with K satisfying Assumptions A, B, C. Let f be of

th (fz)rm (2.10) with ¢ satisfying (*). Then, if h is a continuous density and {T,} is

. ake2 2 (k+1)1? v, -2k-2
2.27) lim n2**2||f= Py 1. f||2w = GEr DIk ), ()[h(x)] dx.
n- : *Jo
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PROOF. Let Kofs, 7) = min(s, ). Let A = {ge H(K)|g(s) = [3K(s, () dr, ¥
continuous} and let H, be the corresponding subset of H(K,). Let u: A — H, by
[ Ky > [ Ko Y. According to Lemma 2

(2.28) (1—ay9) = i|g_PTg”}%(l()/l|”(g)—PTﬂ(g)“I§(Ko) S 1+a,6

for all g e A. Since A (H,) is dense in H (K )(H (K,)) p can be uniquely extended to a
mapping from H(K) onto H(K,) and (2.28) will hold for all ge H(K). (2.28) can
be written more conveniently as

inf, E[U-Y 8 ¢; X(1)]?
; Lo - <1+ayd
inf g, E[A(U)—Y 8 6; Xo(t)]* °

where Ue # = L,-space of X (see the second paragraph of this section), ji is the
mapping of .# onto the L,-space of X, induced by u (X, is, of course, the process
with covariance kernel K,).

There is a Ue 4 such that

“f —Pyrf ”2I(R) =E[U _Z’:=0 Yi-obir AL (M)

where U*=U-Y,,bkZ"t,) is orthogonal to {X(t;); i=0,---,n} (recall
Z® = X), and lies in .#. Hence, by (2.29),

”f— Pk,Tfl |121(R) 2 (1—ay9) inf(o.) E[ﬁ(U*) - Z 0; Xo(ti)]2
(2.30) = (1—aod)inf i, E[A(U) =Y ;0 bs Zo®(t) — 2 0; X o(t)]?
2 (1—-aod)infy,, , E[A(U) -} v Z(1)]?
=(1-ao9) “ﬂ(f)_Pk,Tﬂ(f)”Iz!(Ro) .
Interchanging the role of K, K, etc. we obtain from (2.30)

(2.31) l—agé = ”f—Pk,Tf”lzJ(R)/”ﬂ(f)—Pk,Tll(f)”:r(Ro) S1+ao6

If £ is of the form (2.10) then u(f)(s) = [§ Ro(s, £)(¢)dt so we can use Lemma 5
and (2.31) to obtain (2.27). The proof of Theorem 1 is complete.

(2.29) (1—ayd) <

REMARK. Suppose Z is a process with Z® = X and the covariance kernel K of
X satisfies Assumptions A, B, C. We are not assuming that Z satisfies (1.5). If we
let Z(r)=Z(1)=Y524 #ZP(0) then Z does satisfy (1.5) and Z® = Z® = X so
that Theorem 1 is applicable to Z. Since

”f— Pk,Tfl Ilzi(R) = infy, , E[[6 @()Z(t)dt =Y 7= Y x=0 ¢ ZO(t)]*

= infia ), i) ELf 0Z = 387 2, 29(0) = Xs,r v ZV(8)]
<infy, , E[f@Z-Y,,y. ZOt)]

we can apply Theorem 1 and obtain the result that the right side of (2.27) is an
upper bound for limsup,.., n**?||f=P,.1..f||éw) -
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 THEOREM 2. Let f, ‘", f, be p functions of the form (2.10) with associated con-
tinuous functions @1, "+, @, each satisfying (*). Let a,, * - -, a, be positive numbers.
If {T,} is any sequence of designs, then

)4 (k+1)|2 1 ¥4 5 1/2k+3\2k+3
P 2k+2 Nf— N2> —— 7 LQ;
lim inf jZ=la,||f, Per /il —(2k+2)!(2k+3)!<_[ <,§1 1% ) )

n—> o0 0
= A(say). -
I ) ~ (T518;0,2() 1+ and if {T,*} is RS (h) then
lim,, , n?**+2 Zf=1 a; “fi_Pk,Tn‘fjllz =4

We omit the proof of Theorem 2 since it goes along the lines of the proof of
Theorem 3.2 of [2] with few changes.

