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MARKOV RENEWAL PROGRAMS WITH SMALL INTEREST RATES'

By ERic V. DENARDO
Yale University

1. Introduction. When decisions and rewards are introduced into a Markov
renewal process, the resulting optimization problem is called a Markov renewal
program. After the appearance of Pyke’s [32] basic papers on Markov renewal
processes, Markov renewal programming was initially developed by de Cani [7],
Howard [22], Jewell [24] and Schweitzer [34], [35], with many subsequent contri-
butions. The Markov renewal programming model allows random transitions,
thereby generalizing a discrete-time (fixed transition time) Markov decision
problem treated by Shapley [36], Howard [21], Blackwell [2] and several others.

Typically, the expectation ¥(¢) of the total income received until time ¢ approaches
infinity as t - 00. (The symbol V(¢), along with others used here, is defined
precisely in Section 3; actually, V(¢) is a vector having one component per state.)
When a positive interest rate s is introduced into the model, income earned at time ¢
is discounted by the factor e ™. This renders finite the expectation v(s) of the total
discounted income over an infinite planning horizon whenever V(¢) grows slower
than exponentially.

This paper is concerned primarily with the limiting behavior of v(s) as the interest
rate s vanishes. Fortunately, discounting corresponds precisely to taking a Laplace—
Stieltjes transform, so that a substantial theory can be invoked. In particular, the
behavior of v(s) as s — 0+ is related through Abelian and Tauberian theorems to
the behavior of V(¢) as t — co.

This paper’s basic tool is a partial (Laurent) expansion of v(s) in powers of s,
which is obtained in Theorem 1. The hypothesis of this theorem is that the reward
structure have finite (n+ 1)st moment and that the transition structure have finite
(n+2)nd moment. Under these conditions, Theorem 1 verifies that

o(s) =s"WV_ i+ Vot - +5"V,+0(s"

and evaluates the coefficients V_,, V,, -+, ¥,. This expansion generalizes results
obtained by Jewell [21] for the Markov renewal program and by Blackwell [2]
and Miller and Veinott [31] for the discrete-time model. The technology used to
obtain this expansion applies equally well to two features of the Markov renewal
process itself, namely the last-observed-state function P(z) and the expected-
number-of-transitions function AM(t). Corollary 1 applies the technology of
Theorem 1 to justify and evaluate comparable series expansions of the Laplace—
Stieltjes transforms of P(¢) and M(z). In so doing, the corollary generalizes results
of Pyke [32], Jewell [24], [25], Kshrisagar and Gupta [29], and Hunter [23].
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Different interest rates reflect different trade-offs between immediate income and
future income, so that one can expect the optimal policy to vary with the interest
rate. However, Blackwell [2] analyzed the discrete-time model to show that a
particular policy is optimal, simultaneously, for all sufficiently small interest rates.
He called such a policy ‘‘optimal.”” Theorem 3 treats the Markov renewal program
and gives conditions under which a policy exists that is optimal in Blackwell’s
sense. Example 1 shows constructively that when these conditions are violated
there may not exist a policy that is optimal in this sense.

The equation displayed above suggests that when the interest rate is small the
decision-maker maximize the “gain” V_,, break ties by maximizing the “bias”
V,, etc. This observation gives rise to a family of successively more refined criteria
of which the first two are called gain-optimality and bias-optimality. This family
has a natural limit, and one is lead to suspect that a policy that is optimal with
respect to the limiting criteria is optimal in Blackwell s sense. Theorem 4 gives
conditions under which this is the case, and Example 2 shows that the result need
not hold when the conditions are violated. .

Theorem 2 and Corollary 2 study the equations encountered when linear
programming or policy iteration is used to compute a gain-maximizing policy.
They interpret the ambiguity in the solution of these equations as the gain of a
Markov renewal program having altered reward structure. The utility of such
alterations was first observed by Veinott [37] in an analysis of the discrete-time
model. The altered Markov decision problem is used here to compute a bias-
optimal policy, and then to compute a policy that is optimal with respect to the
limiting criteria suggested by the partial power series expansion of v(s). Barring the
pathologiesillustrated by Examples 1 and 2, this policy will be optimal in Blackwell’s
sense.

Section 5 specializes these results to two simpler decision problems, the discrete-
time model and an exponential model in which rewards are linear and transition
times are exponentially distributed. Only a fraction of the material in that section is
new, but it is presented within a unified framework.

2. The model. This paper treats a Markov renewal programming model having
finitely many states that are numbered 1 through N. We speak of a state as being
observed for only an instant. The time interval between observation of successive
states is a random variable taking values in [0, c0). Each state i has associated
with it a finite set D; of decisions. The instant state 7 is observed, some decision k
in D; must be selected and cannot be changed until the instant the next state is
observed.?

It suffices for our purposes to focus attention upon stationary non-randomized
decision procedures. For this reason we define a policy as a function 6 whose
domain is the set of states and that for each state i assumes some value 6(i) in D;.

2 Chitgopekar [3] has analyzed a model having linear costs but allowing more general policies
involving ‘‘hesitation™.
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Using policy 6 means that the decision-maker selects decision (i) each instant at
which state i is observed. The collection A of all such policies is called the policy
space.

The probabilistic structure of the model is most easily described in terms of a
sequence {S,, t, | n = 0,1, ---} of pairs of random variables. The index # indicates
the nth observed state. State .S, is observed at time ¢,, with ¢, = #,_, and ¢, = 0.
The transition structure is governed by a set of functions Q{-‘j(x) defined for
x=0,i,j=1,-+,Nand k in D;. Let

0ii(x) =Pr{S,.; =j, tysy St+x|S, =i, t, =1,5(i) = k}.

Thus Qi-‘j(x) is the joint probability that the next observed state is j and that the
transition time is no greater than x, given observation of state ; and given decision k.
The notation indicates that Q,(x) is independent of n and ¢,. For a fixed policy 4,
the set {Q%P(-) | i,j = 1, ---, N} is the family of transition probabilities associated
with a semi-Markov process or, equivalently, a Markov renewal process; cf. Pyke
[32]. Transitions are assumed to occur with probability 1, so that Y Y., Q%(c0) = 1
for each state i and decision k. Certain transitions can be instantaneous with
probability one, allowing Y Y_; Q% (0) = 1 for particular i and k. However, we
exclude ergodic chains all of whose transitions have this form, so that & {¢ | So} >0,
independent of S,. Zero-time transitions seldom occur in real-world models, but
they often occur when these modelsare reorganized for efficient computation ;cf. [9].

