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DISCRIMINATION OF POISSON PROCESSES'

By MArRK BROWN

Cornell University

0. Introduction. In [3] Gikhman and Skorokhod obtained necessary and sufficient
conditions for absolute continuity of multidimensional independent increment
processes. By the Lévy-Itd decomposition, an independent increment process
{X(t), 0 £t £ T} can be decomposed into two independent components, an
independent increment Gaussian process, and a process determined by the jumps
of {X(¢),0 = ¢t < T}, the jumps forming a Poisson process on [0, 7] x E". Thus in
solving their problem, the authors obtained necessary and sufficient conditions for
absolute continuity of Poisson processes on [0, T'] x E", for which the expected
number of jumps of norm > ¢ is finite for all ¢ > 0.

In this paper we consider the problem of absolute continuity of Poisson processes
with o-finite mean measures over general measure spaces. Then Gikhman-
Skorokhod conditions for absolute continuity generalize to our case, but the proof
of sufficiency does not, and a different proof is presented. We also obtain con-
ditions for singularity of Poisson processes and show that two Poisson processes
with mutually absolutely continuous mean measures are either mutually absolutely
continuous or singular.

1. Define a Poisson (Z, €, u) process where (%, ¥) is a measurable space and u
a measure over (%, %), to be a random nonnegative integer valued (including
+ o0) set function N on (%, ¥) having the property that for any k& and corre-

sponding nonnegative integers ry, ---, r, and nonoverlapping % sets Cy, ---, Cy:
1) Pr(N(C)) =r;, j=1-,k)= ’{P(M(Cj),"j)
where
/{a -2
P('L‘x)= e' ) /1<OO’ o< 0
ol
= 1 A=ow,a=0o0ri=0,a=0
= 0 elsewhere.

It is easy to prove the existence of a Poisson (Z, 4, u) process for u o-finite (see
[1] page 1939). .

Each realization of a Poisson (4, %, u) process with p o-finite is of the form
N, w) = Y, cc Nt/(w), w) where {t/,i=1,2,-} is a random countable,
collection of chunks of & (a chunk of % is a set Ce€ ¥ such that C' = C
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C'e€¢=C = Cor C' = ¢), and N(t/(w), w) is a positive finite integer. Form a
random collection of chunks {z;,i = 1, ---, N(Z)} consisting of the chunks ¢/,
each such chunk repeated N(z,') times.

We can regard a Poisson (Z, %, u) process as a probability measure over
(A, o/) where A is the set of all countable subsets of chunks of Z (multiple occur-
rences of chunks are permitted) and & is the minimal c-algebra containing all
sets of the form {a:N(C,a) =k} k =0,1,--,00, Ce¥ where N(C, a) for
Ce %, ac A, is defined as the number of chunks of & which belong to a (counting
multiple occurrences of individual chunks) and which are also contained in C.

LeMMA 1. If P, and P, are Poisson processes over (¥, €), both (%) and W(&) are
finite, and p < v with f = du/dv, then P, < Pv with

T = exp [ (@) @ T

PROOF.  Ep (nf(t;) Incay=x | N(Z) = n)

ol o] o] (T

- (;)[:%:Ik[%]m forall n2k Ac¥.

Thus:
[ny=kexp[—(u—v)Z]nf(t,)dP, = EP,[Iycy=rexp[—(u=v)Z]nf(1;)]
= EPV[EPV(IN(A)=I¢ exp[—(u—x)Z]nf () | N@)]

exp[ —uw(Z)] = [wA)]"* A)JFexp[ —u(4
(A p[k!ll( )]n;k[/(l'(l_):}()! _[u4)] kP![ u(A4)]

= P(N(A) = k).

LEMMA 2. Let P and Q be probability measures over (A, /) and let s/, be an
increasing sequence of o-subalgebras of o/ with U, = . Let P, and Q, be the
restrictions of P and Q to s/, and suppose that P, < Q, for all n. Let g, =
dP,/dQ,. Then under Q, g, converges a.s. [Q] to an &/ measurable function g.
Moreover P < Qiff Eyg = 1in which case g = dP[dQ.

Proor. Neveu [4] page 144.

Define A, = {x:0 < |f(x)—-1| £ ¢}
B = {x:|f(x)—1| > c}.
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THEOREM 1. Let P, and P, be Poisson processes over (¥, €) with o-finite mean
measures pand v. Then P, < P, iff the following conditions hold:

(i) p<v
(ii) u(B.) < 0, v(B.) < o forall ¢ >0,

or equivalently [p_|f—1|dv < oo for all ¢ > 0.
(iii) For some ¢ > 0, 5. (f—1)*dv < oo.

