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ON THE ADMISSIBLE ESTIMATORS FOR
CERTAIN FIXED SAMPLE BINOMIAL PROBLEMS

By Bruce McK. JoHNSON
The University of Connecticut

0. Introduction. Let X be a binomial random variable, b(n, p), and f'a continuous
real valued function on [0, 1]. We consider the problem of estimating f(p) with,
for example, squared error loss. It is well known (Wald (1950), Le Cam (1955))
that the class of Bayes procedures is a complete class. Further, since any unique
Bayes estimator is admissible, our concern with admissibility centers on the non-
unique Bayes estimators. In Section 1, this single parameter problem is considered.
In Section 2, X, ---, X, are assumed independent binomials, b(n;, p,), i = 1, -+, q,
and each of fi(p), i = 1, ---,q, or f(py, ---, p,) is to be estimated with summed
squared error loss for the first problem and squared error loss for the second,
and in each case with a continuity assumption on the f. In Section 3, the X7, ---, X,
are assumed to have a multinomial distribution and the analogues of the problems
of Section 2 are considered. The main result of this note is that for these problems
the classes of admissible estimators are closed in the topology of pointwise con-
vergence of the estimators. Also, a procedure is given for constructing the non-
unique Bayes estimators. A few examples, for which the admissibility is generally
known, are included to illustrate the construction. For the problem of estimating
each fy(p;) when the X, are independent, it is shown that there is no Stein effect
(Stein (1956)). That is, 6 = (J,, ---, J,) is admissible if J; is admissible for the
problem of estimating fi(p;) based only on X ;. Section 4 contains some more or less
obvious extensions to related problems.

The method employed is contained in the following simple observation. Let

» o € A, be a family of discrete probability densities for X. Suppose our interest
is in estimators, 6(X), of f(«) when the loss is, say, squared error. Let 4, be a
closed subset of 4, D° = (x: P(X = x) > 0forsome « € 4,), and D the remainder
of the sample space, which we suppose is not empty. The risk of ¢ is

p(2,0) = Y pe (%) ~/ ()P X = %)+ ¥ p(8(x) =/ (#))*Pu( X = x| D)P,(D).
Suppose the restriction of 6 to D° is admissible for the problem of estimating
f(@) if « is restricted to A, and further that no other estimator for the restricted
problem has the same risk. Then plainly the risk of 6 can only be minorized by
another estimator with the same determination on D°. Also,  is admissible if and
only if its restriction to D is admissible for the problem of estimating f(«) if « is
restricted to A ~ A, and the distributions of X are P,( | D). Finally, if the class of
distributions P, ( | D) is completed in a manner that leaves f well defined, the above
may be iterated to construct admissible estimators. For the problems we consider,
non-unique Bayes procedures occur exactly when the support of the a priori
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1580 BRUCE MCK. JOHNSON

measure is a subset of the boundary of the parameter space. In this case D¢ is
exactly the subset of the sample space on which the procedure is uniquely deter-
mined and, hence, the above decomposition may be employed to construct
admissible non-unique Bayes procedures. Although admissible, these estimators
may reflect a tyranny of the boundary of the parameter space. Example 3 is of
this type.

1. A single binomial parameter. Let X have a binomial distribution b(n, p), n
known and p € [0, 1].
THEOREM 1. Let f be a continuous real valued function on [0, 1]. Let 9 be the class
of estimators of f(p) with representation

§(x) =£(0), . forx<r
_Jof()p* (A —p)*"* " 'n(dp)
~ JerT ' (1—p) T 'n(dp)
=/(1), forxzs

where r and s are integers, —1 < r < s < n+1, and 7 is a probability measure with

n({0} u {1}) < 1.

(a) 9 is precisely the class of admissible estimators of f(p) relative to squared error
loss.

(b) @ is closed in the topology of pointwise convergence.