The income structure of the Markov renewal programming model is specified
by a collection of functions of the form R/(x) defined for x = 0, k in D, and
i=1,-, N RXx) is the expectation of the income earned during the time
interval [0, min (x, ¢,)] given the conditions S, = iand (i) = k. Like the transition
structure, the income structure is assumed to be time invariant. So, roughly
speaking,® R(x) is also the expectation of the income earned during the interval
[¢, min (¢ +x, t,,,)] given the conditions ¢, = ¢, S, = iand 6(i) = k. Itisreasonable
to assume, as we do, that R/ (x) has bounded variation on [0, o), though weaker
conditions would suffice. Note that for a given policy the sequence {S,, t, | n=
0, 1, ---} is Markov in the sense that observing state S, at time ¢, regenerates both
the transition and the income structure of the process.

Except for the selection of a performance criterion, the model is now completely
specified. When a positive interest rate is included, the natural criterion is to
maximize the expectation of the discounted income stream. As the interest rate
approaches zero, a family of alternative criteria emerges, of which the simplest is to
maximize the rate of income per unit time.. Definition and discussion of this family
of criteria is postponed until Section 4, at which point the requisite notation will be
on hand.

The model and its analysis simplify markedly in two familiar cases. In the
discrete-time case treated by Shapley [36], Howard [21] and many others, each

3 The intent of this interpretation of R;*(x) is probably quite clear, even though it is imprecise
when ¢,_; = t,. Ri*(x) could be properly defined in terms of the triplet (n, S,, t,).
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transition takes exactly one unit of time, so that ¢, = n. Income r;}* is earned each
epoch in which state i is observed and decision k is selected. It simplifies certain
formulas (see (42)-(43) below) to assume that r;* is earned at the end of the
epoch; i.e., R¥(x) =0 for x <1 and RXx) = rF for x = 1. Howard [21],
Zachrisson [41] and others have treated a decision problem whose transition law is
determined by the differential equation of a stationary continuous-time Markov
process. Miller [30] and Rykov [33] showed that attention can be confined to
stationary policies, which simplifies this model to the exponential case with linear
returns and exponential transition times; that is,

04x) = ph1—exp(—4f%)] and R¥(x) = rA[1 —exp(— A¥)]

3. Policy Evaluation. In preparation for the optimization problem, we now fix
upon a particular policy and develop some of its probabilistic and income generat-
ing properties. To simplify the notation, dependence on the decision k and policy &
is dropped temporarily. This development is organized so as to obtain equations
(D—=(7) in an intuitively appealing manner that omits justification of the required
integrations. The needed justification follows (7) and uses arguments similar to
Pyke’s [32].

Let V(¢) denote the expectation of the undiscounted income earned during the
interval [0, ¢] if state i is observed at time 0. The behavior of V(t) as t - o0 is
intimately related to the behavior as s — 0" of its Laplace-Stieltjes transform

(1) v(s) = [ e~ dV{(2).

Interpret s as an interest rate that is compounded instantaneously, so that a dollar
received at time ¢ has present value ¢~ at time 0. Then v,(s) has a second interpreta-
tion as the present value at time O of the entire income stream, given initial state i
and interest rate s.

The technique we shall use to analyze V(¢) applies equally well to the analysis of
two related features of the semi-Markov process identified by Q(z). Let M(t) be
the Nx N matrix whose ijth element M (¢) is the expectation of the number of
occurrence of state j during the interval [0, 7], given that state i is observed initially.
Similarly, let P(¢) be the N x N matrix whose ijth element P;;(¢) is the probability
that state j was the last observed state during the interval [0, ¢], given that state i
was observed initially. Conditioning M;;(¢), V(¢) and P ;(¢) on the first transition
produces the renewal equations

2 M(t) = 5.‘,’""211:’: 1 ,“)Jr— dQu(x)M, (t—x)
(3) V(1) = Ri(t)+Y )= foL dQ;(x)V(t—x)
“4) Pi(1) = Hyj(1)+ Y 2= 1 [65 dQu(x)Py;(t—x),

where §,; is the Kroeneker symbol and Hi(t) = 6,;[1=Y1, 0u(n)]. As in (1),
we use small letters for Laplace-Stieltjes transforms, so that the transforms of
M (1), Q(t) and P(t) become m;(s), q(s), and p(s). Take Laplace-Stieltjes trans-
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forms of (2)—(4) (noting that the transform of the convolution is the product of the
transforms), write them in matrix notation, and rearrange them slightly to produce
the simple expressions

(S [I — g m(s) =1 »
(6) [1 — g()] v(s) = r(s)
7 [7 = q(®)] p(s; = h(s).

An argument akin to Pyke’s [32] is now used to justify the integrations in (1)~(7).
Let O*"(¢) denote the n-fold convolution of Q(¢) with itself, so that

Qxﬂjz(t) = Zl}cv= 1 _“i)t ink(x)ij(t _x)-
Observe that ) '_, Qf(f) is the expectation of the number of occurrences of state j
in the interval [0, min (¢,,, t)] given S, = i. Let ¢ be the expectation of the smallest
non-zero transition time. The prohibition of ergodic chains of zero-time transi-

tions, along with a simple computation, produces the result P(¢,, < mg/2N) — 0
as m — oo. This suffices for both facts in

Mf(t) = Y 0 Q1) = O(1),

the latter meaning that M,,(t)/t is bounded as ¢ » oo. Isolating the n = 0 term
in the above produces (2). Taking transforms produces (8), when one notes that
{[g(s)I"} is a geometric series.

(®) m(s) = Yo [a(s)]" = [T—q(s] ™" = 0(1/s), as 50,

Equation (8) also implies that m(s) and g(s) commute. Similar arguments lead to (3)
and (4). To obtain (3), compute the expected income until the earlier of time ¢
and the time of the nth transition. Then let » — oo and isolate the Oth term in
series.

Expansions of v(s), m(s) and p(s). Our primary concern here is to use (6) to find a
partial power series (Laurent) representation of v(s) in terms of the moments of
QO(t) and R(¢). Due to the similarities between (5), (6) and (7), our technique for
expanding u(s) also yields partial power series representations for m(s) and p(s).
Define the normalized moments Q, and R, by

©) Q,=[s_1"dQ(t)n!, R, =[¢_ t"dR(t)/n!.

