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ON A CLASS OF BIVARIATE DISTRIBUTIONS FOLLOWING
A CERTAIN STOCHASTIC STRUCTURE!

By CHANDAN K. MUSTAFI
Indian Institute of Management, Calcutta

0. Introduction. Consider two independent random variables X, Y with
E(X) = E(Y) = 0 and two other random variables X*, Y* following a Stochastic
Structure:

)] X* = AX+BY;
Y* = CX+ DY,

where 4, B, C, D are nonzero constants.

Laha ([2], [4]) studied the problem of characterizing the distributions of X and Y
through regression properties of X* and Y*. In particular, he showed that if
AD = BC, E(Y* | X*) = pX* almost surely whatever may be the distributions of
X and Y, where f = DB~ !, If AD # BC, both X and Y have symmetric stable
distributions with the same characteristic exponent a(l < « =< 2), if and only if

@) E(Y*| X*) = BX* for all 0 < |4| < & for some § > 0 and
(ii) B = (CA™'ay |4|*+ DB 'a, |B|")
) (o |A|a+°‘2 ;{5

where oy and o, are the scale parameters of the distributions of X'and Y respectively.

The object of this article is to make some extensions of these results. In Section
1, we consider a stochastic structure similar to (1) when X is a p x 1 random vector,
Y is a ¢ x 1 random vector, A, B, C, D are matrices of order ¢ x p, g xq, rxp, r xq
respectively. Assuming the matrix B to be nonsingular we show thatif C = DB A,
E(Y* | X*) = BX* almost surely where p = DB~'. In Section 2, we confine
ourselves to the case when p = g = 2. In this case, if C # DB™'A and some
additional conditions are satisfied, it is possible to characterize a class of bivariate
distributions through the regression properties of X* and Y*. These distributions
are not necessarily stable as defined by Lévy ([3] Section 63). In Section 3, we
consider a special case of the class of bivariate distributions introduced in the
previous section. The latter class is stable and includes bivariate normal distri-
bution.

1. Some preliminary results. Suppose, X and Y are random vectors of order
px1 and gx1 respectively such that E(X) and E(Y) exist. ¢(U, V) is the joint
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1360 CHANDAN K. MUSTAFI

characteristic function of X and Y where U and V are matrices or order px 1
and g x 1 respectively of real quantities, so that

3) o(U, V) = E(exp (iUX+iV'Y)).
Define:

Jp(U, V .

(4) el.i=[—(€-a_—__):| ; .]=1a2""9q;
v; V=0

(U, 0 .

e2j= au)’ J=132a:pa
f)

where u;, v; are jth components of U and V respectively. Suppose,
®) E/" = (e11, €12, - - - €19); E,)" = (€215 €225 - - - €2)).
We first prove the following result:
LemMA 1. Suppose E(X) = 0; E(Y) = 0.
Then,
E(Y | X) = BX almost everywhere if and only if
E, = BE,; where
B = (B:)) is a q x p matrix of real quantities.
PrOOF. For p = q = 1, the lemma is proved in [2]. Since the proof for the

general case can be derived in a similar way, we omit the details.
First we assume that E(Y | X) = BX almost surely. This can be rewritten as

B X ]
B:X
EY|X) =

B.X
where B; = (Bj1, Bjz, - - - Bjp);i=1,2...q.
Hence, E(y; | X) = B;X;j = 1,2,...q; where y; is the jth component of Y.

(6) ey; = i [ exp (U'X)[B;X] dFy(X), i=12,...q;

where F(X) is the marginal distribution function of X and the single integral in (6)
stands for a p-fold integral.

@) ey = i | x, exp (iU'X), dF{(X); k=1,2,...p;

where x; is the kth component of X and the single integral in (7) stands for a
p-fold integral. Now,

ﬂjEZ = ZI‘:=1 BjkeZk = iZ;‘é=1 .Bjk j x, exp ((U'X)dF(X)
=i BX exp ((U'X) dF,(X) = e, G=1,2...,9).
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Thus, E; = BE,, which proves the “only if”’ part of the proposition.

