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LIMIT THEOREMS FOR SOME OCCUPANCY
AND SEQUENTIAL OCCUPANCY PROBLEMS

By Lars HoLsT
Uppsala University

Consider a situation in which balls are falling into N cells with
arbitrary probabilities. A limiting distribution for the number of occupied
cells after n falls is obtained, when » and N — o0, so that #?/N — co and
n/N — 0. This result completes some theorems given by Chistyakov (1964),
(1967). Limiting distributions of the number of falls to achieve an+1
occupied cells are obtained when limsup an/N < 1. These theorems
generalize theorems given by Baum and Billingsley (1965), and David and
Barton (1962), when the balls fall into cells with the same probability for
every cell.

1. Introduction. Suppose that we throw balls into N cells, so that each ball may
fall into the kth cell with probability p,, p,+---+py = 1, independently of what
happens to other balls. Let Z, be the number of occupied cells after » throws, and
let Ty be the throw on which, for the first time, ay + 1 cells are occupied,0 < ay < N.

The classical occupancy problem deals with the distribution of Z, when p, =
..« = py = 1/N, see e.g. David and Barton (1962) and Feller (1968). For this case a
complete characterization of the limiting behavior of Z,, under different assumptions
on how n and N tend to infinity, was given by Rényi (1962). In the general situation,
when the p’s are allowed to be different, Chistyakov (1964), (1967) has obtained
limiting distributions of Z,, when n and N tend to infinity, so that log (n/N) or
n?/N are bounded. In Section 3 we will give Chistyakov’s theorems and prove a
limit theorem when nand N — oo so that n*/N — oo and n/N — 0. Further aspects
on occupancy problems are considered by Rosén (1969) and by Holst (1971).

The classical sequential occupancy problem (or coupon collector’s problem)
deals with the distribution of Ty when p, = --- = py = 1/N, see e.g. David and
Barton (1962) and Feller (1968). In this case David and Barton derived the limiting
distributions of Ty, when ay/N — afor0 < a < 1, or when ay+1 = N. Baum and
Billingsley (1965) obtained limiting distributions for this classical situation for every
asymptotic behavior of @y when N — co. The methods used in these papers cannot
be used when the p’s are different. In Section 4 we will give limiting distributions
of Ty in the above mentioned situation when lim sup (ay/N) < 1, with the aid of
the theorems of Section 3. Similar problems are considered by Rosén (1970) and
by Holst (1971).

2. Notation and assumptions. In order to give a precise probabilistic formulation
of the asymptotic behavior of Z, or Ty, we introduce a sequence of probability
vectors (plv,pm ~--,pva),p1v+ -+ py,y = 1, two sequences of integers n, and ay,,
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1672 LARS HOLST

and the corresponding sequences of random variables Z, and Ty,, v =1, 2, 3, ---.
We suppose that
N, - oo when v —» o,
N,py, = C < oo, for all k and v, and some real number C,
n, and ay, — co when v - 0.
To facilitate the notation we suppress the index v in the following. Hence we

speak about the asymptotic behavior of Z, or Ty (when n or N —» o0) instead of
that of {Z, }:; or {Ty }i2; (When v — o0).

3. Limit theorems for some occupancy problems.

THEOREM 1. If n* Y'Y p?[2 — m < oo (implying that n*|N is bounded), then n—Z,
is asymptotically Poisson (m), when n — oo.

THEOREM 2. If n*|N — oo and n/N — 0, then N—Z, is asymptotically normal
(ZIY exp (—npy), (”2 prkz/z)%), when n — co.

THEOREM 3. If log (n/N) is bounded, then N—2Z, is asymptotically normal
O} exp (—npy), 6,), when n — o, where

0,* =YY exp(—npy)- (L—exp(—npy))—n- (LY prexp(—npy))*.

Chistyakov (1964), (1967) proved Theorems 1 and 3 using methods similar to
those initiated by Rényi (1962). In proving Theorem 2 we will use the same methods.