Consider now the regression model defined in (1.1) of the introduction. Assume
it is possible to observe {Y(¢), -, Y®(t), € T }. We write the covariance matrix
of the best linear estimates of the regression coefficients as the J x J matrix
A;}. For T =[0, 1], the (limit) covariance matrix is denoted by 4~!. This re-
gression problem is tied to the results above about projections in the following
way: the matrix 4— A4, r has as i, jth entry, {f;— P, .f;, fj— P, rf;>. We are now
able to assert the asymptotic optimality of certain sampling schemes for criteria
placed on the size of A, 7. We suppose that the regression functions f;, -, J;are
of the form (2.10) with associated continuous functions ¢, -+, ¢,. To apply the
present Theorem 1 and Theorem 2, we further assume that

(**) Each non-degenerate linear combination of the ¢;’s satisfies (*).

With straightforward modifications being made, Theorems 4.1 through 4.9 of [2]
and their corollaries remain true in the context of this paper. The proofs in [2]
depend on Theorem 3.1 and Theorem 3.2 there while here we rely on the corres-
ponding Theorem 1 and Theorem 2. In fact, assuming (**) holds, the restrictions
found in Theorem 4.5 and Theorem 4.7 of [2] may be eliminated. As a sample
result, we give the analogue to the Corollary to Theorem 4.2 of [2]: For the
problem of minimizing the generalized variance det A, 7, the regular sequence
{T,*} generated by the density h ~ (3., ;0,0; 4¥)'/?**3 is asymptotically optimum
in the sense that

det A f.—detA™!

1 .
infy. g [det A i—detA ] as n=w

(4" denotes the i, jth entry in the matrix 47 1.) As a second example, suppose M is
a J x J nonnegative definite matrix. We obtain, corresnonding to Theorem 4.5,

(2.32) infy.g n?** 2[tr(Aid M)—tr (A~ M)]

k+ 1P ! 2k+3
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where ¢ is the J x 1 vector of functions ¢;. Furthermore, if {T,} is RS () where
h~(¢'A ' MA1¢)"/?**3 then {T,} is asymptotically optimum. (2.32) can be
viewed as a measure of the natural convergence rate of A; 1 to 477, viz.,, n” 22,
We will show that this is also the convergence rate of A7~ ! to 471,

Suppose now that one may observe only {Y (¢), ze T} in the regression problem
(1.1) so that the covariance matrix of the best linear estimates of the regression
coefficients is A7~ !. Clearly A7~ — A, # is a nonnegative definite matrix so for an
arbitrary nonnegative definite M,

(2.33) infr g, n***[tr(A;"'M)—tr(4™'M)]

k+1)1? 1 2k+3
2 s ), ¢4 M0 o)

We can also bound the infimum in (2.33) above and we turn to that now.

For T={ty, ", t,}, to=0<t;<--<t, =1, let L(T) be the subspace of
H(R) spanned by {R(, t), te T}. Py will denote the projection operator on H (R)
to L(T). It is assumed still that R satisfies Assumptions A, B, C and that f;, - -, f;
are functions of the form (2.10) with the associated functions ¢,, - -, ¢, satisfying

(* *).
THEOREM 3. For any nonnegative definite matrix M,
infr.g, n?**2[tr AM —tr Ay M] £ (k+ 1) 2([3 (¢’ M p) /24 +3)2+3 1 o(1).

PROOF. Let M be written in eigenvector form as Y ?_, 1,0,0, for ,, -, A, the
positive eigenvalues of M. Let h ~ (¢'M@)'/>**2 and let {T,*} be RS(h). From
Theorem 2 one obtains

n?**2[tr (AM) —tr (4 1,» M)]
(2.34) =n2*232_ 2|0, Py 1,0,

(k+1)1? 1 , . 2k+3
=m!<£(¢1"¢) #* ’) +o(1)

where f denotes the vector of functions f;. For each ¢;*eT,*, take k+1 distinct
points s, < 5;; <+ < 5 With |s;;—1,*| < pand 0 < p < suPy < i<a 1 (1 1 — 1,%)/4.
Let Si(p) = {s;,i=0,---,n,r=0,---, k} and note that Sy(p)€ D+ 1yk+1)-1-
We will use the fact that for any fe H(R), lim,.o||Psyf]| = {|Per.f]| (the
proof of this is fairly routine and is omitted). Now tr(AM)—tr(A; M) =