Next we assume that E; = BE,. Simple calculation leads to:

3) ey; = i [ exp ((U'X) E[y; | XIdF(X); j=12...,4q.
Since e;; = B,E,, it follows from (7) that
©) e;; = i [ exp ((U'X) B,XdF(X); j=12,...,q.

From (8) and (9) we obtain
§ exp GUX)[E(y; | X)— B;X]dF,(X) = 0; j=12...,q.

By the uniqueness of Fourier’s transform it follows that E(yjIX) = BX,
(j=1,2,...,q) almost surely.

Thus, E(Y | X) = BX, almost surely, which proves the “if”” part of the proposition.
Consider a stochastic structure with random vectors X(px 1), &(gx 1), q(rx 1)
of the following form:

(10) X* = AX+¢; Y* = CX+n;
where A = (a;;), C = (c;;) are matrices or order ¢ x p and r x p respectively. The

results of the lemma can now be used to derive a sufficient condition for E(Y* | X*)
to be of the form BX* where B is a r x ¢ matrix of real quantities.

THEOREM 1. Suppose a stochastic structure with random vectors X, &, 3 is given
by equation (10) where E(X) = 0; E(§) = 0; E(y) = 0. Further, let E(y | & = pé
and the distribution of X is independent of the joint distribution of & and n. Then
E(Y* | X*) = BX* provided BA = C.

Proor. Let ®(U, V), ¢(U,V) and ¢,(:) be the characteristic functions of
(X*, Y*), (¢, 4') and X' respectively where U is a ¢x 1 and V is a r x 1 matrix.
Then,

(1) (U, V) = (U, V)p,(AU+C'V).
od(U, V) 00U, 0)
vuppose Rl R A
_ |9, V) L. op(U, 0)
Y w; |y-o 2 ou;

From (11) we obtain

, 9, (A'U+CV ,
(12) e’f] =e1j(pl(A U)+(p(U9 0) l:_kﬂl—a;—_—_):l ] J = 1329'- s T
V=0

J
Simple calculation leads to:

09, (A'U+CY)
dv; V=0

J

(13) €3j =

i | exp ((U'AX) Y0 cyx JdF(X); j=1,2,...,r,
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where x, is the kth component of X, F(X) is the marginal distribution function of
X, and the single integral in (13) stands for a p-fold integral. Let

(14) E; = (e11s- -5 €11); E,* = (ef,...,€e5); E; = (€31, -.5€3.)-
Then, from (12), (13) and (14) we obtain

(15) E,* = ¢,(A'UE,; + (U, 0)E;.

Again from (11)

; j=12,...,q

0@ (A’
16y - e3; = ez;01(A'U)+9(U, 0) [___q)‘( U)]

ou;
Simple calculation leads to

dp,(A'U) . - ,
(I7) ey = —o—— = i [exp (UAX) [Yfoy apxddFi(X); J= 12,0045
J
and the single integral in (17) stands for a p-fold integral.
Let

(18) EZ, = (e2la L) e2q); E2*I = (e;b LRI ] e}kq); E4, = (941, LIS e4q)'

Then, from (16), (17) and (18) it follows that

19 E,* = ¢;(A'U)E; + (U, 0)E,.
Since E(n | &) = &, by Lemma 1

(20) E, = BE,.

Using the condition A = C, simple calculation leads to

1) E; = BE,.

From (15), (19), (20), (21), it follows that E;* = BE,*.
The proof of the theorem now follows from Lemma 1.

COROLLARY. Suppose we have a stochastic structure:
(22) X* = AX+BY; Y* = CX+DY;

where X*, Y*, X, A, C are defined as in Theorem 1. Y is a g x 1 random vector
independent of X, with E(Y) = 0. D is a rx q matrix and B is a q x q nonsingular
matrix. Then

E(Y*|X*) = DB™!X* alrost surely provided C = DB™'A.

The proof of the corollary follows immediately from Theorem I, if we substitute
¢ = BY and n = DY.

Theorem 1 and the corollary following it give the multivariate extension of
Theorem 1 given in [2]. Given the stochastic structure (22), a-sufficient condition
for E(Y* | X*) = pX* is C = DB !A. In Section 2, we investigate under what
conditions E(Y* | X*) = BX* when C # DB™'A assuming p = q = 2.
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2. Characterization of a class of bivariate distributions.