Proor oF THEOREM 2. Depending on how n and N — oo we discuss two cases
separately.

(i) The case N3/n* — 0. In Chistyakov (1964) it is shown that the characteristic
function of N—Z, can be written

n! IV (L + (" —1)- e~ Npe
Bexp (V- 2.) =g el i

z|=n/N z

From this expression, using Stirling’s formula for n! and changing to polar co-
ordinates, it follows that

(1) E(exp(it(N —Z,— p)/o)) = e~ % "D (n27)*
J% sexp (e~ 1~ O) [T (1 +(&"~ 1)-exp(~ np, ) do
where
#= i, =) exp(—npy)

and

6’ =0,’= ’fcxp(—npk)-(l—exp(—npk))—n-(Z’l"pkexp(—npk))z.
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Lemmas 3.1 and 3.2 below show that (1) converges to exp (—¢2/2). By the contin-
uity theorem for characteristic functions it follows that (N—Z,—pu,)/o, is asymp-
totically normal (0, 1). As Np, = C and n/N — 0 it is easily proved that

0,2 =n*Y Y p2(1+0(1))2
and that ¢,> — oo if and only if #?/N — oo. Hence
(N—=Z,—pm)[(n* X} p?[2)*
is asymptotically normal (0, 1), which proves the theorem when N3/n* — 0.

(ii) The case n°/N* — 0. In Chistyakov (1967) it is shown that the characteristic
function of n—Z, can be written

ewp(in-2)) =gy LR,

z|=n/N

In the same way as in case (i) we obtain
(2) E(exp(it(N—2Z,—p)/s)) =exp(—itY ) (e "*—1+np,)[s)- V- (n/2m)*
- [* wexp (n(=1—i60)) [TY (1 + (exp (np, €C+/9) —1) - e /%) df

where
2 _ .2 _ 2VN_ 2
s“=s5,"=n")1p /2.

Lemmas 3.3, 3.4, and 3.5 show that (2) converges to exp (—r?/2). Hence
(N—2Z,—u,)/s, is asymptotically normal (0, 1) when n’/N* — 0.

Combining (i) and (ii) the assertion follows. The lemmas remain.

Let ¢ belong to a fixed bounded interval, and let d > 0 be a fixed sufficiently

small real number.
LeMMA 3.1. If N?[n® — 0, then
(n/27)* [ o5 o1 zaexp (n(e® —1—i0)) - TTY (1+(e"/* —1)exp (—np, €°))d6 — 0
when n — 0.
Proor. Expanding into a Taylor series we obtain
log[T(1+(e"—1)-exp(—np,€?))
=Y ((¢""~1)exp(—np, )+ 0(1/5%))
= Nit/o +O(N/a*)+ O(n/0).

Now N/o* < K-N/(n*/N) and cos §—1 £ —2 sin® d/2 for d < |0| £ n. Thus the
absolute value of the integral can be estimated from above by

K, -n*-exp(—n(2sin?d/2+ K,N*/n’ + K;/0)).

From the conditions it follows that the estimate converges to zero. []
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LemMmaA 3.2. If N3/n* - 0, then

exp (—itp/o): (n/2n)* [ 4 <aexp (n(e® —1—i6))
T (1+ (" — 1) exp (—np, €°)) db

converges to exp (—1t%/2) when n — .
Proor. Expanding into a Taylor series we find
log[T(1+(e""—1)-exp(—np, €?)) = (it/o)- Y exp(—np,€*)
+((it/o)?/21)- Y. [exp (— npy €”®) —exp (—2np, )]
+((it/s)?/31) - [—ne®+0(n*N)]
+0(n/o*)+O(N/c®) = (it/o)* Y exp(—npy)
+(t0/0)* Y. np.exp (—np,)+0(nd*/o)
+((it/o)*/21) Y. [exp (—npi) —exp (—2np,) ]+ O(n|6|/6%) + o(1).
The last equality follows from ‘
nje® < K-N3/n* -0,
NJo® < K-(N7[nt0)t -0,
and
exp(—np, €?) = exp(—np,)- (1 —i0np,+ O(np,6?)).

