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ONE-WAY EXPECTED UTILITY WITH
FINITE CONSEQUENCE SPACES

By PETER C. FISHBURN

Research Analysis Corporation

1. Introduction. Throughout this paper I shall assume that X is a nonempty
finite set and that £ is the set of probability distributions on X. The purpose of
the paper is to examine critically conditions for a binary relation > (preference) on
& that imply

PROPOSITION 1. There is a real-valued function u on X such that, for all P, Q € 2,
(1 P> Q= FE®,P)> E(u, Q).

In (1), E(u, P) = Y u(x)P(x), the expected value of  under P.

The expected-utility representation in (1) can be thought of as unidimensional
one-way (=) expected utility, in contrast to the unidimensional two-way (<>)
representation

2) P> Q< E(u, P) > E(u, Q)

that is implied by the von Neumann-Morgenstern axioms [8]. Our interest in (1)
stems primarily from the fact that (1), unlike (2), does not imply that the relation
(not P> Q, not Q > P) is transitive. For further comments on this point see
Aumann [2] and Fishburn [4].

The one-way representation (1) has been studied previously by Aumann [2], [3]
and Kannai [5]. Both remark on the difficulties encountered when X is allowed to be
infinite, and Kannai investigates multidimensional expected-utility in this case.
Although Aumann’s formulation differs slightly from mine, there is no difficulty
in translating his formulation into the one used here. In particular, the following
theorem is similar to Aumann’s Theorem A [2], and its proofs in ([4] Chapter 9)
and in this paper are similar to Aumann’s proof. [«P+(1—a)R is the convex
linear combination of P and R so that, for all 4 = X, (xP+(1 —a)R)(A4) =
aP(A)+ (1 —a)R(A). Recall that X is assumed to be finite.]

THEOREM 1. Proposition 1 is true if the following four conditions hold throughout 2 -
Al. > istransitive.

A2 ae(0,1)and P > Q = aP+(1—a)R > aQ+(1—a)R.

A3. «e(0,1) and aP+(1—o)R > aQ+{1—)R = P > Q.

A4, aP+(1—)R > aQ+(1—a)S for all a € (0, 1] = not S > R.

To quote Aumann ([2] page 451), A2 “asserts that a preference is not changed by

3 9

‘dilution’,” and A3 says “that if we have a diluted preference, then the correspond-
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ing undiluted preference also holds.”” The final condition is an Archimedean
condition that may be stated alternatively thus: if S > R then there is some
o € (0, 1] such that not aP+(1—o)R > aQ+(1 —«)S. When S > R, we would
expect aP+ (1 —a)R > aQ +(1 —a)S to be false when « is sufficiently near to zero.

Of the four conditions in Theorem 1, only A4 is implied by (1). In the course
of the paper we shall develop a necessary and sufficient condition for Proposition 1.
However, this condition (Section 4) defies simple interpretation. Nevertheless, it
illustrates the structure of (1) and can serve as a basis for proving theorems such as
Theorem 1. In fact we shall prove Theorem 1 in this way although the proof is
somewhat-incidental to an argument that the sufficient conditions of Theorem 1
probably cannot be improved upon (by not assuming all of Al, A2 and A3 for
example) without an uncompensating loss in simplicity of interpretation. Put
differently, our contention is that there is no set of sufficient conditions for
Proposition 1 that is more elegant than the set provided by Aumann.

Prior to a defense of this contention we shall investigate the special case where >
is finite (or ‘““finitely generated” as explained later). Although Al, A2 and ir-
reflexivity are sufficient for Proposition 1 in this case (Theorem 4 and Corollary 2),
we shall focus our attention on another condition (B1, Section 3) that is necessary
and sufficient for (1). Although condition B1 presents some interpretive problems
it has the advantage that it applies as well to any nonempty subset of £ as to &
itself. (This is not true for example of A2 where if P > Q then a whole host of
mixtures is taken to be relevant for preference comparisons.) For example, it is
immaterial under B1 whether the set of distributions on X that are of real concern
to the decision maker is closed under convex combinations. However, to avoid
unnecessary notation I shall use £ in connection with BI.