THEOREM 2. Consider two 2x 1 independent random vectors X and Y (E(X) =
E(Y) = 0) with characteristic functions f(U) and g(U) respectively where U’ =
(uy, uy). Suppose, for some real constants C,;, C,, D, D,, f(U) and g(U) can be
represented for all real u,, u, as:

(23) log f(U) = Cih(c'U)+ Crh,(d'U);
log g(U) = D h(f'U)+ D,h,(g'U);

where ¢ = (cy,¢,); d' = (d,, d,); ¥ = (f1,12); & = (g1, 9,) are vectors of real
quantities; and c[c, # d,[dy; hi(-), hy(:) are real valued functions such that
dhy(x)/dx(i = 1, 2) are continuous for all x.

Suppose, X*, Y* are 2 x 1 random vectors defined according to (22) where A, B,
C, D are real 2 x 2 matrices with A and B being nonsingular. Further, let

24 Ac=Bf=S; Ad=Bg=T;
where S" = (51, 5,); T' = (¢, t,) are real vectors.
Then,

E(Y* | X*) = BX* almost surely.
Further,
(25 B=PQ,

where P = (C;Cc+ D,Df C,Cd+ D,Dg); Q = A(C,+D;)c (C,+ D,)d).
Proor. Let ®(U, V) be the joint characteristic function of X* and Y*. Clearly,
(26) DU, V) = f(A'U+CV)g(B'U+D'Y);

S(A'0).

of(A'U+C'V) ag(B’U+D’V):|
V=0

@n ey = [—‘3"1— :|V=OQ(B'U)+|: a0,

From (23) and (24) we obtain

28)  logfAU+CV) = Cihy(S' (U+WV))+Cohy(T'(U+WV));
log gBU+D'V) = D 4,(S'(U+ZV))+ D,y (T'(U+ZV));

where W = (A)~!C"; Z = (B))"'D.

Hence,
29) 1 I (A'U+CV) oh,(S'(U+WYV))
fAU+C'V) ov; (S (U+WY)
h(T'(U+WY)) .
(W1js1+W2jSz)+C2m(W1j11+W2jtz); j=12
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Due to continuity of the partial derivatives,
1 |‘a f(A'U+ C’V)]
V=0

fAav) | av;
oh,(S'U 0h,(T'U)
(30) = C a_(ls(,U-')—)(leﬁ"‘szsz)"‘Cza—(zT‘,‘w (Wit +Wajty);
J=1.2.
Similarly,
: 1 [6g(B’U+D’V)]
g(B'U) 51’,‘ V=0
0h,(S'U 0h,(T'U)

(31) = Dl_@(lé’—U)) (Z,8, +szsz)+D2-azT—,U)'(Z1jt1+szt2);

j=172.
From (27), (30), (31) we obtain

e = f(A'U)g(B'U) {[C1(W1js1 + Wyis)+ Di(Z181+2Z5s,)]

0h(S'U
32) 73—(1§T))+[C2(W”t1+ Wyit))+Dy(Zjt +2Z,t5)]
3T'0)
Let

E," = (e1,€12).
Then, from (32), we obtain

[~ 0h,(S'U)|
, | S
(33 E, = fAUgBUCWS+DZS CWT+D,ZT) | o )
o(T'u) |
0h,(S'U)
. AS'U)
ATU) |

since
(C,W'S+D,Z’S C,WT+ D,Z'T)

(34) = (C,CA™'S+D,DB"'S C,CA™'T+D,DB™'T)
= (ClCc+ DlDf C2Cd+D2Dg)
=P.
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From (26)
DU, 0 of(A'U dg(B'U
69) ey = 200 gy LAY ay EED)
uj i Uj
From (23) and (24)
I 0f(A'U) 0h,(S'U) ohy(T'U)
(36) AU - St ey b
1 dg(B'U) oh,(S'U) oh,(T'U)
N A = 1 7 sj 2 7 j> J= l’ 2
gB'U)  du; (S'U) (T'U)
From (35) and (36)
) ) oh,(S'U) dhy(T'U))
= f(A’U)g(B'U) {[c,s,.+Dlsj] 5(’15—17)' +[Cyt;+ Dyt)] a(ZT’U) }
j=12
Denoting by E,” = (e,, ¢,,), we observe that
"oh,(S'U)T
“aS'U)
(37) E. = (XU | 5oy O
(T'U) |

since ((C; +D)S (C,+D,)T) = A(C,+D))c (C,+D,)d) = Q.