Introduce f (n) = N3/n* — 0 and break up the integration interval into |6] < g(n)=
f(n)7-n"¢|n* and g(n) < |6] < d. We find from the expression above that

exp (—itp/o) " (n/21)} {10y < gony exP (n(e” —1—10)) - TTY () 4O
= e (n)2m)* - &V [ gy < gy exp (1(0)) 6
where
h(0) = —n(0—1Y p e "ja)?[2+6%0(n/c)+|0]|0(n/a?)+ |0]>O(n).

Changing coordinates to v = n*-0 we see that every error term converges to
zero and

(1 Dy o)) (f(n)!17 - n11%) < K ()15 f(m)1/" 0.

n*-g(n) =(N/n)*"-n'*? >

it follows that the integral converges to exp (—t2/2).
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It remains to be proved that the integral over g(n) < [0| < d can be neglected.
From the expansion above and as cos 6—1 = —K,0° for |0| = d, with K; > 0
for d sufficiently small, we get the following estimate

(n/27)* [y <01 <aexp (—n - K0%+K,|0|n/o + K ,) d6
é K3 jnl/ﬁ.f(n)iﬂé |v] £d-n1/2 exp(—KdUZ'l'vZO(l)) dv—> 0,

when n — c0. []
We note that the condition N3/n* — 0 probably cannot be weakened, because

t3 disappears due to this condition.

Lemma 3.3. .
(n/2m)% [ o510y zaexp (—n—nif) - T]Y [1+(exp (np, €C*9) 1) e /] df
converges to zero when n — 0.
PRroOOF. Expanding into a Taylor series we find
log[T[1+(exp(np, &®*9)—1)- e~ /"]
=ne?+e? (e —1)s*— ity (np)’/6s+|6] - O(n|N?s)
+0(n*|N?s*)+ O(n*|N3s)+ O(n°[|N*).
From this we see that the integral can be written
(n/27)* [ o5 o zaexp [n(e”® — 1 — i0) + &*¥("/* —1)s?
+0(3.(npe)’[s)+O0(3. (np:)*)] d6.
The absolute value can be estimated by
(n21)* 5 10120 €™ ° ™1 - exp [O(5) + O(n®/N?s)+ O(n*[N>)] dO
< (n/2m)*-2n - exp [ —n(2sin? d/2+ O(s/n) + O(n*/N?s)+ O(n*/N?))] - 0
when n — 0. [J
LemMma 3.4. If n°[N* — 0, then
exp(—it(3 (exp(—np.)—1+npy)/s)): (n/2n)*
“fio12mrrmrexp (—n—nif) - TTY [1+(exp (np, € *9)—1)- e~ #/*] dO
converges to exp (—t%/2) when n — co.

Proor. Using the expansion used in the proof of the preceding lemma we find
that the integral can be written

exp ( - t2/2) . (n/27t)% Ilel <n1/7/x1/2 €XP (h(@)) do
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where
h(6) = —n(0+2ts/n)*[2+2ts*/n+60(s)+ |0|0(1) + O(1/s)+ |0]|O(n*| N*s)
+0o(1)+|6]20(n).

Asin Lemma 3.2 we see that the integral converges to exp (—#2/2), whenn — c0. []

LemMA 3.5. If n°/N* — oo then
(n)27)* [ 17 mir2 < 0y ca€xp (—n—ni6) - TTY [1 +(exp (npy € 79) —1) e™/*] d6
converges to zero when n — 0.
ProoF. From the expansion in Lemma 3.3 it follows that the integral can be
estimated by
(1[27)* §u /21125 101 sa €% (n(c0s 0 — 1))
- lexp (e*(e™/*— 1)s%)| exp (|0]|O(n*/N2s) + o(1)) db.

