LOCAL THEOREMS IN STRENGTHENED FORM FOR LATTICE RANDOM VARIABLES

By J. David Mason¹

University of Georgia

- 1. Introduction. Let $\{X_n\}$ be a sequence of independent integral-valued lattice random variables such that the distribution of X_n is one of the distinct non-degenerate distributions H_1, \dots, H_r ($r \ge 2$). With the assumption that there are sequences $\{A_n\}$ and $\{B_n\}$ ($0 < B_n \to \infty$) such that $Z_n \equiv B_n^{-1} (X_1 + \dots + X_n) A_n$ converges in law to a nondegenerate distribution G, this paper investigates some conditions which are sufficient for $\{X_n\}$ to satisfy a local theorem in strengthened form.
- **2. Discussions and results.** V. M. Kruglov [2] noted that a result of A. A. Zinger [5] implies that G has an absolutely integrable characteristic function ϕ and, therefore, a bounded density g.

We say that a local limit theorem holds for $\{X_n\}$ if

$$\lim_{n\to\infty} \sup_{N\in\mathbb{Z}} |B_n P(\sum_{i=1}^n X_i = N) - g((N/B_n) - A_n)| = 0,$$

where Z denotes the set of all integers.

We say that $\{X_n\}$ satisfies a local theorem in strengthened form (L.T.S.) if a local limit theorem (in the usual form) holds for any sequence $\{X_n'\}$ which differs from $\{X_n\}$ only by a finite number of terms.

Since it is possible that for some i among $1, \dots, r$ the number of times that H_i appears among the distributions of X_1, \dots, X_n eventually does not depend on n, we let F_1, \dots, F_k be those among H_1, \dots, H_r for which this does not occur. Let $n_i(n)$ denote the number of times that F_i appears among the distributions of X_1, \dots, X_n . Then $n_i(n) \to \infty$ as $n \to \infty$ for $i = 1, \dots, k$. Let h_i denote the maximum span of F_i for $i = 1, \dots, k$.

LEMMA (Petrov). A necessary condition that $\{X_n\}$ satisfies L.T.S. is that

(1) g.c.d.
$$(h_1, \dots, h_k) = 1$$
.

(Here, as usual, g.c.d. means the greatest common divisor.) The proof of this Lemma is contained in the proof of Theorem 1 of [4]. Because of this lemma, we will always assume that (1) holds.

Received February 9, 1970.

784

¹ Reproduction in whole or in part is permitted for any purpose of the United States Government. This research was supported, in part, by the Office of Naval Research, Contract No. N 0001 4-69-A-0423, Nr. 042-261.

THEOREM 1. If $h_1 = \cdots = h_k = 1$, then $\{X_n\}$ satisfies L.T.S.

In [5], it is shown that the Lévy spectral function N of G is of the form, for x > 0,

$$N(\pm x) = \sum_{i=1}^{l} a_i^{\pm} x^{-\lambda_i} \{ 1 + \sum_{j=1}^{k_i} (A_{ij}^{\pm} \cos \nu_{ij} \log x + B_{ij}^{\pm} \sin \nu_{ij} \log x) \},$$

where $l \le k$, $0 < \lambda_1 < \dots < \lambda_l < 2$, $\nu_{ij} > 0$, $1 + 2k_i \le l_i$, $\sum_{i=1}^{l} l_i \le l$.

THEOREM 2. If there is an i such that

(2)
$$\lim_{n\to\infty} \left[cn_i(n) - (1/\lambda_l) \log n \right] = \infty$$
, for any constant $c > 0$, and the maximum span of F_i is equal to unity, then $\{X_n\}$ satisfies L.T.S.

We remark that the limit condition on $n_i(n)$ is satisfied if there is $\delta > 0$ such that $\liminf n_i(n)/n^{\delta} > 0$.