Yr_14;]|6;f—P(6,f)|? so that
Inf7 e 9004 1y 1 - [T (AM) —tr (A M)]
(2.35) < Y01 451657 = PO,
—>25;1J._,”Gj'f—Pk,Tn.(Gj'f)“z as p-0.
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For (n+1)(k+1)—1 < m < (n+2)(k+1)—1, (2.35) yields
infy . g m***2[tr(AM)—tr (47 M)]
(2.36) S infregn, s (12 2(k+ 1)+ 2[tr (AM) — tr (A7 M)]

n+2 2k+2 )4
é (__n_) (k+1)2k+2n2k+2 .Zl )-jllojtf_Pk,T,.'(ojtf)”z
j=

= (k4 1)**2n2*+2[tr (AM) — tr (A 1, M)] + o(1).

Theorem 3 then follows from (2.34) and (2.36).

To obtain an inequality in the other direction from the one given in (2.33), we
use Theorem 3 and the inversion technique employed in Theorem 4.5 of [2] to get,
for any nonnegative definite matrix M,

(2.37) infyg, n?**2[tr(Az *M)—tr (A~ 1M)]

k 12 1 2k+3
(ﬁ%ﬁ(}o (¢'A_1MA_‘¢)”2"”) +o(1).

Thus A7~ !, like 4+, converges to A~ ! at the rate of n=2*~2,

é (k-l- 1)2k+2

REMARK. For regression functions f of the form
f()= IR(Ss DP(s)ds +Z¢=o f:'=1 oy RO, ti)

for given ¢, in [0, 1] and constants a,, our results hold with suitable modifications.
The details parallel those described in Remark 3.3 of [1].

3. The case k = 1. In this section with kK = 1 we eliminate the disparity between
the conclusions of Theorem 1 and Theorem 2, as expressed for example in (2.32),
and the conclusion of Theorem 3, as expressed in (2.37). Thus if M is a nonnegative
definite matrix, (2.32) gives

1

(3.1)  n*infp g [tr(AfEM)=tr(4™'M)] = %< f 1(<l>'A“MA“<I>)”5)S+0(1)
0

1 1 5
n*[tr(A7 1, M)—tr(A~'M)] = ﬁ)(f (¢'A'1MA'1¢)1/5) +o(1)
0
where {T,*} is RS(h), h ~ (¢'A"*MA~1¢)'/%, while (2.37) gives only

(32) n*infr g [tr(Ar 'M)—tr(4~'M)] < %( f 1(¢'A“MA"¢)”5)5 +o(1).
\ )

As a consequence of Theorem 4 below, one finds

1

1 5
(3.3)  n*tr(A7AM)—tr(A~M)] = %( f (¢'A"MA“¢)”5) +o(1)
0

for the same sequence {T,*}. Thus the two problems of minimizing tr 4;,~'M and
minimizing tr A] + M have a common convergence rate and, more importantly,



DESIGNS FOR REGRESSION PROBLEMS WITH CORRELATED ERRORS iII 2069

sampling according to h ~ (¢'A"'MA~'¢)'/* is asymptotically optimum in both
instances. Put another way, the information {Y(¢),7eT} is asymptotically as
effective as the information {Y(¢), Y'(¢), te T} with respect to reducing the size
(as measured by the criterion Y(B) = tr BM) of the covariance matrix of best
regression coefficient estimates.