The proofs of later theorems for Proposition 1 will be based on some theory for
convex cones that we shall now review.

2. Convex cones. A nonempty subset C of n-dimensional Euclidean space E"
is a convex cone if and only if x, ye C and a, 8 > 0 = ax+ fy € C. The origin 0
of E" need not be in a convex cone. —C = {—x: x € C}. Cis the closure of C.

The convex cone generated by nonempty D = E"is

C={3Ax"2;>0 and x'eD for all i}

in which all sums are nonempty and finite. C is finitely generated if it is generated
by some finite subset of itself. C = Cu {0} when Cis finitely generated.

With w, x € E", w-x = Y i, w;x;. The following theorem is proved in Aumann
[2] and Fishburn [4]. The corollary follows easily.

THEOREM 2. Suppose that C is a nonempty convex cone in E". Then there is a
w € E" such that

3) w-x >0 forall xeC
ifandonly if Cn(—-C) = .
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COROLLARY 1. If C is finitely generated then (3) holds for some w € E" if and only
if0¢C.

This corollary is used in the next section. In Section 4 we shall use Theorem 2
along with the following characterization of Cn(—C) = &

THEOREM 3. Suppose that C is a nonempty convex cone in E". Then Cn(—C) =
ifand only if, for all x, y € E",

4 ax+(1—a)yeC forall ae(0,1]= —y¢C.

Clearly, (3) implies (4), and (4) implies that 0 ¢ C. Assume that (4) holds and that
x is in the interior of C < E". Then, for any y € C it can be shown (see, e.g., [6]
page 110) that ax+(1—a)y e C for all « € (0, 1]. Hence, by (4), —y ¢ C, and
therefore (4) implies Cn(—C) = (. Suppose next that (4) holds and that C has
an empty interior. It can then be shown with little difficulty that there is an
i€ {1, ---, n} such that x, is uniquely determined by the other »— 1 components of x
for every xe C. Withi =nlet C' = {(x,, -, x,-1): x€ C}. C' is a convex cone
in E"~! and the copy of (4) holds for C’. Therefore, if C’ has an interior point
then C'n(—C’) = & and hence Cn(—C) = . If C’ has no interior point,
further reduction leads to a C” with an interior point, from which Cn(—=C) =
follows.

3. Independence axioms. This section focuses on three related independence
axioms. Although our main concern will be with the first of these, the other two
are of interest both in themselves and in their relationships to the first.

Bl. [me{1,2,~} and «; > 0 and P! > Q’ for j=1,--,m and Y u; = 1] =
Yo Pl # Ya,00

B2. [me{l1,2,-~-} and a; > 0 and P! > Q’ for j=1,---,m and Yu; = 1] =
YoPl > Y00

B3. [me{2,3,~}and a; >0 for j=1,--, mand Yo; = 1 and P! > Q’ for
j=1 m—=1and Y7 a;Pl =3Y7a;0']= Q" > P"

Of these three, only B1 is necessary for Proposition 1. Moreover, Bl is the only
axiom that does not posit the relevance of preference comparisons that are not
supposed in its hypotheses. It may be noted that if Q™ > P™in B3 is changed to not

> Q™ then the modified B3 is equivalent to B1.

Several interesting relationships among these axioms and Al, A2 and A3 are
noted in the following theorem (proofs omitted).

THEOREM 4. B3 < Al and A2 and A3. Al and A2 = B2. B2 and > is ir-
reflexive = B1. Bl = > is irreflexive and asymmetric.

Since B3 is equivalent to A1 and A2 and A3 (a fact that we shall use in the next
section), the remainder of this section concentrates on Bl and B2. Interpretlve
aspects of these axioms will be examined later in the section.