Of course, O, is an N x N matrix, and R,isan N x 1 vector.

Note that Q, is the transition matrix of the embedded Markov chain. We now
review some well-known (cf. Doob [16] page 175) Markov chain theory. Asn — oo,
[Qo]" converges (C, 1) to a stochastic matrix P* that is characterized by the
equations P*(/—Q,) = 0 and P*1 = 1, where 1 is the Nx 1 vector of I’s. In
addition, P* = Q,P* = P*P*. In general, Q, can have several ergodic chains and
some transient states. Number the ergodic chains from 1 through », and let S,,
denote the set of states in ergodic chain m, for m = 1, -+, n. Also, let T denote the
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(possibly empty) set of transient states. With P;* denoting the ith row of P*, the
ergodic states have

(10) P*=n" forall ieS,, m=1,--,n,

where n™ contains the stationary probability distribution for chain m and zeros;
n™ is characterized by the equations n"(/—Q,) = 0, "1 = 1 and ;" = 0 for
Jj¢5S,,. For transient states,

(11) PX =) tp" forall ieT,

where t;,,'2 0, Y7 _; 1, = 1 and 1, is the probability of eventual absorption into
ergodic chain m if one starts in (transient) state 7.

Kemeny and Snell [28] showed that the matrix (/— Q,+ P*) is invertible and
called its inverse Z the fundamental matrix. (Actually, ([28] page 100) proves this
only for the ergodic case, but the general case is a simple extension.) Since
P*(I— Q¢+ P*) = P* = (I— Qy+P*)P*, the matrix Z satisfies P* = P*Z = ZP*.
In dynamic programming, it is slightly more convenient to work with the matrix
H = Z—P*. The preceding facts readily combine to verify that 0 = P*H = HP*.
Routine manipulations now yield (I— Qy,)H = H(I— Q,) = I—P*; for instance,
U—=Q¢)H = U— Qo+ PHH = (I— Qo+ P*)(Z—P*) = [-P*.

Lemma 1 studies the equation (/— Qy)x = b and in doing so uses the definition
v = (Q,1,so that v;is the mean time to transition given state i.

LEMMA 1. Let b be an N x 1 vector satisfying P*b = 0 and let ¢ be any Nx 1
vector.

(1) Then an Nx 1 vector x satisfies (I— Qgy)x = b iff x = Hb+y for an Nx 1
vector y satisfying y = P*y.

(i1) Suppose (I— Qy)x = band P*Q,x = P*c. Then x = Hb+y with

(12) y;=C" =n"[c—Q,Hb]/n™y forieS,, m=1,,n

(13) Vi =2m=1tmC" for ieT.

PROOF. For (i), first take x = Hb. Then (I— Q¢)x = (I— Qo)Hb = (I—P*)b = b.
Now suppose x = Hb+y with y = P*¥y. Then (I—Qy)x = b+(I—Qy)y =
b+({U—Qy)P*y = b. To complete (i), suppose (I—Qy)x = b. Then (I— Qy)(x—
Hb) = 0; premultiplying by H produces (I—P*)(x— Hb) = 0 and hence y = P*y
with y = x— Hb.

For (ii), consider an ergodic state i € S,,. From (i), y = P*y, so that (10) implies
y; = n"y = C™, a constant independent of i; thus the transient case follows from
the ergodic case and (11). Next substitute x = Hb+ yinto P*Q,x = P*c, yielding
P*Q.y = P*[c— Q,Hb]. From (12), (ii) will be proved when it is shown that
P*Q,y = n"vC™. For jeS,, one has (Q,y); = Y, (Q)pyx = v;C™, implying
P*Q,y = n"vC™ as desired. []

To calculate the N x 1 vector x satisfying (i) of Lemma 1, we must determine P*
and H, which can be done with one matrix inversion; cf. Schweitzer [35]. Suppose
Q; is finite, which implies Q; is finite for j < i. A standard Abelian relationship
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(cf. Chung [5] page 156) between the moments of a function and the behavior of its
transform for small s yields

(14) q(s) = Qo—5Q:+ *++ +(=5)Qi+o(s).
Similarly, if R; is defined and finite,
(15) r(s) = Ro—sRy+ -+ +(—s)’R;+o(s’).
LEMMA 2. Suppose the N x 1 vector b satisfies P*b = 0. Then, m(s)b = o(1/s).

Proor. Note in (8) that m(s) = O(l/s). First, we show that m(s)(I—Q,) =
o(1/s). From (8), m(s) and ¢(s) commute, so that m(s)[I—q(s)] = 1. (14) withi = 0
givesq(s) = Q,+o(1). Combining the two gives

(16) m(s)(I— Qo) = I+ m(s)o(1) = I+0(1/s)o(1) = I +o(1/s) = o(1/s).

Since P*b = 0, Lemma 1 shows that (I— Qy)Hb = b and therefore that m(s)b =
m(s){— Qy)Hb = o(1/s)Hb = o(1/s), as desired. []

Lemma 1 and Lemma 2 are the principle ingredients in our proof of Theorem 1,
which analyzes the equation

(17) u(s) =sT Vo +Vo+ o 45"V, +es).

Theorem 1 gives conditions under which e,(s) = o(s") and evaluates the coefficients
V_y, -, V, under these conditions. To interpret V_,, we apply the standard
Tauberian theorem ([17] page 420) for non-decreasing functions. Since V(¢) =
(M * R)(r) and M(r) is non-decreasing, (17) suffices for V(1) ~ tV_, as t - .
Consider the difference V(#) — ¢V _, and related quantities. If V(1) — ¢V _ | converges
(C,0) or (C, 1), the standard Abelian theorem ([40] page 182) guarantees that the
limit is V. In the discrete time case, Kemeny and Snell [28] show that M(r)—
tP* — H as t approaches infinity though the integers, where the convergence is
(C, 1) when Piscyclic. Similarly, one can show that

(18) V(t)—tV_, - V,(C, 1) as t— oo,

where the convergence in (18) is (C, 0) whenever dQ"(¢)/dt exists and is strictly
positive for some »n and all 7 in some interval.

Equations (17) and (18) relate to the optimization problem. When the interest
rate s is small, (17) prompts the decision maker to select a policy that maximizes
V_; and break ties by maximizing V. (18) plays the same role when s = 0.

