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FACTORIAL ASSOCIATION SCHEMES WITH APPLICATIONS TO THE
CONSTRUCTION OF MULTIDIMENSIONAL PARTIALLY BALANCED
DESIGNS

By J. N. SRIVASTAVA AND D. A. ANDERSON
Colorado State University and University of Wyoming

0. Summary. In this paper, some new multidimensional partially balanced
(MDPB) association schemes are defined, and the various parameters of the scheme
are obtained. Using such schemes, we discuss procedures for the construction of
multidimensional partially balanced designs. The theory so developed is illustrated
with actual examples of construction of MDPB designs.

1. Introduction. The MDPB association scheme and the MDPB designs were
introduced in Srivastava (1961) and Bose and Srivastava (1964). Here, for later
use, we recall their definitions in brief. Let S;, S5, ---, S,, be m sets of objects,
where the number of objects in the set S; is |Si| (=s,say);i=1,2,---, m. The
objects of §; shall be denoted by x;,, x;5, -+, X;5,-

DEerINITION 1.1. The class D of sets Sy, S,, -+, S,, is said to have a MDPB
association if the following conditions are satisfied.

(i) Given any object x;, € S;, the objects of S;, (j = 1, 2, -+, m), can be partitioned
into n;; disjoint subsets where each element of the ath subset is an ath associate of
X;,- The number n;; of such subsets, and the number nf; of objects in the ath subset
are independent of x;,, so long as x;, € S;.

(ii) The relation of association is symmetric, that is, if x;, € S; is an ath associate
of x;, € S}, then x;, is an ath associate of x,.

(iif) Let S;, S}, and Sy be any three sets in D, where i, j, and k are not necessarily
distinct. Let x; € S; be an ath associate of x;, € S;. Then the number of Sth
associates of x;, in S, which are also yth associates of x;;, is a constant p(i, j, «;
k, B, y) dependent only on i, j, k, «, 8, and y and independent of the pair x;, and
X;j, 50 long as x;, and x;, are mutually ath associates.

Let Q be the (set-theoretic) product of the sets S;, i.e. Q = S; XS, X+ XS,
and let the ordered m-tuples of Q be called assemblies. Now, consider a factorial
(or multidimensional) design with m factors (dimensions), such that S; denotes the
set of levels of the ith factor. An “m-dimensional design” T is then a collection of
assemblies of Q, where an assembly of Q may be included any number of times; in
particular, it may be included zero times.

DErRINITION 1.2. An m-dimensional design T is said to be a MDPB design if

(i) The sets Sy, S5, --+, S,, have a MDPB association scheme defined over them.

(ii) The number of times the rth factor (r = 1, 2, ---, m) occurs at level j(€ S,)
equals y,, where p, depends only on r and is independent of j, so long asj € S,.
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(iii) Consider two distinct factors r and ¢, and suppose j€ S,, /' € S,, and j and
j" are ath associates of each other. Then the number of assemblies in 7 in which
rth and tth factors occur respectively at levels j and j' equals d%, (r # ¢t = 1,
2, .-, m), where d; depends on r, f, and «, but is independent of j and j’ so long as
jeSs,,j €8S, andjand;’ are ath associates.

DerINITION 1.3, If T and T, are two m-dimensional designs, let T =T, @ T,
denote the m-dimensional design in which an assembly of Q is included u, +u,
times, provided it is included u, times in T and u, times in T,. T is said to be the
“sum” of 7| and T,. It is immediate from the definition that if 7, and T, are
MDPB designs then T'is also an MDPB design.

Some necessary existence conditions on the parameters, and also the connected-
ness of MDPB designs were studied in Srivastava and Anderson (1970). One
purpose of this paper is to consider the construction of such designs, particularly
those involving a small number of observations.

The reader interested in the previous work should look into the (illustrative)
bibliography presented at the end.

2. The factorial subassembly association scheme. Let Q, denote the set of all
2™ assemblies for a 2™ factorial experiment, say

(2.1) Q, ={a,'a*-a"|j,=0 or 1;r=1,2-,m}.

Let a’'a’? --- a’< denote the set of 2"~ assemblies in Q,, in which the factors i,

i, -+-, I, are at fixed levels j, j,, ---, ji, respectively, and the remaining (m—k) at
level either zero or one.

DEFINITION 2.1. The set of assemblies a{! ai? --- a’k is said to be a subassembly of
order k; k = 0, 1, ---, m. The set of all subassemblies of order k in a 2™ factorial
experiment is denoted by S,,. Note that for the case k& = 0, there is only one sub-
assembly, namely Q,, itself. (This follows, since for k = 0, we must take all
assemblies in Q,, without any restriction to the levels at which any factor appears).