As
e*(els —1)s? = its+ |0]0(s)+ O(1)

and cos 0—1 £ —K,0% for |0| < d, with K; > 0 for d sufficiently small, we get
the estimate

(n/270)? [ i/ mira< 0y <a XD (— 1K 0%+ |0]0(s) + |6]|O(n®/ N ?s)+ O(1)) d6.

Changing coordinates to v = n*-0 we see that the integral converges to zero when
n— . [J

4. Limit theorems for some sequential occupancy problems.

THEOREM 4. If ay®-Y1p22 > m < oo, then Ty—ay—1 is asymptotically
Poisson (m), when N — co.

Proor. From the definitions of Ty and Z, it follows that
TN_aN_]. > x<'—'>TN > a~+1+x<¢ZaN+1+x < aN+1

and hence
P(TN—'aN—l g x) =P(x < a~+1+x_ZaN+1+x).

Since ay?-YY pi2/2 » m and ay — oo we have that, for every fixed x, (ay+1+x)*-

Y022 = m.
Using Theorem 1, for every fixed integer x, we have when N — o

P(x < ay+1+x—=Z, 4145) > P(x <Y),

where Y is Poisson (). []
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REMARK. By Cauchy’s inequality and the assumption Np, < C it is easily seen
that
limsup ay?/N < oo < limsupay®- Y p2 < co.

Hence, if lim sup ay?/N < oo, then the only possible limiting distribution is the
Poisson distribution.

THEOREM 5. If ay?/N — oo and ay/N — 0, then Ty is asymptotically normal
(my, o), when N — oo, where my is the unique solution of the equation in t.

(3) Yexp(—tp)/N =1—ay/N
and
O'NZ = mN2 : 21;/ Pk2/2~

REMARK. The existence of a unique solution of (3), for N sufficiently large, is
obvious since the left side of (3) is strictly decreasing and equal to one for ¢t = 0,
and the right side of (3) converges to one (from below) when N — co.

Before proving the theorem we state two lemmas.

LEMMA 4.1. If ay/N — 0, then mylay — 1 and Y} p, exp (—myp,) — 1.
ProoF. Introduce the distribution function defined by
Hy(x) = (the number of p, satisfying Np, < x)/N.
As Np, £ C < o we have
[SdHy(x) =1,
[§xdHy(x) =Y p, =1.
Sexp(—x-my/N)dHy(x) =Y Yexp(—myp,)/N =1—ay/N.

First we will show that my/N — 0 when N — oo. Let us assume the contrary, i.e.
that there exists a subsequence (N') so that my./N' - d, 0 < d £ c. By Helly’s
theorems we can select from (N') a subsequence (N”) so that

Hy(x) - H(x), when N —» o
[§dH(x) =1,
6xdH(x) =1.

But when N — o0
Gexp(—xmy./[N")dHy(x) =1—ay./N" - [§exp(—xd)dH(x) = 1.

As [§xdH(x) =1 the total probability mass is not in zero, which contradicts
d > 0. Hence my/N — 0 when N — co. Now we can expand into a Taylor series

ay/N = [§(1—exp(—x - my/N))dHy(x)
= (my/N)-(J§ x dH y(x)+ O(my/N)) = (my/N)- (1 +0(1)).

Hence my/ay = 1+0(1).
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In the same way we find for every convergent subsequence
Y4 pexp(—mypy) = 5 xexp(—x - my/N)dHy(x) - [ x dH(x) = 1.