THEOREM 1. Suppose Q. , is finite and R, . | is defined and finite. Then, (17) holds

with e,(s) = o(s"). Moreover, for i = —1, 0, ---, n, the vector V; is the unique
solution of equations
(19a) (I=Q0)V; = by,

(19b) P*Q,V, = P*c,
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where c_y = Ry, b_y =0,b, = c;,_,—Q,V,_, and, for i = 0,
(20) ¢ =(=1)""Riy, S C VO

PROOF. First, observe that ¢; and b; depend only on variables V_,, V,, -, V;_,
and moments Q, through Q;,, and R, through R, . Applying this observation
recursively shows that V; is defined in terms of moments Q, through Q;,, and R,
through R;, . In particular, the expression for ¥, involves only the moments of
QO(t) and R(?) that are hypothesized as defined and finite. :

Lemma 1 shows that (19)-(20) have unique solutions for i = —1,0, ---, n.
To complete the proof, we need only show that these solutions give e,(s) = o(s")
in (17). For this purpose, substitute (14) with i = n+2, (15) with j = n+1 and
(17) into (6). With V_, ---, V, as specified by (19)-(20), gather coefficients (the
first n+ 1 of which are zero) to obtain

(21) [I—a(s)]ex(s) = [ex— Q1 V,]s" " +o(s"* ).
Since P*[c,— Q,V,] = 0, Lemma 2 and (8) apply to (21), giving
(22) e(s) = m(s)[c,— Q@ V,]s""  + m(s)o(s"* ')

=o(s™ )" T+ 0(s™o(s" 1) = o(s"). [

Lemma 1 and Theorem 1 provide an explicit, systematic method for computing
V_, through V,, once P*, H and the requisite moments of R(z) and Q(¢) have
been calculated. The following corollary exploits the similarity of (5) and (7) to (6).
In it, Theorem 1 is adapted to obtain all desired coefficients of m(s) and p(s). Let

H, = [§_ t"dH(t)[n! and observe that H, = 0. Note that H, is finite whenever
Q, is finite.

COROLLARY 1. Suppose Q, .. , is finite. Then,

(23) m(s) =7, s'M;+o(s")
(24) p(s) =Y 1_os'P;+o(s")
where P; and M are the unique solutions of the equations
(25a) (I-Qo)M; = B,

(25b) P*Q M, = P*C;

(26a) (I-Q,)P; =D,

(26b) P*Q,P; = P*E;

with

Ci,=LB ,=D,=E =0,8=C_-O/M_,,D; = Eiy—QPiy,
and

(27) Ci = Z;ZZZ(_I)ijMi+ 1-j»
(28) E; =(_1)i+1Hi+1+Z§J;22(_1)ijPi+1—j~
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PROOF. First consider the variants of Lemmas 1 and 2 in which the N x 1 vectors
b and c are replaced by N x N matrices B and C with P*B = 0. Each column of
B and C may be treated separately, so these variants stand. Then, to prove the
corollary for m(s) and p(s), repeat the proof of Theorem 1 using these variants of
Lemmas 1 and 2 and substituting, respectively, into (5) and (7), rather than (6).
It remains only to show that P_, = 0, which follows trivially from H, = 0. []

Of course, if the expansions of u(s), m(s) and p(s) were all required, it would be
most efficient to deal first with m(s) and then use the equations v(s) = m(s)r(s)
and p(s) = m(s)h(s) for the others. For any of these expansions, the constants like
¢;-y and b; are so closely interrelated as to suggest simpler expressions than
indicated by Theorem 1 and its corollary. Unfortunately, none of the expressions
seems to simplify in the general case, even though they simplify markedly in the
discrete-time and exponential cases treated in Section V of this paper.

Several authors have shown how to compute the moments in semi-Markov
processes. Pyke [32] computes P, and M _,. He also related M(¢) to the first
passage time distribution. Barlow and Proschan [1] provide a systematic method
that can readily be extended to obtain all desired moments of the first passage time
distribution. Jewell [25] first obtained formulas for M, and V,. Kshirsagar and
Gupta [29] and, more recently, Hunter [23] also obtained formulas for M _, and
M, , the latter by a route that recognises Z (and hence H) as a generalized inverse of
I—P. Readable introductions to semi-Markov processes are found in Fox [19] and
Cinlar [6].

In this context, our method is integrated and obtains all desired moments of
m(s), p(s) and v(s). It has the added advantage of integrating effectively with
dynamic programming, as Theorem 2 will attest.

Lemma 1 and Theorem 1 provide explicit expressions for V_,, V,, etc. For
notational convenience, set ¥_, = g and V, = w, so that

gi:Cm=7tmRO/TCmV fOI' iES,,,, ,n:l’...’n
g; =" i 1,.C" for jeT

The explicit formula for w is rather complex and is provided below for the case in
which P has one ergodic chain.

w=P*(—=R, + Q,g/nv + (I—=P*Q,/nv) H (Ry— 0,9).

An altered semi-Markov process. Equations (17) and (18) motivate us to call
V_y and V, the gain and bias, respectively. Note from (19a), (19b) that the gain
depends only on the triplet (Qy, Q,, R,), not on higher moments of Q(¢) or R(t).
A policy that maximizes the gain may be computed efficiently by any of several
linear programming and policy iteration schemes that are partially described in
Section 4 and 5 and more completely specified in [10], [12] and the references
cited there. Linear programming and policy iteration approaches that find a gain-
maximizing policy both lead to consideration of equations
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(29a) (I=Qo)g =0,
(29b) (I=Qo)x =Ry —0,9,

where g and x are N x 1 vectors. These equations are treated by the corollary that
follows

THEOREM 2. Suppose Q,., is finite and R, is defined and finite. Consider a
solution z of the equation (I— Qy)z = b,. Then V,—z is the gain rate for any semi-
Markov process with rewards having triplet (Q,, Q,, ¢,— Q12).

PRrOOF. To obtain the left-most of the two equations below, subtract (I— Q,)z =

b, from (19a) with i = n. For the right-hand equation, subtract the identity
P*Q,z = P*Q,z from (19b) with i = n.