THEOREM 3. If F_i is in the domain of attraction of a stable law with characteristic exponent λ_i with $0 < \lambda_1 \le \cdots \le \lambda_k = 2$, and if G has a Gaussian component, then $\{X_n\}$ satisfies L.T.S.

Note that in order for G in Theorem 3 to have a Gaussian component it is necessary that $\lambda_k = 2$.

THEOREM 4. If G is the composition of k stable laws with characteristic exponents λ_i such that $0 < \lambda_1 < \cdots < \lambda_k = 2$, then $\{X_n\}$ satisfies L.T.S.

In Theorem 1, the case where k=1 is proved in [1] page 235 (with a slight modification). Theorem 3 generalizes a Theorem in [4] where $\lambda_1 = \cdots = \lambda_k = 2$.

3. Proofs and lemmas. Let v_i , f_n denote the characteristic functions of X_i , Z_n , respectively.

Lemma A (Kruglov). There is a neighborhood of the origin not depending on n such that for t in this neighborhood

$$|f_n(t)| \leq \exp\{-c|t|^{\beta}\},\,$$

where c, β are positive constants.

LEMMA B (Kruglov). There is A > 0 such that $B_n \le An^{1/\lambda_l}$ for all n. In a slightly different setting, these lemmas are proved in [2].

PROOF OF THEOREM 1. Letting $x = (N/B_n) - A_n$, we have

$$B_{n}P(\sum_{i=1}^{n} X_{i} = N) - g(x)$$

$$= \frac{1}{2\pi} \left\{ B_{n} \int_{-\pi}^{\pi} \exp\left\{-itN\right\} \prod_{j=1}^{n} v_{j}(t) dt - \int_{-\infty}^{\infty} \exp\left\{-itx\right\} \phi(t) dt \right\}$$

$$= \frac{1}{2\pi} \left\{ \int_{-B_{n}\pi}^{B_{n}\pi} \exp\left\{-itx\right\} f_{n}(t) dt - \int_{-\infty}^{\infty} \exp\left\{-itx\right\} \phi(t) dt \right\}.$$

Hence,

$$\begin{split} \sup_{N} \left| B_{n} P(\sum_{i=1}^{n} X_{i} = N) - g(x) \right| \\ &= \frac{1}{2\pi} \sup_{N} \left| \int_{|t| < L} \exp\left\{ -itx \right\} (f_{n}(t) - \phi(t)) dt \right. \\ &+ \int_{L < |t| < \varepsilon B_{n}} \exp\left\{ -itx \right\} f_{n}(t) dt \\ &+ \int_{\varepsilon B_{n} < |t| < \pi B_{n}} \exp\left\{ -itx \right\} f_{n}(t) dt \\ &- \int_{|t| > L} \exp\left\{ -itx \right\} \phi(t) dt \right| \\ &\leq \frac{1}{2\pi} (I_{1} + I_{2} + I_{3} + I_{4}), \end{split}$$

where

$$I_{1} = \int_{|t| < L} |f_{n}(t) - \phi(t)| dt, \qquad I_{2} = \int_{L < |t| < \varepsilon B_{n}} |f_{n}(t)| dt,$$

$$I_{3} = \int_{\varepsilon B_{n} < |t| < \pi B_{n}} |f_{n}(t)| dt, \qquad I_{4} = \int_{|t| > L} |\phi(t)| dt,$$

and $0 < \varepsilon < \pi, L > 0$.

Since f_n converges to ϕ uniformly on bounded intervals, I_1 can be made arbitrarily small for fixed L by choosing n sufficiently large.

Since ϕ is absolutely integrable, I_4 can be made arbitrarily small by choosing L sufficiently large.

By letting ε be sufficiently small to apply Lemma A,

$$I_2 \le \int_{L < |t|} \exp\{-c|t|^{\beta}\} dt.$$

Hence, by choosing L sufficiently large, I_2 can be made arbitrarily small.