It may be observed that the condition ¢,/c, # d,/d, implies that the matrix Q
is nonsingular. Since the representation (23) is valid for all real #; and u, neither
f(A'U) nor g(B'U) has any real zero. Thus from (33) and (37), we obtain E; =
BE,. The proof of the theorem now follows from Lemma 1.

Theorem 2 thus introduces a class of bivariate distributions for which
E(Y* | X*) = pX* where X* and Y* have the stochastic structure given by (22).
It may be pointed out that the theorem requires some conditions on the matrices
A and B while C and D can be arbitrary. The characteristic functions f(U) and
g(U) depend upon u, and u, only through the functions 4,(-) and /,(-). In Section
3, we consider some specific forms of these functions.

We next try to prove the converse of the theorem. Suppose,

(3%) X* = AX+BY; Y* = CX+DY; EX) = EY) =0;

E(Y* | X*) = pX*;
where X, Y, (X, Y independent) X*, Y* are 2 x 1 random vectors; A, B, C, D, are
2 x 2 matrices of real quantities. Let the matrices A, B, (C— pA), be nonsingular.

This automatically excludes the possibility that C = DB~ 'A. Let us also introduce
the matrix

(39) G = (9;) = —A(C—-pA)"'(D—pB)B" ',
—A(C—BA)"{(DB™! —p).
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THEOREM 3. Let f(U) and g(U) be the characteristic functions of X and Y
respectively. Suppose,

(i) For given A, B, C, D the relationships given in (38) and the assumptions
following it are true.

(ii) f(A'U) and g(B'U) do not have any real zero.
(40) (iii) 921 # 05 g1y # Gaa-
(iv) Either g,, and g,, are of same sign or
(41) lgzz"gu‘ > 2(—g12921)*

Then, f(U) and g(U) must be of the form given by (23) and the conditions given in (24)
must also be satisfied.

Proor. Suppose, ®(U, V) is the characteristic function of the joint distribution
of X* and Y*. Then,

(42) (U, V) = f(A'U+C'V)gB'U+D'V).
Let
aD(U, V)]
e = —— ; =1, 2.
1j |: an Voo j
aD(U, 0). ,
ezj = au N J = 1, 2.

J
E," = (e11,€12); E) = (ey4, ;7).
Then by Lemma 1,

(43) E, = BE,.
Simple calculation leads to:
(A'U+CY) of(A'U) |
[f_a—] = i(cjimy +cjm,); “on. i(ajmy +a;m,);
V= J
og(B’ U+D’V) . 0g(B'U .
(44) [ :l = i(djin, +d;ny); 9BU) = i(bjin, +bjny);
J
where,

m; = [ [ x;exp (U AX)dF(X);
45) n; = [ {y;exp (UBY)dF,(Y); j=12.
M’ = (my, my); N' = (ny, ny);

F(X), F,(Y) being the marginal distribution functions of X and Y respectively.
After some trivial calculations, we obtain from (42)-(45)

(46) g(B'U)C—-BAM +f(A'U)D—BB)N = 0.
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Since, f(A"U)g(B'U) +# 0 for all real u,, u,

M N
47 —_— = —(C=— “Lp— -
47) AT (C—BA"'(D ﬁB)g(B,U).

