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LOCAL THEOREMS IN STRENGTHENED FORM FOR
LATTICE RANDOM VARIABLES

By J. DAVID MAsoN?
University of Georgia

1. Introduction. Let {X,} be a sequence of independent integral-valued lattice
random variables such that the distribution of X, is one of the distinct non-
degenerate distributions H,, ---, H, (r = 2). With the assumption that there are
sequences {A4,} and {B,} (0 < B, » o) such that Z, = B,”* (X, + - + X,)— A4,
converges in law to a nondegenerate distribution G, this paper investigates some
conditions which are sufficient for {X,} to satisfy a local theorem in strengthened
form.

2. Discussions and results. V. M. Kruglov [2] noted that a result of A. A. Zinger
[5] implies that G has an absolutely integrable characteristic function ¢ and,
therefore, a bounded density g.

We say that a local limit theorem holds for {X,} if

lim,_, , supy.z anP(Z?=1 X; = N)_g((N/Bn)—An)I =0,

where Z denotes the set of all integers.

We say that {X,} satisfies a local theorem in strengthened form (L.T.S.) if a
local limit theorem (in the usual form) holds for any sequence {X,’} which differs
from {X,} only by a finite number of terms.

Since it is possible that for some i among 1, ---, r the number of times that H,
appears among the distributions of X, ---, X, eventually does not depend on &,
we let F,, ---, F, be those among Hy, ---, H, for which this does not occur. Let
n;(n) denote the number of times that F; appears among the distributions of
X, -, X,. Then ni(n) -0 asn — oo fori = 1, .-+, k. Let h; denote the maximum
span of F; fori =1, ---, k.

LEmMMA (Petrov). A necessary condition that {X,} satisfies L.T.S. is that

(1) ged.(hy, b)) =1.

(Here, as usual, g.c.d. means the greatest common divisor.)
The proof of this Lemma is contained in the proof of Theorem 1 of [4].
Because of this lemma, we will always assume that (1) holds.
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THEOREM 1. If h, = --- = h, = 1, then {X,} satisfies L.T.S.
In [5], it is shown that the Lévy spectral function N of G is of the form, for
x>0,

N(£x)=Yi_ya x "{1+Yk  (4F cosv;;log x+ B sinv;;logx)},
where I S k, 0 < Ay < - <A <2, v; >0, 1+2k; S 1, )i [, £ 1
THEOREM 2. If there is an i such that
() lim,_ , [en(n)—(1/4)logn] = o, for any constant ¢ > 0,
and the maximum span of F; is equal to unity, then {X,} satisfies L. T.S.
We remark that the limit condition on n,(n) is satisfied if there is 6 > 0 such

that lim inf n,(n)/n’ > 0.

THEOREM 3. If F; is in the domain of attraction of a stable law with characteristic
exponent A; with 0 < Ay £ - £ A4, =2, and if G has a Gaussian component,
then {X,} satisfies L. T.S.

Note that in order for G in Theorem 3 to have a Gaussian component it is
necessary that 1, = 2.

THEOREM 4. If G is the composition of k stable laws with characteristic exponents
J; such that 0 < A, < - < A = 2, then {X,} satisfies L.T.S.

In Theorem 1, the case where k = 1 is proved in [1] page 235 (with a slight
modification). Theorem 3 generalizes a Theorem in [4] where A, = --- = 4, = 2.

3. Proofs and lemmas. Let v;, f, denote the characteristic functions of X;, Z,,
respectively.

LemMa A (Kruglov). There is a neighborhood of the origin not depending on n
such that for t in this neighborhood

/(0] < exp {1},
where ¢, [ are positive constants.

LemMmA B (Kruglov). There is A > 0 such that B, < An"'* for all n.
In a slightly different setting, these lemmas are proved in [2].

ProOOF OF THEOREM 1. Letting x = (N/B,)— A4,, we have
BnP(Z;l=1 X; =N)—g(x)

:%{an’“nexp {—itN} jljl vi(t) dt—jw; exp { —itx}(t) dz}

_ %U” exp{—itx} fi(t) di— J ww exp {— it} (1) dt}~

—Bun
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Hence,
Supy |BnP(Z?=l X;= N)—g(x)l

1
= Z_C‘SUPN ”m <rexp {—itx}(f,(1)— (1)) dt

+ fL<|i<en, €Xp { — itx} £,(t) dt
+ Jep <11y <, €XP { = itx} £,(1) dt
—fi>rexp {—irx} (1) di|

< —I—(Il +1,+15+1,),
2n

where
Il = j]tl <L |f;.(t)_ d)(t)l dta 12 = §L< 1t] <£B,,i_fn(t)| dts
fn(OIdl, 1, =j]t|>L|¢(t)ldta

I; = jeB"<|t|<an

and0<e<mn, L>0.

Since f, converges to ¢ uniformly on bounded intervals, I, can be made arbi-
trarily small for fixed L by choosing n sufficiently large.