DEerINITION 2.2. If w is a subassembly of order k, denote by @ the subassembly of
order k obtained from w by interchanging the levels one and zero. Denote by S,
the set of distinct unordered pairs (w, @). For example,

Sas = 1{a,°4,%, a, a5, a,°a:°, a,'ast, 4,050, a,'ast, a,%a,t, a,ay°, a,%as’,
a;'a;%ay%a,', a,'as”) ‘

8% = {(410"20,‘111“21)’(‘710‘130,‘111“31),(‘720“30,421031),(010021a011‘120)’
(a1oa31aallaso)’(azoasl’azlaso)}-

It follows directly from the definition that |S,,| = ()2* where for any set S, |S]
is the number of elements in S. Also [Sk| = |S|/2, if k>0, and |Sko| =
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Suppose o = a;a;? -+ a;i and p = a;ia;2 -+ a;i, are elements of S,,; and S,,;,
respectively. The relation of association to be defined between w and p will depend
on the number of common factors (subscripts) and among the common factors
the number of common levels (superscripts). For example a,'a,%,° € S,,; and
a,'a,'a,as! € S, have two factors in common and one level in common, and
will be called (2, 1) associates of each other.

Let Z,, = {Smo> Smis ***s Syms Soi0s Sui1s *+*» Spom}. An association relation will
now be defined between the elements of the setsin &,

DEFINITION 2.3. The association scheme defined below is said to be the “factorial
subassembly association (FSA) scheme” on E,,..

(i) Let w € S,,; and p € S,,;. Then p is said to be an (a,, a,) associate of  if p
has exactly o, factors in common with w, such that among these «, factors, exactly
a, factors have the same level in both w and p. (It follows immediately that if p is
an (a;, o,) associate of w, then p is an (o4, &; —0,) associate of w).

(i) If w € S,,; and (p, p) € Sk, then (p, p) is said to be an (ay, a,*) associate of
o where a,* = max [o,, a; —a,].

(iii) Finally, under the above notation (p, p) € Sn; is said to be an (g, a,*)
associate of (w, @) € Sjk;.

Since the association relation depends only on the number of factors in common
and the number of common factors at the same level, the association relation is
obviously symmetric.

We shall now compute the parameters of the FSA scheme in a series of lemmas.

The composite of these lemmas provides a proof that the FSA scheme is MDPB.
For brevity let o = (ay, o), and a* = (¢, a,*).

LEMMA 2.1. If the FSA scheme is defined on E,,, then
3 (0,+1)(0,+2) 0,(0,+1)

(a) n;j = 2 P >
02 [0+2

(b) Mo =Njuy =Npuje = ), [—5—]’
0=01

where 0, = max [0, i+j—m], and 0, = min [i, j1, and where [q] denotes as usual,
the greatest integer inq.

PROOF. Let w € S,,;. Consider the set S,,;, where j may or may not be different
from i. With 0; and 0, defined as above, an element of S,,; must have at least 0,,
and at most 6, factors in common with w. If an element of S,,; has 0 factors in
common with o then it may have 0, 1, 2, -+, or 0 levels in common with . That is,
for a fixed number 6 of factors in common there are 6+ 1 distinct associate classes.
Hence n;; = (0, +1)+(0; +1+1)+---+(6,+1), which reduces to the value given
in part (a). Next consider the set S:‘j. By the definition of the FSA scheme, for a
fixed number 0 of factors in common with w, there can be either (+1)/2 or
(0+2)/2 distinct associate classes according as 0 is odd or even. This can be
expressed as the greatest integer in (6+2)/2, and n; ;. is the sum of such expressions
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where 0 takes values from 0, to 6,. The remaining equalities in part (b) are easy to
show. This completes the proof.

LeMMA 2.2. If the FSA scheme is defined on E,,, then

(@) nfj =) 2)()2

(b) nijs=n&u=n if ay#a)2

=%nij’ if oy =0y/2.
(¢ ”?:j =2n3, if oy #ayf2
= ny;, if a, =a,/2.

PRrROOF. Let @ be any element of S,,; and consider the number of « = («,, «,)
associates of w in S,,;. Let p € S,,;, and suppose p and w are ath associates. Then
we must find in how many ways we can select p. From the i factors in w, «, factors
may be chosen in (,},) ways; these a, factors are to have levels in common with those
of a set of «, factors in p. From the remaining (i —a,) factors in w, we can choose
(orq —-oc2) factors to have levels different from those of corresponding factors in
p in ((,[1 %) ways. Then from the (m—i) factors not included in the symbol for w
we can choose (j—a,) factors in (- =) ways and the levels may be assigned to these
factors in 20~ ways; these (j—a,) factors are to be in p, and not w. This com-
pletes the proof of part (a).

For (b), note that each p € S,,; which is an (a4, «,) associate of w, is paired with
p which is a (ay, «; —a,) associate of w in S,,;. If a, # a,/2 the two associate
classes in S,,; are distinct, while if o, = a,/2, the (a;, «,) and («;, ®; —a,) associate
classes of w in S, ; are the same. Hence part (b) follows. Finally consider (w, @) € Sp.
An element of S,; is an (a;, a,*) associate of (w, @) if it is either a (a;, a,) or
(oty, 0y —a,) associate of w. If a, # /2 these two classes are distinct and if
o, = aq/2 the two classes are identical. This completes the proof.