To establish (3.3) and the asymptotic optimality of certain sampling schemes for
the above and related problems, it will suffice for us to show that the analogue to
(2.27) is true, viz., for f given by (2.10) and {T,} an RS (h),

) 1 g2
(3.4 lim,_, , "4||f—PT,.f||2 =30 OZZ'
Having at our disposal
1 1 QDZ
35 liminfr®||[f=Prf|[2 2 limn®||f= Py, ] = o I o
" T 720 ), A

and noting that n*||f—Pr, f||* < n*||f—gr.
enough to exhibit g4, in L(T,) for which

|? if g, is any function in L(T,), it is

4 2 1 (1e?
(3.6) n*||f—gr.l| §%I0?+0(1)-
Now functions gy, in L(T,) are of the form ), . 1, ¢, R(-,t) so the approach taken
below is that of providing coefficients c¢,*, te T, for which (3.6) holds. These
coefficients are defined in (3.8), an expression for ||f —gr,,”;zmz) = ”(f _gr..)'”?i(l()
is given at (3.15) and Theorem 4 establishes (3.6) for such a choice. Following
Theorem 4, we discuss briefly the improvements made possible in the direction
suggested by (3.1) and (3.3).

Let R be given by (1.6) with k=1 and K a covariance kernel satisfying
Assumptions A-C and let f be a function of the form (2.10) for a continuous
function ¢. For T, = {to, t;, """, t,},0 =ty < t; <-- < t, =1, d; as usual denotes
tig1—tifori=0,1,---,n—1and wesetd_, =d, =0. Let

3.7 L= (di+d; )7 i () (x — t)W(ti4y —x)dx, i=0,---,n—1
L,=0.
We define coefficients ¢;*, j=1, -, n, by
(3.8) Z;=i+1 cj* =d; [Liy — L]+, 0ox)dx+d; 7! [ o(x)(x—t;) dx,
i=1,---,n—1,
S oie;* =do T Ly + [} o(x)dx+do ™" i (x)x dx.
For te(t;, t;+,) let

3.9) Ut = [ o(x)dx—d; ™! [+ o(x)(x — 1) dx, i=0,,n—1.
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For future reference we note
(3.10) fimrUunde =
fi Uty -t dt = Li(di+di—1)/2 = —[E 1 U —1)dt.
Define  so that on (¢, ¢;4 1),
B1) Yy = Ll o(x) dx_z;=i+1 Cj* = U®)+d;," ' (Li— L, ), i=1,---,n—-1
= Uo(t)—do_lLl, i = 0.
We now take g(*)=gr,(')=37=1¢;*R(*,?;) and give an expression for
I f=9llw = |(f=9)||ix - For he Co let

(3.12) J, h(s) = j h(u )("_S)*l‘)'

Then, if f is of the form (2.10), Df(s) = jojl (U)K (s, u)du. Since RVO(-, 1) =
{6 K (-, u)du we then get

(3.13) (f=9)(s) = [SY(DK(s, D) dt

and then

du.

(= 9) |z = §5 Jo w(W(DK(s, H ds dt.
Writing [§ Y(s)K (s, t)ds as A(t) and using Assumptions A-C,
(3.14) A'(1) = [SY(s)K . > (s, 1) ds
4" = —yO+(f—-9), K+ >, ).

Perform three integrations by parts using (3.14), and use J, Y(1) = J, y(1) =0
to obtain

I(F—9) |lfx = Jo w(DA(@) dt = T, Y(0)AO) + 525 [+ T - A’
(3.15) = J 1 Y(0)4(0)+J, ¥(0)A4'(0)— J, ¥(0)J, (0)
+J6 ¥+ [3 T W(IX(f—-9), K+ @2(-, 1)) dt.
The right-hand side of (3.15) is the expression for || f— g||Z&, Which is suited to our
purpose. We make some preliminary estimates of quantities appearing there prior

to stating Theorem 4.
J, ¥ and J, ¥ may be seen from (3.10) to be

(3.16) J ¥(x) = [i* U@ dt+d; " [Liltie 1 — %)+ Lis 1 (x—1)]
if i21 and xe[t;,t4q]
=("Uyt)dt+d, 'L, x if xef0,1]
and
(3.17) J,Y(x) = [+t fur1 Ut dtds+(Li—Liy )ty —X)*[2d;
+ Ly (tis 1 —X)— Ly 1 dif2
if iz1 and xe[t;,t44]
= ?ng Uft)dtds—L,(t; —x)?/2dg+ L,(t; —x)— L, do/2
if xe[0,t].
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From (3.16), (3.17) and (3.10) we find
(3.18) JWO0) =0,  J,¥(0) = —Lodo/2.