Let f(A'U) = f*(U); g(B'U) = g*(U).
From (44) we obtain

of*(U) ] "0g*(U)
ou, . ) Ou, .
Ou, | Ou,
From (39), (47) and (48), we obtain
—of*(U) | og*(U) |
1 Ou, 1 G O0uy
S*U) | of*(U) g*(U) | 9g*(U)
ou, | ou, _|
which can be rewritten as:
0 log f*(U) 0 log g*(U) 0 log g*(U)
49 =
(49) 2u, 1t ou, +912 s
dlog/*(U) 0dlogg*(U) 0 log g*(U).
Ou, o7 Ou, 22 Ou,

We solve the system of partial differential equations given by (49) by using the
techniques discussed in Petrovsky ([5] page 53). Let

(50) Z,(U) = log f*(U)—g,, log g*(U),
Z,(U) = log f*(U)—g,, log g*(U).
Then, the system (49) can be rewritten as:
0Z,(U) — 912 [azl(U)_azz(U):l
Ou, 922—911 Ou, Ou,
0Z,(U) __ 9 aZ1(U)_|_|:911—922_ 912 :IaZZ(U)
ou, 92— 911 Ou, 921 922—911 Ou,

Condition (40) ensures that the co-efficients'of 0Z,/0u,, 0Z,/0u, in the right-hand
side of (51) are finite.

>

(51)

Let
912 —9d12
ki, = ; ki, =———=;
H 9227911 12 922911
ky, = 912 : ky, = 911—922 Y12

922—911 921 922—911.
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Thus, (51) can be rewritten as:

0z, 0z, 0z,
2 _— = (k:)):
(5 ) 6111 kll au k12 a 2 K (ku)’

02, _, 9z, 0

6 U = R21 75— 6 22 6 2

Define k, k, so that

1 Yo kykiZy =AY kiZ,
Equating the co-eﬂicients of Z; from both sides, we obtain

(53) =1 kijk; = Akj; j=12.
For non-trivial solutions of k; and k2 in (53) we must have
|K'—21| = 0.

Thus, A must be a characteristic root of K'. It follows from condition (41) that the
characteristic roots A, 4,, of K’ are real and unequal. Suppose k;* and k,* are
the values of k; and k, when A = A, and k,**, k,** are values of k;, k, when
A = 4,. Suppose

= kl*Zl +k2*Zz; ZZ* = kl**Zl +k2**Z2‘.

Then
0z * (7Z1 622
=k* +k,*
Ouy ! aul 2 8u1
oz V4
=k kyy — kg, =2
1 ( 11 6u2+ 12 6142)
oz 0z
(54) k¥ kyy —tkyy —2
O0u, Ou,
0Z;
= Z ZJ 1k kl.l'a
0
=4 é_(kl*Zl +k,*Z,)
U
0z, *
=2 .
' ou,
Similarly,
0Z,* 0Z,*
55 =2 =2
(53) ou, ? ou,

The general solutions of (54) and (55) are given by
Z* = hy(Auy +uy); Zy* = hy(Ayuy +uy);
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where 4,(-) and A,(-) are differentiable functions of u, and u,.

Now
Z;* = Lj; log f*(U) +L} log g*(U); j=12.
where

Ly = ki*+ky*; Ly, = —ki*g11—k3%922;
Ly, = ky** 4k, **, Ly = —k**g11—k3*%g25.

Let L = (L;j). Since K'—A[1 is singular for j = 1,2, it is possible to choose
k;*, k;**(j = 1, 2) in such a way that the matrix L is nonsingular. Hence,

56 (logf*(U)> - (hlalul +u2)>.
log g*(U) hy(Ayuy +us)
Taking
L—l — Cl C2
D, D,
we obtain
(57) log f*(U) = Chy(A1uy +uy) + Corhy(Ayuy +uy);
(58) log g*(U) = Dyhy(Ayuy+uy) + Dyhy(Ayuy +uy).

Replacing AU by U in (57) and BU by U in (58) and defining
¢ =@ DAY & =Gy DAY =4, DBTY
g = (A, DB,

it is easy to see that f(U) and g(U) have the form given in (23). Further, the con-
ditions given in (24) must also be satisfied. Since A; # A,, ¢;/c;, # dy/d,;
filfs # g1/92, this completes the proof of the theorem.

3. A class of bivariate stable distributions. According to Lévy ([3] Section 63)]
the distribution function F(X) of a 2x 1 random vector X is bivariate stable if for
all choices of 2x 1 vectors B, B, and positive quantities a,, a, there exista 2x 1
vector B and a positive quantity “‘@’” such that

(59) F(a,X+B,)*F(a,X+B,) = F(aX+B);

where ““*” stands for convolution. Unlike the univariate case, itis easy to see that
the class of bivariate distributions given by (23) does not, in general, belong to the
class of bivariate stable laws. The natural question which now arises is, “Under
what conditions is the family given by '(23) stable?”’ The following theorem
provides a partial answer to this question.