LeMMA 2.3. For the FSA scheme defined on E,,, we have
PG, js sk, Byy) = 2 (o2, Gope) e ("™ )2
where the summation is over all a,, a,, by, b,, ¢y, ¢,, dy, d, and f satisfying
(@) k=a,+a,+b +b,+c e, +di+dy +f
(i) By = ay+ar,+by+by+c;+cy5 By = a;+by 4
(i) 7, = ay+a,+b,+b,+d  +dy; v, = a;+b,+d,
and where, o = (o, a3), B = (B4, B2), v = (1, ¥2); and for any positive integers
los 1y -y 1y,
Io lo!
G, 10) = I L (=1 — = 1)V

=0, otherwise.

i i+l = o,

ProoOF. Let w € S,,; and p € S,,; be « associates. Consider 7 € S,,,. From the «,
factors with levels in common between w and p, a, factors in # may be chosen to
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have levels in common with both w and p, and a, factors to have levels different
from each of ® and p in (,/2,) ways. Then, from the (x; —a,) factors in common
with levels different between w and p, b, factors (in m) may be chosen to have

levels in common with w and b, factors (in ) to have levels in common with p in
(%, 52) ways. Next from the (i—o,) factors of w not in common with any factor of

p, ¢; factors (for ©) may be chosen to have levels in common and c, factors to have
levels different in (£, %) ways. Likewise, from the (j—«,) factors of p not in com-
mon with any factor of w we chose d, factors to have levels in common and d,
factors to have levels different, in (4 3!) ways. Finally from the remaining
(m—i—j+a,) factors not appearing in either w or p or both, f factors may be
chosen in ("7 /**) ways and the levels may be assigned to these f factors in any
of 2/ ways. Condition (i) insures that the element so chosen is in S,,, while
conditions (ii) and (iii) insure that the element is a (B,, f8,) associate of w and a
(y1, v,) associate of p. This completes the proof.

LEMMA 2.4. For the FSA scheme defined on E,,, we have

@  pG,J, o k*, B*, v*) = p(, j, (01, 22); &, (B, B2)s (15 ¥2)) +p0s ), (15 22);
k, By, Bi—B2)s 01, ¥1—72))s if B2 > PB1/2 and
V2 > 71/2;

= p(i, J, (01, 02); &, (Bys B2), (V15 72)), if either
B2 = Bi/2andy, > 7,2, 0r B, > B/2 and
Y2 = 1/2;

= 3p(i, J, (@1, 02)5 k, (B B2)s (15 ¥2)), if B2 = B1/2
andy, = y,/2;

() pG,j* a*; k, B, v*) = pG,j, a5k, B, ¥) if 72 = 1/2;

= p(i, j, a5 k, B, 01, v2)) +0Gs s 45 K, B, (01, ¥1—72))s
ify, # 94/2;

©  pG,j*, o*; k*, B*,9*) = p(, j, «; k*, B*, y*), where ay = o4/2;

(@) pG*,j*, a*; k, B*, v*) = p(sjs @5 k, (B B2)s (715 ¥2))+PG, J, o5 K, (Bys Ba)s
(V1> 11=72)) +P0s Js a5k, Bys (Br—B2), (715 72))
+p(@, J, 5 ks (Bys Br—B2)s 01, 71— 72))s if
B2 > Bi/2andy, > y,[2;

= p(isjs s k, B, (01, v2)) PG, Jy o5 Ky By (01571 —72))s
if B, = B1/2 andy, > /2, orif B, > By/2 and
V2 = 71/2;
= p(i,J, 3 k, B, 7), if B2 = B1/2 and y, = 7,/2;
(&) pG*,j*, o*; k*, B*, y*) = p(, j*, a*, k*, p*, y*).
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Proor. (a) Let w € S,,;, and p € S,, ; be « associates. Then an element (o, &) € Sy
isa (B, B,*) associate of w and a (y,, y,*) associate of p, if o € S, is a

(i) (B4, B,) associate of w and a (y,, y,) associate of p, or

(ii) (B4, B.) associate of w and a (y,, y, —y,) associate of p, or
(i) (B4, B1—PB,) associate of w and a (y,, y,) associate of p, or
(iv) (By, By —B,) associate of w and a (y,, y; —7y,) associate of p.

Now if f, > f,/2 and y, > y,/2 the four classes listed above are all disjoint. If
o is of type (i) then & is of type (iv), and if ¢ is of type (ii) then & is of type (iii);
hence the number of pairs (o, &) € Sj, which are f* associates of w and y*
associates of p, is the number of elements of type (i) or (ii) in S,,. This completes
the proof of the first equality of part (a). If 8, = §,/2 and y, > y,/2, then in S,
types (i) and (iii) coincide, and types (ii) and (iv) coincide. Then if o is of type (i),
we have that & is of type (ii); in this case the number of pairs (o, &) € S¥,, which
are B* associates of w and y* associates of p is the number of elements of type (i)
in S, Similarly if 8, > B,/2 and y, = y,/2. Finally, if 8, = $,/2 and y, = y,/2,
all four types are the same and clearly the number of pairs in S¥, is one-half the
number of elements of type (i) in S,,,. This completes the proof of part (a).

(b) Let w € S,,; and (p, p) € S be a* = (a, a,*) associates. An element o € S,
is a (yy, 7,*) associate of (p, p), if it is either a (y,, y,) or (y;, 7, —7,) associate of
p € Suj. If y, # 9,/2 these classes are disjoint, and if y, = y,/2 they are identical.
Part (b) now follows directly.