(I_Qo)(Vn—Z) =0, P*QI(Vn_Z) =P*[c,—0Q,7]

Since b_, = O0and c_; = R,, the above pair of equations play the same role as do
(19a), (19b) with i = —1. This identifies V,—z as the gain rate for the process
with rewards C,— Q,z until transition, completing the proof. []

Theorem 2 introduces a secondary semi-Markov process that has altered
rewards but need not have altered transition structure. This altered process forms
the foundation for the optimization procedures introduced in Section 4. Veinott
[37] first observed the utility of such alterations in an analysis of the discrete-time
model. Equations, (292), (29b) are now treated by

COROLLARY 2. Suppose Q, is finite and R, is defined and finite. Then every solution
(g, x) of (29a), (29b) has g = V_,. Moreover, Vy,—x is the gain rate for any semi-
Markov process with rewards having triplet (Qo, Q, R') with

R = —R+0,V_—0;x.

Proor. First note that (29a) and (29b) are identical to (19a) with i = —1 and
with i = 0, respectively. So, the pair (V_,, V,) satisfies (29a), (29b). Premultiply
(29b) by P* to obtain (19b) with i = —1. This and Theorem 1 imply g = V_,.
For the remainder of Corollary 2, apply Theorem 2 withn = 0. []

4. Optimization. Attention is now returned to the optimization model having
several alternative decisions per state. As before, policy ¢ specifies for each state / a
decision (i) in D;. Superscripts are introduced to denote dependence upon 6,
so that v%(s) is the discounted income function for policy é. As in equation (1), the
ith component of the N x 1 vector v°(s) is the expectation of the total discounted
income under the following circumstances: state 7 is observed initially, policy 6 is
used, the planning horizon is infinite, and the interest rate is s. ‘

Several optimality criteria are now introduced and interrelated. It is then shown
how to compute policies that are optimal with respect to most of these criteria. The
first portion of this discussion is virtually independent of Section 3.
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s-Optimal and optimal policies. For s > 0, we call policy 6 s-optimal if v°(s) = v"(s)
for every policy # in the policy space A. Since v°(s) has N components, an s-optimal
policy must attain N maxima simultaneously. Jewell [24] showed that an s-optimal
policy exists. Moreover, it is known ([8] Example 4) that each s-optimal policy in A
maximizes the discounted income stream over the broader class of all randomized
history-remembering decision procedures that exclude switching decisions in mid-
transition. So no advantage obtains in discounted dynamic programming from the
introduction of this broader class of decision procedures.

Following Blackwell [2], we call a policy optimal if it is s-optimal for all suffi-
ciently small positive s. Blackwell first demonstrated, nonconstructively, that an
optimal policy exists in the discrete-time case. Let A, denote the (possibly empty)
set of optimal policies. We will shortly give a condition that suffices for A, to be
non-empty, followed by an example having A, = &. Consider any sequence
t, — 0+. Since there are only finitely many policies, one policy 4 is ¢,-optimal for
infinitely many n. Define A, as the set consisting of each policy 4 that is s,-
optimal for every # in at least one sequence s, — 0+. The preceding observation
assures A, be non-empty. By definition, A,,, contains A, .

In preparation for Theorem 3, note that since v(s) is a Laplace-Stieltjes trans-
form it is analytic ([40] page 57) in the open half-plane Re(s) > 0. Theorem 3
turns on the behavior of v(s) at the origin. Since sv(s) » V_, as s - 0, v(s) is not
analytic at the origin whenever V_; # 0. The question is whether the origin is an
isolated singularity; i.e., whether sv(s) is analytic at s = 0.

THEOREM 3. Suppose for every & that v° has an isolated singularity or is analytic at
s = 0. Then A, is non-empty.

PROOF. Since A,,, = A, # O, it suffices to show that A, = A,.,. Suppose
A, contains exactly one policy. Then this policy must be optimal for all sufficiently
small interest rates, and A, = A, Suppose A, contains multiple policies. Pick
any state 7 and any distinct policies 6 and 5 in A, . Necessarily, there exists a
sequence s, — 0+ such that v,(s,) = v,'(s,) for each n. Set g(s) = s[v’(s) —v,"(s)].
The hypothesis and Theorem 1 withn = —1 imply that g(s) is analytic in a domain
containing the origin and the open half-plane Re(s) > 0. Since g(s,) = O for each n,
the identity theorem ([20] page 199) for analytic functions yields g(s) = 0 and hence
v°(s) = v"(s), in which sense policies in A, are indistinguishable. Hence,
Aseq = AOP(' D

Equations (41) and (43) in Section 5 indicate that the hypothesis of Theorem 3 is
satisfied in the discrete-time and exponential cases. An example of a Markov
renewal program for which no optimal policy exists is built upon the function-
transform pair given in Doetsch ([15] page 241) as

sin (2¢)* sinh (21)*
F(t) = —()Wl—)—, S(s) = s*sin(1/s).

Note that the Laplace-Stieltjes transform f(s) oscillates as s decreases to zero.
We equate return function R,°(t) with F(t) even though F(¢) is not of bounded
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variation on [0, co]. The assumption that each R/(¢) be of bounded variation was
only used to obtain (15) with j = 0, and f(s) = o(1) without this assumption.

EXAMPLE 1. (A, is empty). State 1 is the only state. There are two decisions, b
and ¢, with Q% (1) = Q{,(1) = 1—e™". Decision ¢ generates no income, so that
0 = R,%(t) = V,%(t). Decision b has income R,%(t) = F(t) so that V,%(¢) has
transform v,°%(s) = [sin (1/s)]s%/(1+s). Since v,%(s) oscillates about zero as s de-
creases to zero, no policy is optimal, and A, is empty. Note also that neither
v,%(s) nor f(s) is analytic at the origin. []

Again using superscripts to denote dependence upon policies, Theorem 1 assures
that
(30) () =s VI + V0 + o +5"V, 4 o(s")
whenever Q2 , is finite and RZ. | is defined and finite. Equation (30} seems related
to Theorem 3. However, the proof of Theorem 3 exploited Theorem 1 only for
n = —1, which only requires finiteness of Q,° and R,°. Moreover, the hypothesis
of Theorem 3 holds in some cases when higher moments of Q°%(¢) and/or R%(¢)
diverge. When this happens, v°(s) has the Laurent expansion about the origin
v’(s) = Y2 _;s"X,; but for n = 0 the coefficient X, is not specified by (19a),
(19b), and so (30) is meaningless.