THEOREM 4. Consider the random vector X' = (x{,x,) with E(X) = 0.
Suppose both x, and x, are stable and symmetric with the same characteristic
exponent equal to o > 1. Then, if the characteristic function of X is of the form given
by (23) with ¢, d,, ¢y, d,, Cy, C, # 0 and c,[c, # dy|d, it must be a bivariate
stable distribution.
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PrROOF. Let fi(u;) = f(uy, 0); fo(u,) = f(0, u,) be characteristic functions of
X, and X, respectively. Then, from (23)

(60) log fi(uy) = Cyihy(cyuy) + Cohy(diuy);
log f5(u;) = Cyhy(cyuy) + Crhy(dyus).
Eliminating 4, (-) from (60) we obtain
hy(dyd, ™ cyu) — hy(cquy) = €y log fo(dydy ™ "uy) — Cy ™ log £, ().
Writing c,u, = u; did,”'cuy = Ou; dyd,”'u, = 0*u; u, = 0**u, we obtain
(61) hy(Ou)—hy(u) = C, " log f,(0*u)— C, ! log f1(6**u).
Since, ¢y/c, # d,/d,, it follows that 0 # 1.
Similarly,
(62) ha(yu)—hy(u) = C, ™1 log fr(y*u)— C, ™" log £, (y**u).
where
dily = w5 c7 dyuy = yu; up = y*Fu; cpe tuy = yruy oy # L

Since, x,; and x, are stable and symmetric with the same characteristic exponent
o > 1 and E(x;) = E(x,) = 0, it follows that

(63) log fi) = =y, [ul*s  logfo) = —po [ul*s 99, >0; > 1.
From (61), (62) and (63) we observe that h, (6u)—h,(u) = y5 |u|*;
(64) hy(yu) —hy(u) = y4 ul;

where y3 and y, are functions of y,, y,, C;, C,, 0%, 6%*, p*, y** and «. We now
solve the equations given in (64) using a technique given in Boole ([1] page 303).

First, we consider /,(-). For a given “u”, let us introduce a variable “#”” and a
function “U,” such that for some integral value of “¢”, U, =u; U, = Ou. Then,
U, must satisfy the difference equation:

Ut+l_0Ut = 0.

Hence, the general form of U, is U, = 46", where A4 is some constant. Let hy(u) =
hi(A0%) = V,. Then, for integral values of ¢

Vier =V =17, lula = Vth
where B = |0]%; y5 = y; |4|*. The general form ¥, is given by
(65) Ve = hy(46°) = hy(u) = (B—1)"1y5B".
The relation |u| = | 4| |0]" leads to:
(66) t = [log |6]]™" [log |u|—log |]].
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Introducing (66) in (65) we obtain

(67) hy(u) = —L3_. ploglul~logl4))/(loglo))
B—1

= 7Ye |u|a§
where

ye = B~ (oslab/toglo)_Ys_
B—1

Similarly, 4,(u) must be of the form
(68) ho() = 7 ul".
In troducing (67) and (68) in (23), we observe that f(U) must be of the form:

(69)  log f(U) = —ay |uy +0,us|"—ty |y +55u,|"; max (ay, #3) > 0;

min (¢t;, ;) = 0; Il <a=2.

The characteristic function f(U) given by equation (69) clearly represents the
characteristic function of a bivariate stable distribution as defined by equation
(59). This completes the proof of the theorem.

It may be observed from (69) that for « = 2, f(U) reduces to the characteristic
function of a bivariate normal distribution with means zero and dispersion
matrix

) oy + 00,0, +0,
0,8, +038,00,0, % + 030,

Finally, we observe that Theorem 3 and Theorem 4 lead to the following interesting
corollary:

COROLLARY. Suppose the conditions stated in Theorem 3 are true. Then, if the
marginal distributions of either X' = (x,, x,) or Y' = (yy, y,) are stable, symmetric
with the same characteristic exponent « > 1, the characteristic functions of both
X and Y have the form given by (69).
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