(c) This part is obvious since (¢, 6) € Sj is a (y,, y,*) associate of (p, p) € Si;,
ifand only if (o, 6)is a (y,, y,*) associate of p € S|, ;-

(d) An element o € S, is a (B;, f,*) associate of (w, @) € S¥;, and a (7, y,*)
associate of (p, p) € Sy, if it is of types (i), (ii), (iii), or (iv) mentioned in the proof
of part (a). If B, # B,/2andy, # vy,/2, all the four classes are disjoint. If 8, = ,/2
and y, # y,/2, classes (i) and (iii) are identical, and so are classes (ii) and (iv). The
same holds also if g, # f,/2 and y, = y,/2. If B, = B,/2 and y, = y,/2, all four
classes are the same. From this, part (d) follows immediately.

(e) This follows_immediately, by noting that (p, p) € S, is a («y, a,*) associate
of (w, @) € Sy; if and only if (p, p) is an (a,, «,*) associate of w € S,,;, and similarly
for (o, &) € S,%. This completes the proof.of the theorem.

The following theorem follows from Lemmas 2.1 to 2.4, and the observation that
the association relation is symmetric.

THEOREM 2.1. The FSA scheme defined on Z,, is a MDPB scheme.

3. Construction of MDPB designs. In this section we obtain a general method of
constructing MDPB designs from an MDPB association scheme defined on the
sets of factor levels. The method is illustrated by examples.
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We consider the three dimensional case. Let Sy, S,, and S5 be three sets with
51, 82, and s5 elements respectively. We shall suppose that some MDPB association
scheme is defined on this class of sets.

Suppose that o, , and y are three integers and consider the design T(x, 8, 7) < Q
where

(3.1) T( B,y ={(X, X5, X3)| X;eS(i=1,2,3), and (X, X,),(X;,X;)
and (X,,X;) are respectively o, and yth associates}.
It is apparent that

(3‘2) |T(OC, ﬁ) ')))| = s3n°{2p(1, 2’ o 3) ﬁ: ’))) = Sln£3p(27 3,')); 1)“5 B)
= 52"§1P(3> 19ﬁ;2a 12 O().
Next we see that each level of a factor appears the same number of times; in fact

(33) Uy ="72P(1,2:°‘;3,ﬁ,)’); Ha =n§3P(2,3,)’§1,0‘>ﬁ),

H3 = nglp(:)” 1, .B; 2, Vs 0().
Finally, we have

df,=p(1,2,0;3,8,7), di, =0 ifd#ua
(3.4) dty =p(1,3,8;2,a,9), A5, =0 if6#p
dys =p(2,3,y;L,a,8), di3=0 ifd#y.
Thus we have shown the following:
THEOREM 3.1. The design T(a, B, y) defined by (3.1) is an MDPB design.
COROLLARY 3.1. If T(x;, Biy v0), i = 1, 2, -+, k, are k designs of type (3.1) then
(3.5) T=T(xs,B1,71) ® T(2, B2,72) B+ ® T(ow, Prs )  is an MDPB design.

Theorem 3.1 and Corollary 3.1 give a method of construction of three dimen-
sional designs. There is no guarantee, of course, that such a design is completely
connected and this must be checked using the methods given by Srivastava and
Anderson (1970). Also the designs obtained in this manner may not be as economic
as desired. If all of the nonzero dj; are greater than one, the size of the design may
often be reduced by taking an appropriate subset of the design so that at least one
of the dJ; is one.

For convenience of presentation of designs a subassembly of order k, say,
a’,-:a’,-; -+ at, will be denoted by an m-yector with j, j,, -++, ji respectively in
positions i,, i,, ---, iy, and dots elsewhere. For example, a,'a,® € S, will be
denoted by (1,0, -). Likewise pairs of subassemblies in S, will be denoted by

pairs of m-tuples.

EXAMPLE 3.1. 4 x 6 x 8 DESIGN. Consider the sets Sy, S3;, and S35 of E;, and
let the FSA scheme be defined on these sets. Then T((1, 1), (2, 2), (1,0)) is an
MDPB design with N =72, u; = 18, u, = 12, u; =9, diy" =3, di3* =3,
and d$5® = 3. From this design we may extract the 24 assemblies specified by
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[(Gisdzsda)s Tjis 1472 1473)), Gi's o)y (LJts Jas 7)1 ifj," = ji;
[(Gisdasda)s A +jis Ljas 1473)), Gt'seso)s (s 1472 1473)], ifj," = 1+j;

and similarly for (-,/,’,-) and (-,-,/3’). This is a completely connected MDPB
design with N = 24, and d{;3V = d3? = d{4'® = 1. The remaining 48 assemblies
constltute an MDPB design with d{}'? = d‘3 2 = di%® = 2. The design with
= 24is given in the following array.
TABLE 1

Level combination for 4x 6 x 8 MDPB design

-5y @5y 60D LY G50 LD

(0,0,0, (1, 1, 1) (1,0,00 (0, 1,1) (0,10 (1,0,1) (0,0,1) (1,1,0)
©, 1, 1,(1,0,0) (1,1,1) (0,0,00 (1,0,0) (0,0,1) (1,0,1) (0,1,0)
©,1,0,(1,0,1) (1,1,00 (0,0,1) (1,1,1) (0,0,00 (0,1,1) (1,0,0)
(0,0,D,1,1,0) (1,0,1) (0,,00 (O, 1,1) (1,000 (1,1,1) (0,0,0)