Related optimality criteria. Theorem 3 fails to indicate how to compute A,
when this set is non-empty. However, (18) and (30) suggest a second line of approach
that admits of computation when appropriate moments of Q°(¢) and R(¢) exist.
When the interest rate is small, these equations motivate the decision-maker to
select policy & so as to maximize V2 |, break ties by maximizing V,°, etc. So, with
this in mind and with A_, = A, define the (possibly empty) set A, recursively by

Ay ={0eA_|V22 V" forall neA,_,}.

As suggested by (18), we call policies in A _; and A, gain-optimal and bias-optimal,

respectively.
Since a policy in A, must attain N maxima simultaneously, it is not clear a priori
that this set is non-empty for any k greater than —2. But (30) with n = —1

indicates that each policy 4 in A, is gain-optimal. In fact, (30) shows that
Ayq = A, whenever each policy n e A,_; has V," defined. By Theorem 1, this
occurs when each policy n € A,_; has finite (n+2)nd moments of Q (-) and finite
(n+1)st moments of R"(-). Since {A,} is non-increasing in k, we can define a
“limit” set A, by the following rule: if A, contains a single policy for some n,
set A, = A,; otherwise set A, = lim,,, A,. Clearly, A,, = A, whenever
A, # . We shall show shortly how to compute policies in A, and A _—policies
whose merits are indicated by

THEOREM 4. A, = A, in either of the two cases:

(1) A, contains a single policy,

(ii) A, contains several policies, each of which has a Laurent expansion about the
origin.
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PrOOF. It has been shown that A, = A, # & and that A, = A, whenever
A, # . In (i), A,, consists of a single policy, which necessitates A, = A, =
A,. In (ii), any two policies 6 and n in A, have v’(s) = v"(s), so that A, =
Aeq = Ay. [

It seems reasonable that A, contain a single policy in most applications. How-
ever, examples can be constructed in which A, contains multiple policies having
different income functions, and the qualification in (ii) of Theorem 4 is not super-
fluous. The difficulty lies in the fact that functions are not characterized by their
moments, as Stieltjes ([40] page 126) illustrated with the function

G(x) = [5e™""*sin(t*) dt
having [ x" dG(x) = O forn = 0,1, ---.

EXAMPLE 2. (A, # A, with A # F). There are two states, 1 and 2. State 2
is absorbing and yields no income. State 1 has two decisions, ¢ and e. Choosing
either of these yields 1 dollar at the moment of transition, with

dR (1) = dQi,(t) = e """ dt/24
dR, (1) = dQ%,(t) = e ""*[1 +sin (t*)] dt/24.

Thus corresponding moments of ¥,%(¢) and V,(¢) are finite and identical, which
implies A, = {d, e}. Since different functions cannot have the same transform,
A,y can contain at most one element of {d, e}. []

In the discrete-time and exponential cases, one can show (see Theorem 5) that
A, = Ay_;, where N is the number of states. This allows us to terminate the
computation procedure with the determination of Ay _, . One has no such assurance
in the general Markov renewal program, since for any k one can construct functions
R(t) and R"(t) that are identical in their first & moments and differ in their
(k +1)st moment. (In fact, Boas [40] page 139, showed that any sequence of moments
is realiable in a function R%(¢) of bounded variation.)

Two other optimality criteria have been suggested for the discrete-time and
continuous-time models. In our notation, Veinott [38] would call policy § n-
discount optimal if

(31) liminfy_ .5~ "[v°(s)—v"(s)] = 0

for every policy 7, stationary or non-stationary. One sees from (30) that whenever
A, is defined, a stationary policy is n-discount optimal; in fact, every policy in A, is
n-discount optimal.

Veinott [39] also observed a time-domaih analogue of a-discount optimality.
Multiplying the transform by s amounts in this case to averaging the function; so
Veinott calls policy 6( — 1)-average optimal if

(32) liminf,_, .t~ '[V3(1)— V()] = 0

where 7 is any policy, stationary or not. Derman [14] and Brown [3] provided the
first proofs of the equivalence between (— 1)-discount and (— 1)-average optimality
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in the discrete-time case. The time-domain correspondent to dividing by s is to
integrate once. So, let I,’(r) = V%(t)and I3, ()= [,_I,°(x)dx for n = 0. For
n = 0, Veinott calls policy ¢ n-average optimalif, in our notation,

(33) liminf,,, [1,°()-1"®]=0 (C,1)

for every policy n, stationary or not. For the discrete-time case, Veinott demon-
strated equivalence between n-discount optimality and #n-average optimality,
extending a result Miller and the author [13] obtained for the case » = 0. This
equivalence has not yet been extended to the general Markov renewal program.

Computation. Assume from now on that A, = A, # &, so that the pathologies
indicated by Example 1 and Example 2 do not arise. The computation of bias-
optimal and optimal policies can be parsed into a sequence of simpler Markov
renewal programs, each of which may be solved by linear programming or policy
iteration.

Toward this end, some notation is now introduced. Components of the triplet
(04°, 0,°, R,%) are defined, as before, by

Pi"j = Qf"j(oo), V?j = JSO— tdQ?j(t)} vl = Z?’=1 Vf"j’ r = R{(c0).

It simplifies the notation to set g° = V2, and w® = V,°. Also, for a bias-optimal
policy A, set g* = g* and w* = w?,

The policy iteration formulations are described first, and the procedures are
then adapted for linear programming. The basic tool in policy iteration is a routine
that finds a gain-optimal policy; its termination conditions are described in terms

of a policy 8, a pair (g, x) of N-vectors, and the inequalities

(34) Z?L 1Pi“j 9, = g

(35) rif Y- i S Xt Y Vi)

In the general multi-chain case, the termination conditions for policy iteration are
(a) each pair (i, k) satisfies (34)
(b) each pair (i, k) that satisfies (34) as an equality satisfies (35)
(c) the pair [i, 6(i)] satisfies (34) and (35) as equalities, fori = 1, ---, n.

Theorem 1 and condition (c) imply g = g° and (cf. [12]) conditions (a) and
(b) imply g° = g*. In the single-chain case, which often arises in practice, each
gain-optimal policy as a single ergodic chain and perhaps some transient states. In
this case, all components of g are identical; so that each pair (i, k) satisfies (34) as
an equality and therefore (35).