If X has only one element then Bl implies that > = ¢J. In general, (> = &) =
Proposition 1.
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Suppose then that X = {x,,:-,x,} and that > # J. Let D(>) =
{(P(x,)— O(x,), -+~ P(x,)— Q(x,)): P > Q} and let C(>>) be the convex cone in E”"
generated by D(>>). Then B1 = 0 ¢ C(>>), for if 0 € C(>>) then there are p!,---, p™
in D(>>) and positive o, -, &, such that 0 = Ya;p/ with P/ > @/ for each
j where p/ = (P/(x,) — Q'(xy), -+, (P/(x,) — Q7(x,)).

Hence, if C(>>) is finitely generated, Corollary 1 in the presence of Bl yields a
we E" with w-p > 0 for all pe C(>>), and this implies (1) with u(x;) = w; for
i =1, -, n This proves

THEOREM 5. Suppose that > = & or else that > # & and C(>>) is finitely
generated. Then Proposition 1 is true if and only if B1 holds.

COROLLARY 2. Suppose that > = & or else that > # & and C(>) is finitely
generated. Then Proposition 1 is true if B2 holds and > is irreflexive.

One other implication of Bl seems noteworthy. Suppose that Bl holds and
C = C(>) is not finitely generated. Then it is possible to have Cn(—C) # &
which, by Theorem 2, implies that Proposition 1 is false. By applying a theorem
similar to Theorem 2 [to get w'e E" such that p-w!' = 0 for all pe C and
p-w' > 0 for some p € C] and reducing dimensionality in successive steps [in the
first to handle {p: p e Cand p-w' = 0}]itis possible to develop a finite-dimensional
lexicographic replacement for (1). Omitting details, B1 implies that there is a
positive integer N and real-valued functions u,, ---, uy on X such that, for all
P, Qe?, P> Q= (E(u,,P), -, E(uy, P)) >, (E(u, Q), -, E(uy, Q)). (Recall
that (a,, -+, ay) > L (b, -+, by) is defined by a, > b, or (@, = b, and a, > b,)
or---or(a; = b;foralli < Nanday > by).)

Turning now to interpretive aspects, consider B2. A typical defense of B2
proceeds by interpreting Y P/ as a two-stage gamble. One of the P/ is chosen in
the first stage according to the “probabilities” «,, ---, a,,. This P/ then determines
an x € X according to its probabilities. If P/ > Q7 for j = 1, ---, m and if Y o;P;
and Y a;Q’ are considered relevant then it seems reasonable to have Y a P/ > Y o; Q7.

There are, however, several arguments that counter the conclusion of B2. As
already noted, the decision maker may be completely unconcerned about the
mixtures Y o;P/ and Y o;Q’ even though it might be argued that he can consider
such mixtures at little if any extra expense. A second argument against Y o;P/ >
Y ;07 notes that, even though the decision maker prefers P/ to QY for each j, the o;
(especially with m large) may dilute the P/ and Q in the mixed forms to such an
extent that the individual may not care which mixture he chooses if he has a choice
between them. A third argument against B2 follows an example suggested by
Allais [1] that is expanded on by Savage ([7] pages 101-103). In a slightly modified
form this goes as follows. We consider four gambles for monetary prizes:

0($500,000) = 1.0
P($10) = .01,  P($500,000) = .89,  P($2,500,000) = .10
S($0) = .90,  5($2,500,000) = .10 '
R($10) = .89,  R($500,000) = .11.
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Experience indicates that Q > P and S > R for many people. B2 would then
require $Q+1S > $P+4R. But an examination of these mixtures shows the
following probabilities:

$0+1S: .45 for $0; .50 for $500,000; .05 for $2,500,000
$P+%R: .45 for $10; .50 for $500,000; .05 for $2,500,000

which make it likely that $P+4R > 10 +4S. (For further comments on this see
Savage [7].)