EXAMPLE 3.2. 3 x 6 X 8 DESIGN. In this example we shall take the ““‘sum”’ of two
designs and then take a subset of the resulting design. Consider the sets S¥,, S5,
and S;; of Z; and let the FSA scheme be defined on these three sets. Consider the
design T = T((0, 0), (1, 1), (1, 0))+T((1, 1), (1, 1), (1, 0)). For this design we have
|T|— N=72 p =24, p, =12, p3 =9, di3” = dyV = 4, d{iY = 3, and
d{5” = 3. Consider the design with assemblies [((0,-,-), (1,-,-)), (js+s:)s
(1 +.]1’0 0)]’ [((0’ b )’ (1’ b )) (.]1’ b )’ (1 +.]1’1 1)] [((0’ 3 )’ (1’ b ))7 ’JZ’ )’
(1 +j2> 1 +j23j2)] [((O’ s ')’ (1, T ))> ( 5" >j3)’ (1 +j3’j3 1 +j3)]- The remaining
sixteen assemblies are obtained similarly from pairs ((-, 0,-), (-, 1,-)) and ((-, -, 0),
(+,-,1)). Thisdesignhas N = 24, i, = 8, u, = 4, iy = 3, dy DL 2,and d{3? =
diy? = dj5® = 1. The remaining 48 assemblies also constitute a MDPB design.

The structure of the FSA scheme, and the relations on the parameters derived in
Srivastava and Anderson (1970), can be employed to construct four and higher
dimensional PB designs. In order to illustrate this, the construction of a
4x6x8x12 design with N = 48 will be considered. This design is also used for
an example in Srivastava and Anderson (1970). Again the FSA scheme with
m = 3 is employed.

First we select four appropriate sets from =5 in this case S¥3, Sy, S33, and S;,.
There are 27 parameters to be estimated, thus N must be at least 27. By Theorem 3.1
in Srivastava and Anderson (1970), N must be a multiple of 24 = l.c.m.[4, 6, 8, 12];
hence N must be at least 48. The design to be constructed will have N = 48.

Consider the first three sets, with (x, ¥) € S%, yeS,,, and Ze S,;. Each
(x, ¥) € S35 is an (1, 1) associate of each y e S;, so that each of the 24 pairs
((x, X), y) will appear in exactly 2 assemblies. In S, there are three (3, 2) associates
of (x, X) which are (1, 1) associates of y, say Z,, Z,, and Z,. Now one of the pairs
of triples of (x, ¥), say x, matches the non-dot coordinate of y, and each of Z,, Z,,
Z5 match x and y in that coordinate. One of Z,, Z,, Z,, say Z, differs from x in the
remaining two coordinates. For example if x = [(0, 0, 0), (1, 1, 1)] and y = (0,-,-)



FACTORIAL ASSOCIATION SCHEMES 1175

then Z, = (0,1,1), Z, =(0,0,1) and Z; = (0,1,0), and Z =2, = (0, 1, 1).
This defines a set of 24 assemblies {((x, X), y, Z)}, which are a subset of T((1, 1),
(3, 2), (1, 1)). Similarly we define another set of 24 assemblies {((x, X), y, Z)}, by
taking a subset of T((1, 1) (3, 2), (1, 0)). To each assembly ((x, X), y, Z) there are
two assemblies w, and w, of S5,, which are (2, 1) associates of (x, X¥) and (1, 1)
associates of y and (2, 2) associates of Z. The final structure of the design is
exemplified by the four typical assemblies [(x, %), y, Z, w,], [(x, %), y, Z, w,],
[(x, %), 7, Z, w,], and [(x, X), ¥, Z, w,]. A particular example of four assemblies is
giVen by [((0’ 09 0)9 (17 L, l))9 (0"9')9 (09 1, 1)9 (09 19')]9 [((09 0, 0)9 (17 1, 1))9 (0"9')9
(17 09 O)a (0"9 l)]’ [((07 0, 0)9 (19 L 1))9 (19'9')9 (09 L 1)’ (Oa'a 1)] [((0’ 0, 0)9 (17 1, 1))’
(1,-,-), (1,0,0), (0, 1,-)]. It is easy to write out all the 48 assemblies and therefore
the whole design does not need to be presented again here. The parameters of the
design are

N=48; =124, =8, u3=6,u, =4; dyv =2; 4d%¥ =0,
d(3,2)=2; d(2,2)= d(2,1):2; d(l ,1) d(l 0)_1 d(2£1’1)=29
d(l ,0) __ d(O ,0) __ 0’ d(2 ,2) d(2 ,0) d(ﬁ{“ =0.

The reader may have noticed that for each of the three designs discussed above,
the factor levels within any particular assembly have an “overall relation” between
themselves. Indeed, this “‘overall relation” consists of nothing else but certain
kinds of ternary and higher associations, and will be more fully studied elsewhere
in view of its effectiveness in producing designs with reduced number of observations.