Most policy iteration routines (cf. [12], [24]) replace Y Y_, vg; by v/g; in (35),
which simplifies the computation. By Theorem 1, this simplification affects only the
x; for transient states. To save time, one can use this simpler variant of (35) to find
g* and a gain-optimal policy and then restart the policy iteration by using (35) to
evaluate x; for the transient states.
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Finding a bias-optimal policy by policy iteration. The problem of finding a bias-
optimal policy is now parsed into a sequence of at most three simpler Markov
renewal programs. Step one is to use policy iteration to find a gain-optimal policy &
and a pair (g, x) satisfying the aforementioned termination conditions.

For step two, define A’ as the set of all policies  such that (i, n(i)) satisfies (34)
and (35) as equalities for i = 1, ---, N. Note that ¢ is in A". Theorems 1 and 2
show that each policy # in A’ has g" = g* and w" = x+g", where g" is the gain
rate for a semi-Markov process with rewards having triplet (Q,", Q,", R") with
R =¢,"=0,"x = —R,"+ Q,"9*— Q,"x. Hence, maximizing g" over A’ maxi-
mizes w" over this set. This maximization can be accomplished efficiently by policy
iteration; to do so, replace A by A" and r;"” by R® and the use the original
policy iteration routine. If A’ contains a bias-optimal policy, the altered policy
iteration routine will find it.

It sometimes occurs that A’ contains no bias-optimal policies. The difficulties
that can arise involve only the transient states and are identical in the Markov
renewal and discrete-time models, for which reason the reader is referred to [11]
(particularly Lemma 4 and Lemma 6) for verification of the following three facts.
In the single-chain case, every bias-optimal policy is contained in A’, so that the
difficulty cannot arise. In the multichain case, the policy é that maximizes g° over
A’ may have w,? < w;*, but only for a state (or states) i that is transient under every
bias-optimal policy. In this case, restart the original policy iteration routine with
the attempt to improve on the pair (g%, w?). This routine will terminate, perhaps
immediately, with a bias-optimal policy.

Finding an optimal policy by policy iteration. The procedure just described for
finding a policy in A, readily adapts to find a policy in A;. As Theorem 1 and
Theorem 2 suggest, one simply repeats the procedure after making the following
four changes. First, replace A by the set of policies # that satisfy (I— Q,")g* =
b_, =0and (I-Q,)w* = b,. Second, with ¢ as the bias-optimal policy deter-
mined above, find any solution x of the equation (I— Q,%)x = b,. Third, set A’
equal to the set of all policies & in (the refined set) A such that (/— Qy%)x = b;.
Finally, replace R," by ¢,"— Q,"w* and replace R," by ¢,"— Q,"x.

Having made these changes, repeat steps two and three of the procedure for
computing a bias-optimal policy. Theorem 1 and Theorem 2 verify that step two
maximizes ¥," over those n in A’, and step three plays the same role as before. So,
the end result is a policy 6 in A, .

The adaptation procedure just described is systematic and can be reapplied as
many times as are required, provided R/*(-) and Qﬁ‘j(~) have the requisite moments.
Successive applications of this procedure refine A to the set of all optimal policies.
If A is refined to a single policy, the procedure terminates. Should there be multiple
optimal policies, this procedure will find them all, but it will fail to indicate when it
has done so.

Adaptation for linear programming. Linear programming can be used to find a
gain-optimal policy; see [10], [12], and the references cited there. The problem of
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finding a bias-optimal policy by linear programming can be parsed into a sequence
of three linear programs that are roughly analogous to the three policy iteration
routines used to find a bias-optimal policy. In the most general multichain case,
the terminal-conditions for linear programming differ from those given earlier for
policy iteration. For this reason, definition of A’ is slightly different. For the same
reason, one does not return to the original linear program after completing the
second step by linear programming. Rather, one solves a special linear program
designed specifically to treat the transient states.

These three linear programs are precisely analogous to the three used in [11] to
find a bias-optimal policy in the discrete time-case. The only differences are that g;
is replaced by Y Y_, vi;g; where appropriate and R" is used in the step two. The
details are not reproduced here. As with policy iteration, linear programming can
be applied repeatedly in search of an optimal policy.

A lexicographic policy iteration routine. The policy iteration and linear program-
ming formulations just described are organized to strive for a policy in A_, then a
policy in A,, then in A,, etc. Miller and Veinott [31] (also, see Veinott [37], [38])
treat the discrete-time case with a policy iteration routine organized along different
coordinates. Roughly their routine has the effect of comparing two policies’
coefficients lexicographically—first s 1, then s°, etc. We shall briefly summarize an
adaptation of these procedure to Markov renewal programming. For simplicity,
preselect an integer p as a truncation constant.

Policy iteration routines alternate two steps. The policy evaluation step evaluates
policy & by calculating V2, -++, V,°, which Lemma 1 and Theorem 1 show how to
do. The policy improvement step involves test quantities z(i, k, n) defined in terms
of ,R}, the nth normalized moment of R/(¢), and ,Q/, the 1 x N vector whose jth
component is the nth normalized moment of Qf(z). With _ R} = 0, define
z(i, k, nyin a manner related to Theorem 1 as

Z(i, k, n) = (" l)nnRik+Z"m+=0 - l)meikVna—m’(Vna)i'

Note from Theorem 1 that z(i, k, n) = 0 whenever k = §(i). With & # §, policy &
is considered an improvement over § if fori = 1, ---, N either

(a) £() = 06(i) or

(b) some n satisfies z(i, k, n) > 0 and z(i, k, m) = 0 for —1 < m < n.

Rule (b) is lexicographic. When p = 0, the improvement step is identical to that in
Howard’s [21] multichain policy iteration routine. Using techniques in [31] or
[12], one can show that every ¢ that is an improvement over § has v°(s) > v(s)
for all sufficiently small s.

If an improvement can be found, the cycle is repeated by evaluating the improved
policy. If not, it can be shown that the terminal policy 6 is contained in A, _ .

5. Discrete-time and exponential cases. The results developed in Sections 3 and 4
simplify considerably for the discrete-time and exponential cases of Markov
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renewal programming. In both of these models, Theorems 1 and 2 allow com-
putation of the moments of V%(t) and of optimal policies. However, the method

given in this section is more direct and revealing. Except for part of Theorem 5,
the results are not new; cf. [30], [31], [37].