As we from every subsequence are able to select a convergent subsequence, the
second assertion is proved. []

LEMMA 4.2. For every fixed real number x we have
(N —ay—31 exp (= [xoy +mylp))([xon +my]* - ¥ pi’[2)* > x.
PrROOF. As Np, = C we have by Lemma 4.1 when N — oo,
oy = mzv(z sz/z)% = (aN2 : ?sz/z)% : (1 +0(1)) — 0,
and hence )
[xoy+my]?+Y p2[2 = op? - (1 +0(1)).
Expanding in series we find
Yexp (=(xon+my)py) = Y.exp (—=mype)—x0y )7 Peexp (—mypy) - (L+0(1)).
By Lemma 4.1 this expression can be written
Y Y exp(—myp)—xoy - (1+0(1)).
From the definition of my and the results above we have
(N—ay—YYexp(—(xay+my)p))([xony+my1* Y. p2/2)F = x-(1+0(1)).
The same result is obtained if we change xay to xoy — 1. Since
xoy+my—1 < [xoy+my] £ xon+my
the lemma is proved.
ProOOF OF THEOREM 5. In the same way as in Theorem 4 we find
P(Ty > xoy+my) = P(Zion+myy < ay+1)
=1—P(N—=Zsptmy; < N—ay)
=1-P(¥y< (N_aN_Zf exp (—[xoy +my]p))[([xon+ my]? Zpkz/z)é)
where according to Theorem 2
Yy =(N—=Zponsma— 21 X0 (—[xon +mylp)([xon +my]* Y. pi[2)

is asymptotically normal (0, 1).
By Lemma 4.2, for every fixed x,

P(Yy < -+-) =P(Yy < x-(1+0(1)))
which converges to ®(x) when N — 0. Hence when N — o0

P(TN > on‘I'mN) b d 1—(13(36). D
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Finally we consider the case 0 < lim inf ay/N =< lim sup ay/N < 1. Let us as in
Lemma 4.1 introduce the distribution function

Hy(x) = (the number of p, satisfying Np, < x)/N,
then
Yexp(—np,) = N [Sexp(—xn/N)dHy(x)
and for ¢, defined as in Theorem 3
(4) o, =N-(fGexp(—xn/N)-(1—exp (—xn/N))dHy(x))
—n-(J§x - exp (—xn/N)dHy(x))>.
As in the preceding theorem we consider the equation
(%) Sexp(—tx/N)dHy(x) = 1—ay/N.
The following condition is sufficient to give the equation a unique solution:
1—Hy(0) > ay/N
i.e. the number of p, # 0 is at least ay+1.
THEOREM 6. If lim inf ay/N > 0 and lim inf (1 — Hy(0) —ay/N) > 0, then Ty is

asymptotically normal (my, 0,y /(XY Peexp (—mypy))), when N — oo, where my is
the solution of (5).

Proor. To facilitate the notation set 6y = 0,,, . As in Theorem 5 we get
P(Ty < xoy+my) = P(Yy < (N—ay—Y exp(—[xon+my1p)/ 0ty +mu1)
where according to Theorem 3
Yy =(N—=Zry+my1— 21 exp (—[xon + My 1P6)) O txan +mad

is asymptotically normal (0, 1). From the conditions of the theorem and the
definition of my we find in the same way as in Lemma 4.1 that

0 < liminfmy/N £ limsup my/N < 0.
By this observation and by (4) it follows that, for every fixed x,
Ol Opxan+mn1 = 1 +0(1).
As in the proof of Theorem 5 we find
(N —ay—3 exp(—(xon+ my)p)loy =5+ XY peexp (= mypy)- (1+0(1).
We obtain the same result if xo is replaced by xoy—1. Hence
P(Ty < xoy+my) = P(Yy < x* Y peexp(—mypy) (1+0(1)))-

Since Yy is asymptotically normal (0, 1) the theorem is proved.
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REMARK. The case p, = -+ = py = 1/N corresponds to the distribution func-
tion Hy(x) = 1 for x = 1 and = 0 otherwise. In this situation we find my =
— N-log (1 —ay/N) and that, the expression for the variance in Theorem 5 can be
written

N (log(1—ay/N))?/2 ~ ay?[2N
and that of Theorem 6
N-(ay/N+(1—ay/N)-log(1 —ay/N))/(1—ay/N).

From these observations we see that our theorem in this special case is the same
as the corresponding theorems of Baum and Billingsley (1965) and David and
Barton (1962).
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