4. An extension of the FSA scheme. Let s be a positive integer, and let Q,,° denote
the set of all s™ assemblies for the s™ factorial experiment. Also let a’'a’z --- a’x
denote the subset of all assemblies of Q,,° in which the factors iy, i,, ---, i, are at
levels ji, j,, -+, i, respectively, where the j’s can take values O, 1, -, (s—1).
a’,l‘a’,g e a{’; is called a subassembly of order k. Let S;,, denote the set of all sub-
assemblies of order k from the s™ factorial. It follows directly that ]Smk[ =(")s".

DEFINITION 4.1. w € S;; is said to be an («,, a,) associate of p € S,,;, if w and p
have exactly o, factors in common and among these «, factors in common exactly
o, have levels in common. (Note that when s = 1, the association relation would

depend only upon «,).

Since the association relation depends only on the number of factors in common
and the number of common factors at the same level, the association scheme is
obviously symmetric. The following lemma establishes the values of the parameters
for this scheme on the class of sets {Smo, Sty s Shl

LEMMA 4.1. The parameters of the association scheme on the class of sets
{S)n09 mls> """ Srsnm} are

(0, +1)(0,+2) 0,(0,+1)

(@ ny; = 3 - )

where 0, = max [0, i+j—m]

and 0, = min [i, ]
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(6) m3 = = (DG o— s
(©) p(i,j, (ot 02)s K(B1s B2)(¥1572)
= L ()Gl i) (e i)™ (s =2 (s — 1)t e g
where the summation is over all a,, a,, by, b,, by, ¢y, ¢,, d,, dy, f satisfying
() k =a,+a,+b,+b,+bs+c,+c,+d, +d, +f
(i) By = ay+a,+b,+by,+bs+c +cy; By = a; +b,+c¢,
(iii) y, = ay+ay+b,+b,+by+d,+dy; y, = a, +b,+d,.

The proof is similar to Lemmas 2.1a, 2.2a, and 2.3 and will be omitted to avoid
repetition. Lemma 4.1 and the symmetry of the association relation gives

THEOREM 4.1. The association scheme on the class of sets {S},0, Sk, =+, Ssun} an
MDPB scheme.

It may be remarked here that the above association scheme is nontrivial even for
s = 1. In fact, the well-known triangular association scheme is a special case of
the above scheme when s = 1 and k = 2.

For s = 2, a number of other schemes can be defined apart from the general
FSA scheme defined above. In particular, we may define schemes on sets “smaller”
than the S;,;. The MDPB designs obtained by using schemes defined on “small”
sets generally involve factors with “small” number of levels. Since in practice,
factors with a relatively small number of levels are more common than factors with
a large number of levels, these other schemes are potentially quite useful. When
s = 2, we did define one such scheme previously using sets whose elements are
pairs of complementary assemblies. As will be seen from the designs presented in
this paper, these latter sets have been quite useful in the construction of MDPB
designs.

In the next section, we shall use several other small sets, including sets that come
from s™ factorials, with either m > 3, and/or s > 2. We would not try to define
MDPB association schemes directly over such sets, since such discussion would
make this paper too long. However, we shall present useful and non-trivial MDPB
designs obtained by using such sets. The fact that the designs presented are MDPB
and are also *“‘connected” can be checked by the reader, and will not be proved here
for lack of space.

S. Some new MDPB designs. The designs to be presented are summarized in the
table below. The above designs will be described in the above order, except for the
(4x6x8) and (3x6x8) designs which will be discussed first in relation to
Examples 3.1 and 3.2. This would serve to illustrate our notation, which we now
introduce.

If y(= 2) is any positive integer, then R(y) will denote the set of elements in the
ring of integers mod y. If (0, 0,,-, 6,_,) is any t-element vector (¢ = 1), then
0o, 0y, -, 0,_, will be called respectively the Oth, Ist, ---, and (t— 1)th element of
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TABLE 2
Some connected MDPB designs

Type N He Type N H,

2x 5x%x10 20 5 5x10x 10 40 17
2x 7x21 42 14 6x 6% 6 30 14
3x 5x10 30 14 6x 6x 9 36 17
3x 6x 8 24 9 6x 6x12 36 14
3x12x24 48 11 6x 9x18 54 23
4x 6%x 6 24 10 8x 8x 8 40 18
4x 6x 8 24 8 9% 9% 9 45 20
S5x 5x10 30 12 10x 15 % 30 90 37

the vector. Thus in the vector (2, 1, 4, 7), 4 is the 2nd element. (This labeling of
elements as Oth, Ist, ---, etc. instead of 1st, 2nd etc. helps in a neater presentation
of the designs.) If uy, ---, u, is any set of (not necessarily distinct) objects, then
P(uy, -+, u,) shall denote the set of all distinct permutations of (uy, u,, ---, u,).
Thus P(0, 1, 2) has the six elements 012, 021, 102, 120, 201, and 210. Also,
L(xy, -+, X3 J1> -+*» Jus K, t) shall denote a #-plet, which has the object x, at position
Jju w=1,2,--- k), and which has a dot at the remaining (¢—k) places. Thus
L(2,1;2,4;2,5) stands for (-,-,2,-,1). If v, ---, v, are n distinct objects, then
vy, -+, v)* would stand for the unordered set of these n objects. Also
K *(sy, 825 (X1, X3, -+, X,)) will denote the set of all unordered s,-tuples which
can be made out of the set of s, distinct symbols x,, x,, ---, x,,. Notice that K*
has (i) elements. Thus K;*(5,2; R(5)) would consist of the elements (0, 1)*,
(0, 2)*, (0, 3)*, (0, H*, (1, 2)*, (1, 3)*, (1, 4)*, (2, 3)*, (2, H*, (3, 4*. (Notice that
(0, * and (1, 0)* represent the same objects.)