Policy evaluation. The Laurent expansion of v°(s) is now obtained, first for the
exponential case and then for the discrete time case. As in Section 3, dependence on
¢ is dropped temporarily. For both cases, let R denote the N x 1 vector of rewards
until transition and P denote the transition matrix of the embedded Markov
chain. For the exponential case, direct computation yields r,(s) = R;/(1+ v;s) and
q:/(s) = P;;/(1+v;s). Define the N x N matrix D by D;; = J;;v;, which allows r(s)
and g(s) to be written in matrix notation as the power series

(36) r(s) =YZo(=Ds)R,  g(s) =YiZo(—Ds)P.

To evaluate the coefficients in the Laurent expansion u(s) = Y2 _, s'V], sub-
stitute this expression and (36) into (6) and equate coefficients of s. There results

(37) (I-P)V_, =0

(38) (I-P)W,=Y L (=DYPV,_; =(—D)R, for i=0.
Next, we manipulate (37) and (38) into a form akin to (19a), (19b). Note that

the equations in (37)-(38) starting with (/—P)V,;_, and (I — P)V, differ mainly by a

factor of — D. Premultiply the former by D and add the result to the latter; most
of the terms cancel, leaving

(39) (I—P)V,+DV,_, =8,,R for i=0.

To proceed further, we must introduce the continuous-time analogues of P*
and H. Set B = D~ !'(I—P). Doob [16] and Kemeny and Snell [27] verify that
P(t) > A as t > oo, where the Nx N matrix 4 satisfies BA = AB = 0 and
A = A*. Moreover, B+ A is invertible and Kemeny and Snell call Z = (B+A)™!
the fundamental matrix for continuous-time Markov chains. With H = Z— A,
one also has HB = [—A.

To evaluate V;, first premultiply (39) by AD ™!, leaving
(40) AVi_y = 5i0AD_1R, for iz0.

To evaluate V_,, premultiply (37) by HD ™! to obtain V_, = AV_, = AD™'R,
the last by (40). For i = 0, premultiply (39) by HD™ ! to obtain V, = AV;—
HV,_,+,0HD™'R. Equation (40) gives AV; = 0, and recursive substitution
yields V; = (— H)'HD™'R. This evaluates all coefficients of the Laurent expansion

(41) o(s) =s 'ADT'R+Y o (—sHYHD 'R

obtained by Veinott [38] by adapting a method of Miller and Veinott [31].

In the discrete-time case, the delay of one time unit in transition and reward
produces the transforms r(s) = Re™* and g(s) = P e~*. It proves convenient to
introduce the one-period interest rate § equivalent to instantaneous interest rate s.
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So, set e = 1/(14+p) = 1 =B+ p*— ---, which allows us to express r(s) and g(s)
in terms of f§ as

(42)  rllog(1+p)] =226 (=A'R,  qllog(1+p)] =326 (—H)'P

The only differences between (36) and (42) are that D is replaced by 7 and s by
log (1+ ). When D = I, there is no difference between P* and A or between the
two definitions of H. So, the development for the exponential case repeats exactly,
giving

(43) log(1+B)] = B~ P*R+ Y2 (— fHYHR

for the discrete time case. Miller and Veinott [31] obtained this expansion by a
related method. Subsequently, Veinott [38] observed that the resolvent theory in
Kato ([26] pages 36 fI.) also serves this purpose.

Optimization. The optimization procedures also simplify for the discrete and

exponential cases. Note that H1 = 0 in the discrete-time and exponential cases,
and consider

LEMMA 3. Let X and Y be N x N matrices such that 0 = X1 = Y1. If X"b = Y"b
forn =0,--, N—1, then X"b = Y"b for every n = 0.

Proor. Let a, = X"b and b, = Y"b for n =0, 1, ---. Assume the inductive
hypothesis that a; = b, for i = 0, ---, n and that a, = Y 24 c,a; for some scalars
Co, ***» Cy— 1 - Premultiplying this expression by X and Y yields

Ayt = Z?=1 Ci—1a; = byyq,
which completes the inductive step. The inductive hypothesis is established trivially
if the set {ag, .-+, ay_} is dependent. So, suppose this set is linearly independent.

Since it contains N elements, 1 = Y ¥-! dia, for some scalars dy, -+, dy_, . Since
X1 = Y1 = 0, premultiplying the preceding expression by X and Y gives

0= Z?lei—lai = Zf'v=1 di_b;.

We cannot have dy_, = 0, for this would imply that {a,,---,ay_,} were
dependent. So we have by = ay = Y =" (d;—,/dy_)a;, which establishes the
inductive hypothesis. []

The data needed to compute the Laurent expansion (41) or (43) is all contained
in the triplet (P, v, R), where P is the transition matrix of the embedded Markov
chain, v is the vector of mean transition times and R is the vector of expected
rewards until transition. The discrete-time case has v = 1 and D = I. Theorem 2
and Corollary 3 simplify in the discrete-time and exponential models to

THEOREM 5. In the discrete-time (exponential) model Ay_, = A,  # &. With
i 20 consider an Nx1 vector z satisfying (I—P)z = —DV,_;+0;oR. Then
V:—z is the gain of the discrete-time (exponential) process with triplet (P, v, — Dz).

ProoF. Since every policy has a Laurent expansion, Ay_; and A, are non-
empty. Lemma 3 indicates that all policies in Ay_, must have identical Laurent
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expansions. So, all are optimal. Subtract the equation (/—P)z = — DV;_; +6,,R
from (39) to obtain (/—P)(V;—z) = 0. Premultiply this expression by HD™! to
obtain V;—z = A(V;—z) = A(—z), since (40) gives AV; = 0 for i = 0. We then
have V;—z = AD™(— Dz), so that comparison with (41) and (43) completes the
proof. []

The information in Theorem 5 was observed by Miller and Veinott [31], except
for our replacement of Ay with Ay_;. We close by noting several differences
between the general development in Theorem 2 and this particularization. In the
discrete-time and exponential cases, the altered Markov decision process has
reward vector —z per unit time, rather than c,’— Q,%z until transition. Only the
latter is policy-dependent. Theorem 5 holds for i = 0, but Theorem 2 holds for
i = —1 in addition. This occurs because the interpretation of —z as a reward
vector rests upon AV; = 0, which is only true when i = 0. In the discrete-time
model, the expressions for V, in Theorems 2 and 5 differ, since V,, is the coefficient
of s" in one and of " in the other.
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