Our next step is to get an estimate of 4’(0). An integration by parts and using
J1Y(0) = J, Y(1) = 0 yields

A'0) = Y320 fiyt T Y()K 13 (s, 0) ds.

K1 (s, 0) is bounded by Assumption A so that from (3.16), (3.7), (3.9) and (3.11)
there is a constant a, for which

(3.19) [ Y(9)| < ayd; [+ o(x)| dx +ay djy f1122 |o(x)| dx
for se(t;, t;,1]- Then for some constant a,
(3.20) |A’(O)| Sa,Yjs4dfdj-, +d,)j"f“ |(p(x)| dx.

Having gathered the above facts, we now state the result.

THEOREM 4. Let ¢ satisfy (*) and let {T,} be RS (h). If {c;*} is defined for each
T,by (3.8)and if g(-) = Z;'= 1¢*R( ", t;) (the dependence on n being suppressed)

| 1 [1¢?
lim n*|| - g||fer) = 77)_[0 "

ProoF. In view of the discussion at (3.8), we may suppose [§@?/h* < 0. Using
the condition (*), 6, = max,<;<,-,d;—0. The condition (*) also produces at
(2.21) numbers B and y > 0 so that

(3.21) © (J3 lo((b — a)o+ a)| dv)*/([5 9**((b— a)o+ a) dv)®
= (b—a)*([2|o(x)| dx)*/(Jo 9**(x) dx)* < B

for all (a, b) with (b—a) < y- We take n so large that §, <y. Let us write n; =
i |qo(x)| dx and use again the Hélder inequality used above (2.26) to obtain

(3-22) d;n;? = d>([i |e(x)| dx)* < B(fi+ 9*°(x) dx)?
B ty+1 (pz
S — -
= n4ftj h4

We repeatedly take advantage below of the following estimates given by (3.22):

1
(3.23) din; < (d;n?)t = o(ﬁi)

tj.q.](pZ l
Y din? < 42 ”h“4=0‘4

jel jelJtj n

where I denotes some index set contained in {0, 1, - -+, n—1}. There are three terms
to consider in the right-hand side of equation (3.15). We first show that

|72 ¥(0)4'(0)] = o(1/n*).
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From (3.18), (3.7) and (3 23) note that
2ty

d
(3.24) |72 9(0)| = ILol <=

ol b= o= of 7).
According to (3.20)
IA'(O)I Sa,Yhs4d(d;-,+d )_f"” |(p(x)|dx
(3.25) =a,Yjcod;inj+a, Y 1=6dj-11;
s az(zq;l dj”jz)*'l'az Z:;;(l)dj—l n;

n-1
—0( )+a2 Zd.l 1']1

i=

Let I, = {i| h(x) > e on [t,, t;,,]} for some fixed ¢ > Oand let I, = {0,1,"*-,n—1}
—1I,. For n sufficiently large, the uniform continuity of 4 ensures that # < 2¢ on
[ty t;+1] for iel, and that A < 3e on [z, ;. ,] for i+ 1€el,. If jel, then

(326) d;_yn;=d;_,d;[i’*"|e(x)|dx < d;_, d;? max|p| < d;_, max |¢p| 1/e?n?
while if jeI, then
(3.27) di—yn;=(dj_y +dj)2 :f: I(P(x)l dx

4B<} ti+1 2\ %
S @+ = L
tj-1 h

if n is sufficiently large. Therefore
Yicodi- ;=Y di M+, di-11;

max o @?\*
n"p'Zdj 1+Z(dj 1+d1)* (J F‘)

tj-1

1 4B* ‘j+1(p2 1
=0 o (ze-o) (2 %)

B[ e\ (1
= 0(" ) o (2.[h<3eF) B O(F>
(3.24), (3.25) and (3.28) give
1
(3.29) |J 2 l/I(O)A'(O)I = o(n—“) .