Since ¢ is absolutely integrable, I, can be made arbitrarily small by choosing
L sufficiently large.

By letting ¢ be sufficiently small to apply Lemma A,

I, < fr<pexp {—clt]’} ar.

Hence, by choosing L sufficiently large, I, can be made arbitrarily small.

By a corollary of ([1] page 60), for each j there is a constant a; > 0 such that
for eB, < |t| < nB,, |vj(1/B,)] < exp(—a)).

Letting ¢ = min {a,, a,, ---} and using Lemma B, we have

I3 = [op,<ii)<xp, [ L}=1 |0j(2/B,)| dt

< 2nB,exp{—an} < 2nAn'te™ ",

Hence, for n sufficiently large, I; is arbitrarily small.

ProOF OF THEOREM 2. Letting I, I,, I; and I, be as before, it suffices to show
that /, can be made arbitrarily small by choosing » sufficiently large. By Lemma B,
we have

I3 £ 2nB,exp {—a;n(n)}
< 2ndexp —{a;n(n)—(1/4) logn}.

By (2), this last bound may be made as small as desired.
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Proor orF THEOREM 3. Without loss of generality, we assume
3) P(X,=0)=P(X, =a) for ali n and all a.

All that is required is to show that I; can be made arbitrarily small. To this end
we utilize a method suggested in [4].

We designate by d the g.c.d. of all integers m which correspond to a positive
probability under at least one of the distributions Fy, ---, F.. By (3), each of the
numbers h,, ---, h, is divisible by d. Hence, from (1) 4 = 1. Thus, the g.c.d. of
all integers m such that

(4) : . 2L P(X; =m) =00

is equal to unity.

Therefore, it follows that there is a positive integer M|, such that the g.c.d. of
all integers m, with |m| < M, for which (4) holds is equal to unity. Clearly,
M, may be chosen so that there is an integer m, # 0 such that |m,| < M, and
P(X, = m;) > 0 for all n. Set M = max (M,, +¢), where ¢ > 0 is the same as
in I,. Then I; = B,(R, + R,), where,

Ry = [iulTj=1 o0l dt, Ry =2 Tiofo0)] dr.
Let
pjm=P(Xj=m)’ ﬁjm=Zspj,m+spjs-
Then
[Ti=1 |Uj(t)| <exp{(3)-1 (l”j(t)|2 -1)}
=exp{(§) LJ=1 2m Pm(cos mt—1)}.

Denote the points in the segment [$+M, n] of the form 2nr/m (r and m relatively
prime, 1 < r = [m/2], 2 £ m £ M) taken in increasing order by ¢, -, ¢,.
Evidently, t, = ©, t; > M. If we set

Ay =[IM,(t +1,)/2],
Au = [(tu—l+tu)/2’ (ty+t;1+l)/l2]’ fOI'/J, = 23 R V'_]-’
A, =[(t,-1+1,)/2,7],

we can represent R, as a sum of integrals over A,, p =1, ---, v.
We will examine a fixed segment A, containing the point 7,. Let ¢, = 2nro/my.
Clearly,

‘

S Bim(cos mt—1) < =23, sin? (mt/2)
— 25" Bmsin® (mt/2),

where ' is the sum over all integers m with |m| < M and m # 0 (mod my), and
" is the sum over all integers m with |m| < M, m =0 (mod my), m # 0. The
minimum distance between points 7, is not smaller than 27/M 2. Hence, for any
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teA,,any m # 0 (mod my), |[m| < M, and any integer s, we have |mt—2ns| > &, ;
therefore, sin*(mt/2) > e, (the constants ¢, €,, --- are positive and depend only
on M). For te A,, for m = 0 (mod my), |m| < M, m # 0, we have sin*(m1/2) =
(1 —1,)%.

Hence, for re A,

H_’;=1 Ivj(t)l é eXp {—gn'—kn([_ﬂ tu)z}a
where
In =822;=lzlﬁjnz5 kn :83Z;=lzl,ﬁjm'

By (3) and (4), lim,_, , g, = . By (4), by the existence of m,, and by the
fact that there is a constant b > 0 such that B, ~ b(n,(n))* (see [3]), we have
B2 = O(g,+ky).

For n such that g, = k&,

B"fAu I—[;!:l lvj(t)l di é Bn exp {—gn}
For » such that g, < k,,,

B"jAu l—[,}=1 'Uj(t)l di é Bn(n/kn)%exp{_gn}

Since both of these bounds go to zero as n — oo, R, can be made arbitrarily
small. Clearly, R, permits the same treatment. Thus, lim /; = 0.

Proor oF THEOREM 4. This follows from Theorem 3 due to the fact that if G is
the composition of k stable laws with distinct characteristic exponents, then the
distributions Fy, ---, F} can be re-indexed so that F; is in the domain of attraction
of a stable law with exponent 4;, i = 1, -+, k ([5], Theorem 3).
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