ProoF. The proof of necessity follows easily from the proof of Theorem 7.3
in [3].

Suppose the above conditions hold. Choose ¢ € (0, 1) such that [ (f—1)*dv <
0. Define C, = B.p+y O Bejpp,m =1,2,-+, and D, = )i C,,n=1,2, .
The sets {C,,} are disjointand | J¥" C,, = A,.. Define s/, = ¢ " D,,n=1, -, o0,
where 4, = € n o/.. Define P, (P, ,) to be the restriction of P(P,) to «,,
n =1, -, c. It follows from conditions (i) and (ii) and Lemma 1, that P, < P,
iffP, , <P, . By condition (i) and Lemma 1:

ap,, n
(1) gnzdpv’"=ml—=-[1 Yms n=1’2’”'

where Y, = exp [—(u(C,)—v(C )] T, ¢, f(t). Now log g, = Yn_ log Y, 1s
a sum of propor (f(x) > 0 on D,) independent random variables, and thus
log g, converges a.s. iff it converges in distribution, [5] page 251. Let B,(t) =
log E, [exp (it log g,)]. Then:

2 Bu(t) = [p, (exp (it log f(x)] = 1 —it(f(x) — 1))o( dx).

Since exp [it log f(x)] = 1+it(f(x)—1)— 3> +it)(f(x)— D> +o(f(x)—1)*> as
f(x) = 1, it follows from condition (iii) that f,(#) converges pointwise. The
dominated convergence theorem and condition (iii) show that the limit of §, is
continuous at 0. Thus log g, converges in distribution and thus a.s. [P,] to an &7,
measurable function which we label log g. By the dominated convergence theorem
and condition (iii), the moment generating function of log g exists and

log E,, (exp (110g 9)) = [4, (/'~1—1(f~1) db,

so that £, (g) = E,, [exp (tlog g)] |,=I =1.ByLemma2, P, , <P, ,,and thus
by our previous remark P, < P,.

THEOREM 2. Let P, and P, be Poisson processes over (X, €) with a-finite mean
measures p and v. Let u = A+w be the Lebesgue decomposition of u with respect
tov(d < v,w Lv).Then P, L P,iff one of the following three conditions hold:

(i) w&) = oo.

(ii) [, |[f—1|dv =00  for some ¢ > 0.

(i) 5. (f—=1)*dv =00  forall ¢ >O0.
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ProoF. The sufficiency of condition (i) is obvious. The sufficiency of (i1) and (iii)
follow from the proof of necessity of Theorem 7.3 in [3].

Suppose that none of the above conditions hold. Note that A and w are con-
centrated on disjoint subsets C, and C,, of 4 and v(C,) = 0. Since w(&) < oo,
P,(N(C,) = 0) > 0. Conditional on N(C,) =0, N has a Poisson (Z,%,v)
distribution under v and a Poisson (&, %, A) distribution under x. By Theorem 1,
a Poisson (Z, €, v) process dominates a Poisson (%, %, A) process. Therefore
P, and P, are not singular.

Corollary 1 below is an immediate consequence of Theorem 1 and Theorem 2.

COROLLARY 1. Let P, and P, be Poisson processes over (¥, €) with o-finite mean
measures y and v, with p = v. Then either P, = P, or P, LP,-P,=P,iff there
exists ¢ > 03 [p |f=1| dv+ [z, (f—1)*dv < 0. P, L P, iff for all ¢ > 0 [5,
|f—1| dv+ 5, (f—1)* dv = 0.

2. Example. Let & = {1,2,3,---} and v(m) = m, u(m) = m+1 for all m.
Let P, and P, be Poisson u and v processes. Then u < v with (du/dv)|(m)=
f(m) = 14+1/m. Now u(B,) < o, v(B.) < oo for all ¢ > 0 so that Condition (ii)
of Theorem 1 holds; but: :

[5, (fx) =D v(dx) = Y 1yc 1/m = o0

so that condition (iii) does not hold and thus P, 1 P,.
This example has been included because the result was surprising to the author.
His intuition was that P, and P, were equivalent.

Acknowledgment. The above results were derived by the author in [2] without
knowledge of the paper [3]. The author is grateful to the referee for bringing the
latter paper to his attention.
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