Of the three arguments against B2 the first seems to challenge B1 indirectly and
the last seems to challenge it directly. (Change $10to $0to get3Q +4S = 4P+3R.)
On the other hand, the usual sure-thing defense of B2 does not apply directly to Bl
unless we grant the relevance of the mixtures Y o;P/ and Y o;Q’ for preference
comparison. Since part of the purpose of Bl is to avoid the assumption of such
relevance, it appears that we pay the cost of losing an ‘“obvious’ justification
for the gain of a more general theory.

4. General analysis. Turning now to the general case of Proposition 1 with X
finite, we shall argue that any significant weakening of the sufficient conditions in
Theorem 1 (say to necessary and sufficient conditions) can be made only with
great loss in interpretability of the new conditions compared to those of Theorem 1.
We shall let |X| = n and write P€ 2 in its vector form (P(x,), -+, P(x,)) in E"
C = C(>>) is as defined in the preceding section.

Our analysis will be based on the following consequence of Theorem 2 and
Theorem 3.

LEMMA 1. Proposition 1 is true if and only if
(5) P—-Q)+(1—a)(R—S)eC forall «e(0,1]=S—R¢C.

The necessity of (5) follows easily from (1) and the definition of C. For sufficiency
we show that if (4) fails then (5) fails. Hence suppose that
6) —qeC and op+(l—a)geC forall «€e(0,1].
By the definition of C we have p = Y A(P'— Q% and ¢ = Y o(R —8’) with
Ai,0;>0 and P' > Q' and §/ > R/ for all i and j. Let A =Y 4;, 0 = Yo,

P =Y ANP, Q=YA/NO, R=>(c;/o)R and S = )(0;/0)S’. Clearly
S— R e C. Hence to show a violation of (5) we need to show that

aP—Q)+(1—a)(R—S)e C
when o € (0, 1]. We proceed from the latter part of (6):

aA(P— Q)+ (1—a)a(R—S) e C, (a > 0).
If ¢ = Athen

(1/o)[eA(P— Q)+ (1 —)o(R—S)]+al(c —A)/c}(P— Q) € C,
ora(P—Q)+(1—a)(R—S)e C.If 1 > o then with § € (0, 1]and & > 0.
AP — Q)+ (1 —a)a(R—S)+k[SA(P— Q)+ (1 —-8)a(R—S)]e C.
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Taking 6 close to zero and k = a(1 —a)(A—0)/[xa(l — ) —dA(1 — )], the preceding
expression equals a positive number times a(P— Q)+ (1 —a)(R—S) so that the
latter is in C. This completes the proof.

Now Lemma 1 gives a necessary and sufficient condition for Proposition 1, but
(even when it is written with appropriate expressions involving > as replacements
for C) there does not seem to be any simple intuitive interpretation for the con-
dition. Nevertheless, Lemma 1 is of some interest since it presents a structural
representation of Proposition 1 and can be used to establish sufficient conditions
for Proposition 1, such as those in Theorem 1.

Since some Archimedean axiom is required for Proposition 1 and I know of no
axiom other than A4 (and a similar axiom in Aumann [2]) that is both necessary
for (1) and has a relatively straightforward interpretation, let us consider (5) in the
presence of

A4. oP+(1—)R > aQ+(1—a)S forall oe(0,1]=>not S > R.

Suppose (5) fails and P- Qe C= P> Q. Then A4 fails. Hence A4 and
P—QeC= P> Q imply (5). Even though P— Q € C = P > Q is not necessary
for (5), I know of no weakening of this condition that implies (5) in the presence
of A4 and has an easily understood interpretation or justification. That
P—Q e C= P> Q hassuch an interpretation follows from the fact that it holds if
and only if Al, A2 and A3 hold. This follows from Theorem 4 and the easily
proved

LEMMA 2. B3 < (P- Qe C= P > Q).

This analysis, besides completing a proof of Theorem 1, suggests that there is
little room for weakening its conditions while maintaining simplicity of interpreta-
tion. This should of course be regarded as a tentative conclusion and a challenge
to the reader.
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