By a corollary of ([1] page 60), for each j there is a constant $a_j > 0$ such that for $\varepsilon B_n < |t| < \pi B_n$, $|v_j(t/B_n)| \le \exp(-a_j)$.

Letting $a = \min \{a_1, a_2, \dots\}$ and using Lemma B, we have

$$I_3 = \int_{\varepsilon B_n < |t| < \pi B_n} \prod_{j=1}^n |v_j(t/B_n)| dt$$

$$\leq 2\pi B_n \exp\{-an\} \leq 2\pi A n^{1/\lambda_1} e^{-an}.$$

Hence, for n sufficiently large, I_3 is arbitrarily small.

PROOF OF THEOREM 2. Letting I_1 , I_2 , I_3 and I_4 be as before, it suffices to show that I_3 can be made arbitrarily small by choosing n sufficiently large. By Lemma B, we have

$$I_3 \le 2\pi B_n \exp\left\{-a_i n_i(n)\right\}$$

$$\le 2\pi A \exp\left\{-\left\{a_i n_i(n) - \left(1/\lambda_l\right) \log n\right\}\right\}.$$

By (2), this last bound may be made as small as desired.

PROOF OF THEOREM 3. Without loss of generality, we assume

(3)
$$P(X_n = 0) \ge P(X_n = a) \qquad \text{for all } n \text{ and all } a.$$

All that is required is to show that I_3 can be made arbitrarily small. To this end we utilize a method suggested in [4].

We designate by d the g.c.d. of all integers m which correspond to a positive probability under at least one of the distributions F_1, \dots, F_k . By (3), each of the numbers h_1, \dots, h_k is divisible by d. Hence, from (1) d = 1. Thus, the g.c.d. of all integers m such that

$$\sum_{i=1}^{\infty} P(X_i = m) = \infty$$

is equal to unity.

Therefore, it follows that there is a positive integer M_0 such that the g.c.d. of all integers m, with $|m| < M_0$, for which (4) holds is equal to unity. Clearly, M_0 may be chosen so that there is an integer $m_1 \neq 0$ such that $|m_1| < M_0$ and $P(X_n = m_1) > 0$ for all n. Set $M = \max(M_0, \frac{1}{2}\varepsilon)$, where $\varepsilon > 0$ is the same as in I_2 . Then $I_3 \leq B_n(R_1 + R_2)$, where,

$$R_1 = \int_{-\pi}^{\pi} \prod_{j=1}^{n} |v_j(t)| dt, \qquad R_2 = \int_{-\pi}^{-\frac{1}{2}M} \prod_{j=1}^{n} |v_j(t)| dt.$$

Let

$$p_{jm} = P(X_j = m), \qquad \tilde{p}_{jm} = \sum_s p_{j,m+s} p_{js}.$$

Then

$$\begin{split} \prod_{j=1}^{n} \left| v_{j}(t) \right| & \leq \exp\left\{ \left(\frac{1}{2} \right) \sum_{j=1}^{n} \left(\left| v_{j}(t) \right|^{2} - 1 \right) \right\} \\ & = \exp\left\{ \left(\frac{1}{2} \right) \sum_{j=1}^{n} \sum_{m} \tilde{p}_{jm}(\cos mt - 1) \right\}. \end{split}$$

Denote the points in the segment $[\frac{1}{2}M, \pi]$ of the form $2\pi r/m$ (r and m relatively prime, $1 \le r \le [m/2]$, $2 \le m \le M$) taken in increasing order by t_1, \dots, t_{ν} . Evidently, $t_{\nu} = \pi$, $t_1 > \frac{1}{2}M$. If we set

$$\begin{split} & \Delta_1 = \left[\frac{1}{2} M, (t_1 + t_2) / 2 \right], \\ & \Delta_\mu = \left[(t_{\mu - 1} + t_\mu) / 2, (t_\mu + t_{\mu + 1}) / 2 \right], \qquad \text{for } \mu = 2, \cdots, \nu - 1, \\ & \Delta_\nu = \left[(t_{\nu - 1} + t_\nu) / 2, \pi \right], \end{split}$$

we can represent R_1 as a sum of integrals over Δ_{μ} , $\mu = 1, \dots, \nu$.