Instead of being presented in tabular form (like the design 4 x 6 x 8 in Table 1),
we shall present various designs in a compact form. Besides saving space, this will
also help the reader to understand the structure of the designs. Once the general
technique is clear, the reader could perhaps construct many other designs using the
same approach.

5.1. 4x6x8. We take the set of all assemblies of the form [{((0, x{, x,),

(I, x + 1, xp +1))*}5 {L(v; /3 1, 3)} 5 {(205 21 22)}], Where

(i) X1 x23 y € R(2)9 andje R(3)9

(ii) z; = y+1, and z, = x;+x,+y (k #j), where x, = 0.

Notice that an assembly is presented in the form [{a}; {b}; {c}], with semicolons
separating the levels of various factors, the levels themselves being denoted by the
objects in the curly brackets. Now as x;, x, vary over R(2) (i.e., x;, x, take values
0,1 of R(2)), the object ((0, x,, x5,), (I, x; +1, x,+1))* clearly takes the four
values for the first factor indicated in Table 1. Similarly, as y takes values 0 and 1,
and jequals 0, 1 and 2, the symbol L{y; j; 1, 3} clearly assumes the various values
shown in Table 1 as the levels of the second factor. Now consider the “levels,”
say, ((0, 1, 1), (1, 0, 0))* of the first factor, and (-, 1,-) of the second factor. Here
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j=1, y=1. Hence z; =y+1 =0, zy =x;+x,+y=14+40+1=0, z, =
xXi+x,+y = 14+1+1 = 1, so that (z,, z,, z;) = (0,0, 1), as given in Table 1.
Similarly, the “level” of the third factor can be calculated for the other pairs of
the ““levels’ of the first two factors.

5.2.3x 6 x 8. The assemblies are [{i}; {(1,/)}; {(zo> 21, 25)}], where
(i) i,j€ R(3), y € R(2),

(ii) if i = j, then z; = 14y, and (the ordered pair) (z;, 1, z;+,) takes two values
(0,0) and (1, 1),

(i) if j = i+ 1, then z; = z;,, = 1 +y,z;4; = y, and

(iv) if j = i+2, then z; = z;,, = I+p, and zj,, = y.
It will be instructive to the reader to compare the above representation of the levels
of the various factors with that given in Example 3.2. For example, the level
(0,-,-), (1,-,-))* of the first factor corresponds to i = 0 above. Similarly the level
(-, 1,-) of the second factor, which could have been denoted by {L(1;1; 1, 3)},
corresponds to (y, j) above with y = 1,j = 1. The authors have kept this apparently
dual notation, since it seems to help intuitively in the construction of various
designs.

5.3. 2x 5% 10. Assemblies are [{z}; {x}; {(x, »)*}]. Here,

(i) x € R(5).

(ii) Given x, y may take any value such that (x, y)* € K,;*(5, 2; R(5)),
(iii) if y—x = 1 or 3, then z = 1; if y—x = 2 or 4, then z = 2.

5.4. 2x7x21. Assemblies are [{z}; {x}; {(x, y)*}], such that

(i) x e R(7).

(ii) Given x, y may take any value such that (x, y)* € K,*(7, 2; R(7)),
(i) if y—x = 1,3,5,take z = 1;if y—x = 2,4, 6, take z = 2.