We turn next to the last term on the right-hand side of (3.15).
From (3.17), (3.9), (3.7) and (3.23) it is easy to get that |J2 n/z(x)] = o(1/n?). Then
using Assumption C,

(3.30) |fo J2¥(K(f~9), K2, )y dt| S c||(f—g)|| fo [T ¥(n)| dt

1 L
~o(53)lo=o1l.

(3.28)

IIA
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The remaining term on the right-hand side of (3.15) is {3 (J; ¥)2. When it is found
below that [§(J, ¥)* = c/n*+0o(1/n*), (3.29) and (3.30) will give

(3.31) lF=9Y||> ~ [ (1 )
Recalling the definition of I; following (3.25), we write
(332) [o(U1 )2 =780 (Ji)? = L [ ) + 2 fi (U, ¥)?

where Y, denotes the sum over those j for which j—1, jand j+1areallin I, ),
denotes the sum over the remaining j. We attack first ), in (3.32) using (3.19) to
get

(3.33) IJ '/’(x)|2 = alz(dj+dj+l)2( "”|(p(x)|dx)2
and then, relying once more on (3.22),
(3.34) Y, [ |75 (x)|* dx

s Zz alz(dj+dj+ 1)3( :j” |‘P(x)| dx)2

, 2B [+ 9? 2B ¥* 1
s 1 4 sz Fézalz?‘ ’h’z =0 4)0(3)
h<4e

For j appearing in Y, h(x) > & on [t;_;, t;4,]. Then it is easy to obtain from
(2.16) that

1 d;_ d:
(3.35) dj-l,d;,dj+1=0<;); —jlj—‘=1+o(1); g;‘

=1+0(1).

Hence for t€[t), t;, ]
Uit)=o@)[(tjs,——d;2]+0(1)d;
(3.36) L= o(t)(d;+d;_)" d?[6+0(1)d;? = o(1;) d;*[12+0(1) d 2
Ljvy = @(t;e Nd;+d;41) "1 d}11[6+0(1)dF1 s = 0(t)d2[12+0(1)d)?
so that for xe[t), ;. ] (see (3.16))
(3.37) J1¥(x) = o(t)[d;* 12— (t;4 = X)(x —1;)/2] + o(1/n?).

Then (3.37) gives for jin ),

tj+1 1
(3.38) f (J,¥)? = ﬁ)qoz(t,) d? +0(F) .

ty



2074 JEROME SACKS AND DONALD YLVISAKER

(2.16) and the mean value theorem allow us to write d ;= [nh(0;)]” Lfor0;e(t),t;+,)

§ (J w)z — § ;72(t )d 5 I 0

Pt 1

(339 720n421h4(0) 1+°< 4)
_ tj+1(p2 1

“orDs |, ool

J

1 @? 1
< —_— —_
= 720n* J;m T +°(n4) :

Letting ¢ — 0 in (3.39) and (3.34) and using the results in (3.32) we find
1 1¢2

3.40 <

(3.40) j(/ ¥) _mf LANDTE))

The remark at (3.31), in conjunction with the one at (3.6), then concludes the proof
of Theorem 4.

With Theorem 4 proved, we assert that Theorem 2 for the case k = 1 remains
true if every P, r,f; which appears there is replaced by Py, f;. In particular, the
lower bound portion of Theorem 2 requires no further proof since one has always

(3.41) liminf,_,n*Y?_, a;||f;—Pr.fi||* 2 liminf,_, n* 2_ya;||fi—=Pur.fill*

The second portion of the modified Theorem 2 then follows from Theorem 4.

Returning again to the regression problem with regression functions f3, - -, f;
having associated functions ¢, ‘- -, ¢, satisfying (**), Theorems 4.1 through 4.9
of [2] and their corollaries now hold in an improved sense when k = 1. We can
claim, for example, the asymptotic optimality of sampling according to h ~
(¢'A~*MA~'¢)*'* for the minimization problem tr A;~ ' M mentioned at (3.1) and
(3.3). As a second example, we give the analogue to the Corollary to Theorem 4.2
of [2]: for the problem of minimizing the generalized variance det A1~ !, the regular
sequence {T,*} generated by the density h~ (¢'A”'¢)'/° is asymptotically
optimum in the sense that

dCtAT .—dCtA—
3.42 :
(342 infrog [det Ay ' —detA~ 1] a n=e
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