We will examine a fixed segment Δ_{μ} containing the point t_{μ} . Let $t_{\mu} = 2\pi r_0/m_0$. Clearly,

$$\sum_{m} \tilde{p}_{jm}(\cos mt - 1) \leq -2\sum_{j=1}^{m} \sin^{2}(mt/2)$$
$$-2\sum_{j=1}^{m} \sin^{2}(mt/2),$$

where Σ' is the sum over all integers m with |m| < M and $m \not\equiv 0 \pmod{m_0}$, and Σ'' is the sum over all integers m with |m| < M, $m \equiv 0 \pmod{m_0}$, $m \neq 0$. The minimum distance between points t_{μ} is not smaller than $2\pi/M^2$. Hence, for any

 $t \in \Delta_{\mu}$, any $m \not\equiv 0 \pmod{m_0}$, |m| < M, and any integer s, we have $|mt - 2\pi s| > \varepsilon_1$; therefore, $\sin^2(mt/2) > \varepsilon_2$ (the constants $\varepsilon_1, \varepsilon_2, \cdots$ are positive and depend only on M). For $t \in \Delta_{\mu}$, for $m \equiv 0 \pmod{m_0}$, |m| < M, $m \neq 0$, we have $\sin^2(mt/2) \ge \varepsilon_3(t - t_{\mu})^2$.

Hence, for $t \in \Delta_{n}$

$$\prod_{j=1}^{n} |v_{j}(t)| \leq \exp\{-g_{n} - k_{n}(t - t_{\mu})^{2}\},\,$$

where

$$g_n = \varepsilon_2 \sum_{j=1}^n \sum_{j$$

By (3) and (4), $\lim_{n\to\infty} g_n = \infty$. By (4), by the existence of m_1 , and by the fact that there is a constant b>0 such that $B_n \sim b(n_k(n))^{\frac{1}{2}}$ (see [3]), we have $B_n^2 = O(g_n + k_n)$.

For *n* such that $g_n \ge k_n$,

$$B_n \int_{\Delta_n} \prod_{j=1}^n |v_j(t)| dt \leq B_n \exp\{-g_n\}.$$

For *n* such that $g_n < k_n$,

$$B_n \int_{\Delta_n} \prod_{i=1}^n |v_i(t)| dt \le B_n (\pi/k_n)^{\frac{1}{2}} \exp\{-g_n\}.$$

Since both of these bounds go to zero as $n \to \infty$, R_1 can be made arbitrarily small. Clearly, R_2 permits the same treatment. Thus, $\lim I_3 = 0$.

PROOF OF THEOREM 4. This follows from Theorem 3 due to the fact that if G is the composition of k stable laws with distinct characteristic exponents, then the distributions F_1, \dots, F_k can be re-indexed so that F_i is in the domain of attraction of a stable law with exponent λ_i , $i = 1, \dots, k$ ([5], Theorem 3).

REFERENCES

- [1] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables, tr. K. L. Chung. Addison-Wesley, Reading.
- [2] KRUGLOV, V. M. (1968). A local limit theorem for non-identically distributed random variables. *Theor. Probability Appl.* 13 332–334.
- [3] Mason, J. D. (1970). Convolutions of stable laws as limit distributions of partial sums. *Ann. Math. Statist.* 41 101-114.
- [4] Petrov, V. V. (1965). Limit theorems for k-sequences of independent random variables. Litovsk. Mat. Sb. 5 443-455. (In Russian.)
- [5] ZINGER, A. A. (1965). A class of limit distributions for normalized sums of independent random variables. *Theor. Probability Appl.* **10** 607–626.