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A COMPLETE CLASS THEOREM FOR
MULTIDIMENSIONAL ONE-SIDED ALTERNATIVES

By Morris L. EATON!
University of Chicago

1. Introduction. For testing a simple hypothesis in an exponential family,
Birnbaum (1955) showed that the class of tests with closed convex acceptance
regions, say D,, forms an essentially complete class of decision functions. The
original proof of this result was incomplete and a complete proof appeared in
Matthes and Truax (1967) (hereafter referred to as M-T). In discussing the minimal
completeness of the class D, Birnbaum considered testing (Y, ¥,) = (0, 0) against
{1, ¥2)|¥1 20, Y20, ¥y +y, >0} where (4, ¥,) is the two-dimensional
parameter vector of an exponential family. For this problem, Birnbaum showed
that D, is not essentially minimal complete and he characterized a subset of D,
which is essentially minimal complete under certain conditions. In this paper we
present a generalization of this two-dimensional one-sided result by Birnbaum.

In recent years, a number of authors have considered the problem of testing that
the mean of a multivariate normal distribution is 0 against the alternative that the
mean is in a closed convex cone (in particular, the positive orthant). For example,
Nuesch (1966) and Perlman (1969) were concerned with the derivation of, and
distribution theory for, the likelihood ratio test for such a problem. A related
problem is that of testing the equality of components of a mean vector versus an
ordered alternative. Bartholomew (1959a,b, 1961a, 1961b) and Kudd (1963) have
discussed this problem in detail. Also, Oosterhoff and Van Zwet (1967) considered
Birnbaum’s original one-sided problem in two dimensions in their paper on the
combination of independent test statistics.

In Section 2 of this paper, we present some results concerning convex sets and
convex cones. These results are used in Section 3 to establish a complete class
theorem for testing a simple hypothesis against certain one-sided alternatives when
the underlying distribution is an exponential family. In Section 4, this result is
extended to include the case of nuisance parameters.

It is assumed that the reader is familiar with the results and methods in M-T.
Certain proofs in this paper are rather abbreviated as the arguments parallel those
in M-T. '

2. Preliminary results. Let @ be the class of all non-empty closed convex sets in
R¥*-k-dimensional Euclidean space. If V is a closed convex cone, ¥V # R* and
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V # {0}, the normal cone of V at Oe R* is defined by ¥~ = {w|(w, x) <0 for all
xeV} where (-, *) is the standard inner product on R* (see Valentine (1964) page
135). The convex cone ¥ ~ is also referred to as the dual cone by many authors.
Obviously, ¥ =~ = V. For Ce®, a vector ay€ R(||ao|| = 1) is normal to C if there
is a point ¢,€dC such that C—c, = {x|(x, ao) < 0}. Now let ®(V’) be those sets
Ce® such that if g, is normal to C, then g e V.

PROPOSITION 2.1. Ce®(V) if and only if for each c,€dC, V™~ < C—c,.

Proor. First note that ¥~ e®(V). Suppose V'~ = C—c¢, for c,€dC. Let H =
{x|(a,x) =0}, ||a]| =1 be a supporting hyperplane to C—c, at 0, such that
C—coc {x | (a, x) £ 0}. Then H is a supporting hyperplane to ¥~ atOand ¥V~ <
{x|(a, x) < 0}. Thus ae V. Since c, was arbitrary, all normal vectors to C are in
V so that Ce®(V).

Conversely, suppose Ce®(V') and suppose there exists ¢, €0C such that V'~ &
C—c,. Then there is a voe ¥~ such that vy ¢ C—c,. Let d,, be the closest point in
C—c¢y t0 vg. Then ao = (vo—d,)/(||vo—dy||) is a normal vector to C—c, e ®(V), so
that ay € V. Since 0e C—cy, it follows that ||d,|| < ||vo||- Hence (a, vo) > 0 which
contradicts the definition of ¥ ~. This completes the proof.

With the aid of Proposition 2.1, it is now possible to show that (V') is a closed
subset of @ with respect to a natural metric topology on ®@. Let @, be all closed
convex sets, C, such that 0€ C and define @, , by

Q@.D ®,, = {C|Ce®,, C<S,}

for r=1,2,-- where S,= {x|||x|]|<r}. Denoting the Hausdorff metric on
@, , by d,, define the metric d on @, by

2 d(CinS,, C,nS,)27"

2.2 d(C,, C,) = .
@2 (€0 C) =X 1544C,n5, Co05)

It follows immediately from the argument in M-T (see proof of Theorem 2.1 in
M-T) that (®,, d) is a compact metric space.

For Ce®, let g(C) be the closest point in C to 0 R*. g is a well-defined function
and g(C) = 0 for Ce®,. Note that C e ® corresponds to a unique point in ®, x R,
namely (C—g(C), g(C)). Using this, define a metric t on ® by

(2-3) 7(Cy, C;) = d(C, —g(C!), C,—9(C)))+ ”.q(cl)_g(cz)”-

If B ® is a closed subset of (®, 1), then B is compact if and only if
supc.||9(C)|| < + oo. Hence (@, 7) is a locally compact, o-compact metric space.
It is clear that convergence in (®, ) is precisely the convergence described by M-T,
although they did not show the convergence corresponded to a topology.