5.5.3x5x10. Use [{z}; (x); (31, ¥2)*}, with
(i) x € R(5),
(i) (yy, y2)* € K *(5, 2; R(5)), such that y, # x, y, # X,
(i) (yr—x,y,—x)* = (1, 2)* (1,3)% (2,3)* (4, D* (3,4)* (2,4* respec-
tively imply z = 1, 1,2, 2, 3, 3,
5.6. 3x 12x 24. Assemblies are [{x}; {(j, »)}; {k, (zo, z,)}]. Here
(i) x,y € R(3);j€ R4,
(ii) if y—x = 0 or 1, then k =,
(iii) if y-x = 0, then (z,, z,) takes two values (y+1, y+2), and (y+2, y+1),
(iv) if y—x = 1, then (z¢, z{) = (y, y—1),
(v) if y—x = 2, then (2o, z;) = (y, y+1),
(vi) if y—x = 2, then j = (0, 1, 2, 3) respectively implies & = (1, 0, 3, 2) when
x=0,(2,3,0,1) when x = 1, and (3, 2, 1, 0) when x = 2.
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5.7.4x6x6. Use [{k}; {(xo, x1, X2)}; {(¥o» V1> ¥2)}]. Here
(1) (x0, X1, X2), and (yo, ¥4, ¥2) € P(0, 1, 2), such that x; = y, for at least one j,
(ii) if (xg, X1, X2) = (Vo, V1, Vo), then take k = 3,
(iii) if (xo, x4, x,) and (yg, ¥y, ¥,) have only the jth element common (i.e.
Xx; = y;, only when [ = j), then take k = ;.
5.8. 5x5x10. Use [{x}; {y}; {(z4, 2z,)*}], with
(i) x, y € R(5),
(i) if x # y, then (z,, z,)* = (x, y)*,
(iiif) if x = y, then (z,, z,)* takes the two values (x— 1, x+ 1)*, and (x — 2, x +2)*.
5.9. 5x10x 10. Use [{z}; {(x1, x)*}; {11, ¥2)*}], where
(i) (xy, x,)* and (y,, ¥,)* € K,*(5, 2; R(5)), such that the number of common
elements in the unordered sets (x;, x,)* and (y,, y,)* does not equal 1,
(ii) if (xy, x,)* and (y,, y,)* do not have any element in common, then z is the
element of R(5) other than the four elements x,, x,, y;, and y,,
(i) if (xy, x,)* = (1, ¥2)*, then z = x, +2, x,+2, x,—1, or x,—1 according
as (x;—x,) equals 1, —1, 2, or (=2).
5.10. 6 x 6 x 6. Use [{(x, D)}; {(»,))}; {(z, k)}], where
(i) x, y € R(3), and i, j € R(2), such that if x = y, then i # j,
(i) if x=yp,i=j,thenz = x,k = |,
(iii) if x # y, then k = i+, and z is the element of R(3) distinct from x and y.
5.11. 6 x 6 x9. Use [{(xq, X1, X2)}; {(z0, z1)}; {L(»,J; 1, 3)}]. Here
(i) (xg, Xy, X,) € P(0, 1, 2), and j, y € R(3),
(i) if j is such that y = x;, then (zo, z;) equals (x;4, X4 ).
5.12. 6 x 6 x 12. Use [{(x, ))}; {(»,))}; {(z, ky, k,)}], where
(i) i,j€ R(2), and x, y € R(3),
(ii) z = x+y,
(iii) if x = y, then k; = 1+i, k, = 14j, and
(iv) if x # y, thenk, =i, k, = j.
5.13. 6 x9x18. Use [{(xg, X1, X2)}; {L(,J; 1, 3)}; {(205 215 25)}], Where
() (x5 x1, x3) € PO, 1, 2),
(ii) j, y € R(3),
(iii) z; = Xj, Zj+1 = Xj4, and
(iv) if x; = y, then z;,, = x;, and if x; # y, then zj,, = X, .
5.14. 8 x 8 x 8. Take [{(xo, X1, X2)}5 {(o, Y15 ¥2)}; {(20s 21, 25)}]. Here
(i) x’s, and y’s € R(2), such that the number of values of j such that (x; =y,
does not equal 1,
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(”) if (yO, Vi yl) = (XO:‘ X1 xZ) or (1+X0, 1+X1, l+x2) take (ZO’ 215 22) =
(Yo Y15 ¥2),

(iii) if x, = y, for all k except k = j, then take z;,, = 1 +x;,, and z, = x
(f I #j+1).

5.15.9x9x9. Assemblies are [{L(yy, ji; 1, 3)}; {L(y2, j25 1, 3)}5{L (s, J35 1, 3},
where

() Y1, Y2, J1,J2 € R(3), with the condition that we have either (j; = j,, y; = »,),
or (jy #Jj2 V1 # ¥2)s
(ii) if j; = j,, and y; = y,, then j3 = j;, and y; = yy,
(iii) if j, # Jj,, and y, # y,, then j; and y; are such that (j,/,,/3)* and
(¥1, 2> ¥3)* both equal (0, 1, 2)*.

5.16. 10 x 15 x 30. Assemblies are [{(/;, [,)*}; {L(y,J; 1, 5)};

{L(z, z, z; i}, I3, i3; 3, 5)}]. Here
(i) j € R(5), y € R(3),

(ii) Given j, (I;,/,)* can take any value in the set K,*(5,2; R(5)), except

(iii) if j = I, or I, then z = y,

@iv) if (/;, IL)* = (j—0, j+0)*, where 0 = 1 or 2, then z = y+1, and (iy, i, i3)*
consist of the three elements of R(5) excluding (j—0) and (i+0), or in brief
(iy, I, 13)* = R(S)—(j—0,j+0)%,

(V) if (ll, 12)* = (.]’]_ 1)* or (]’]+ 1)*’ then (ila i23 13)* = R(S)_(ll 12)*’ and

i) if (I, L)* = (j,j+0)*, where 0 = 2 or (—2), then (i, iy, i3)* = R(5)—
(,J—0)*.

The above designs are presented to illustrate the general approach to the con-
struction of designs involving various numbers of levels of a factor. For some more
designs, see for example Anderson (1968). It may be stressed here that although a
few of the above designs can be (and, in fact, were at first) constructed by using a
geometrical approach, the factorial approach was found far more satisfactory and
productive. The former is usually much more confusing and difficult, and was found
many a time even to lead to error. On the contrary, the factorials have a certain
richness and symmetry which makes them very flexible and versatile for being
used for purposes of design construction.

Finally, we may remark that the above designs can also be used as fractionally
replicated main effect plans for asymmetrical factorials. If confounding is desired,
one or more factors may be considered as block factors.
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