PROPOSITION 2.2. ®(V) is a closed subset of (D, 1).

PROOF. Suppose C, —.C with C,e®(V). Let ¢,€dC so C,—cy —.C—c,. Since
9(C—co) =0, g(C,—co) »0. Thus C,—co—9g(C,—co) »4C—co. But, V™ <
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C,—co—9g(C,—c,) for all n. Hence ¥V~ = C—c¢,, and from Proposition 2.1, the
conclusion follows.

3. An extension of Birnbaum’s theorem. Let Y be a random vector in R* with a
density p,(¥) = c(w)exp [@w’y] and a dominating probability measure pu. Here,
o'y = Zfﬂwi y;- The natural parameter space is denoted by Q. The testing
problem considered is w = 0€Q against the alternative weQ; =< Q and assume
that Q, is contained in some half-space—that is, there is a vector a # 0 such that
Q, < {x|(a, x) < 0}.

Recall that a test function ¢ has a convex acceptance region if there exists
Ce® such that

o(»)=0 ye interior (C)
=y(») . yedC
=1 yéC,

where 0 < y(y) £ 1 is a measurable function. Let ¥ be the smallest closed convex
cone which contains Q; and consider the set, D(V'), of test functions which have
closed convex acceptance regions C such that Ce®(V). Assume that ¢ =1 is in
D(V). The main result of this section shows that D(¥) is an essentially complete
class of test functions.

Let IT be the set of all probability measures on Q, which are concentrated on a
finite set of points.

PROPOSITION 3.1. Let nell be a prior distribution on Q,. Then a Bayes solution
to the above testing problem is equivalent [u] to a test in D(V).

Proor. Every Bayes solution is equivalent [¢] to a test function of the form
e(») =0 if Yi,¢c(w)explw,'y] <M,
=1 if Y., &c(w)explo/y]>M;
with possible randomization on the boundary of
C={y | Yi-1éic(w)exp—[w/y] £ M}.

Here, © puts mass &; on the point w;€Q,, i=1, -+, n. Clearly, Ce®. To show
Ced(V), let f(y) = Y1=1 & c(w;)exp [w;'y]. Since V is a convex cone and w;eV,
i=1,+,n, it follows immediately that the gradient of f, Vf(»), is in V for each
yeR*. However, if a, is normal to C, then a, = Vf(»)/||Vf(»)|| for some y. This
completes the proof.

THEOREM 3.1. The set D(V) is an essentially complete class.
PRrOOF. Since every Bayes rule for nell is in D(V), it is sufficient to show that
D(V) is closed in the weak* topology. Suppose @, —>.«@, and C,e®(V) is

associated with @,e D(V). If lim||g(C,)|| = + o, it is easy to show that @o = 1[u]
s0 poe D(V). If lim ||g(C,)|| < + oo, then there exists a subsequence #; and a set
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C, such that C,, —», C,. By Proposition 2.2, C,e®(V'). Using the argument M-T
employed to prove Birnbaum’s Theorem, it follows that ¢, = 1[u] on the comple-
ment of C, and ¢, = O[u] on the interior of C,. This completes the proof.

If pe D(V) is such that ¢ =0 for ye C and ¢ =1 for y¢ C where Ce®(V), the
question of admissibility for ¢ can sometimes be answered by a result due to Stein
(1956). For example, if Q, = ¥— {0}, Stein’s result shows that ¢ is admissible.

4. One-sided alternatives with nuisance parameters. Consider a random vector
(X, Y)eR™ x R* which has an exponential density

p(x, y; 0, w) = (6, w)exp[0'x+o'y]
with respect to a probability measure u on R™ x R¥, Let ©® denote the natural
parameter space and assume (0, 0) is an interior point of ©.

The problem considered in this section is that of testing w = 0 against the
alternative that w €Q,; < R* where Q, is contained in some half-space. It is assumed
that for each weQ;, there exists a 6 € R™ such that (6, w)e®.

Let ¥ < R* be the smallest closed convex cone containing Q, and let ®(¥) be as
in Section 2. Consider the set, D*(V), of test functions with the following property:
if ¢ e D*(V), there exists a measurable set 4 = R™ x R* such that each x section,
A(x) € R¥, is in ®(V), and

¢(x,y)=0 ye interior (A(x))
=1 VEA(x)
with possible randomization on the boundary of A(x).

THEOREM 4.1. For the testing problem above, D*(V) is an essentially complete
class. Further, given any test function ¥, there exists ¢ € D*(V') such that for each
weQ,,

4.1 E($(X, Y)| X =x) 2 E,(¥(X, Y)| X = x)[V]

with equality when w = 0. Here, v is the marginal distribution of X when (0, w) =
(0, 0).

PRroOF. With the aid of Proposition 2.2 and Theorem 3.1, the proof of this result
parallels the proof of M-T’s Theorem 3.1.

Note that (4.1) shows for each test function ¥, there exists ¢ € D*(V') such that
the conditional power of ¢ (given X = x) is no smaller than the conditional power
of W. This statement is of course stronger than the assertion that D*(V) is an
essentially complete class.
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