, forr+1=<x=<s5-1,

Proor. We first show that any 6, € 2 is admissible. The cases of r = —1,
s = n+1,and r+1 = sare trivial. Suppose s = 0 orr < nand r+1 < s. Suppose
¢’ is another estimator with the risks of 6’ and &, satisfying p(p, 6") £ p(p, d¢)
for all p € [0, 1]. Let ¥’ = max (m: ¢'(x) = f(0), x £ m) and s’ = min (m: 6(x) =
f(1), x = m). Considering the risks of 6" and d, near zero and one, it is clear that
r'Z rand s’ <. Let

Yrs(p,0) = Xa=re1 (f(p)—0(x)*(p* ™"~ (1 —p) ™ k(p) ™",

where k(p) = P(r+1 = X < s—1|p)/p"*'(1—-p)"***. Clearly, p(p, §") < p(p, &)
for all p € [0, 1]iff ¥, (p, 0") < ¥, «(p, Oy) for all p € [0, 1]. Let my be the measure
in the representation and n*(dp) = k(p)ny(dp). The problem of minimizing
6 ¥(p, S)n*(dp), in (5(r+1), -+, 5(s—1)), has the unique solution (5o(r+1), -+,
do(s—1)), establishing the assertation.

Let 6’ be any admissible estimator. Define ' and s’ as above. Then the restriction
of 6" is a Bayes procedure for the problem ,. o; that is, (6'(r'+1), ---, 6'(s’—1))
minimizes [y, (p,d)n’(dp), with 7’ some probability measure. This is so because
the restriction of ¢" must be admissible for the y,. ; problem and upon adjoining
the limits of the conditional distribution of X as p — 0 or 1 the parameter space
for the problem enjoys the compactness required for the Bayes procedures to be
complete. As o'(r' +1) # f(0), 6'(s'—1) # f(1), n'({0} U {1}) < 1 and &’ has the
asserted representation.
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To demonstrate 9 is closed, let §,,€ 9 and d,,(x) - §(x), x =0, 1, ---, n. Let
Fms Sm and r, s be defined as above for §,, and §. For m large, we may suppose
r, < rands, = s. Let

3,'(x) =(0), x=r
= 6,(x), forr<x<s
=f(1)’ X g S.

Clearly, 0,/ €2 and §,' — J. Let &n,,” be the measure in the representation of
d,, and suppose, without loss of generality, that =, converges weakly to =.
As o(r+1) # 5(s—1) # f(1), it follows easily that n({0} U {1}) < 1 and that ¢
has the representation with z. []

The following well-known examples illustrate the repreésentation:

ExaMmpLE 1. For f(p) = p, taking r = 0 and s = n and = the uniform measure,
the estimator X/n results.

ExampLE 2. For f(p) = p(1—p), taking r = 0 and s = n and = the uniform
measure, the estimator X(n— X)/n(n+ 1) results.

It should be remarked that in the proof of Theorem 1 we have, in the cases
r = s and s £ n—1, deviated slightly from the method enunciated above. For
example, if both inequalities hold, the first stage of the construction would be to
assign 6(0) = f(0) and 6(1) = f(1) which is unique Bayes for the restricted problem
with parameter space {0} U {1}. Iteration of this type of decomposition reduces the
sample space to (r+1,---,5s—1) and the construction is completed by the

iteration made in the proof.

2. Several binomial parameters. Let X;,i = 1, -+, ¢, be independent with binomial
distribution b(n;, p;), n; known and p; € [0, 1]. We consider the following estimation
problems:

Problem 1. Estimating fi(p;), i = 1, ---, g, when the loss is the sum of squared
errors and the f; are continuous real valued functions on [0, 1].

Problem II. Estimating f(p,, p,, --*, p,) when the loss is squared error and f'is a
continuous real valued function on [0, 1]%.

From the point of view of proving the analogue of Theorem 1, it will become
quite evident that the case ¢ = 2 is completely representative of the general case.
The details which follow are so restricted.

We begin by constructing admissible estimators for Problems I and II which are
not unique Bayes. To fix notations, the development is in terms of Problem I.

In what follows, D, subscripted or not, will denote the subset of the lattice
points D, of [0, n;]x [0, n,] which lie in or on the boundary of a certain convex
solyhedron in [0, n,] %X [0, #n,]. D¢ will denote the complement of D in D,. For any
subset of G of D,, (8, 9,)¢ Will denote a function on G with values in R?, real
two-space. (6, 0,) will be said to be a completion of (J,, J,) if it is an extension
of (84, 0,)g to all of Dy.
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At the kth stage of the construction we assume that (6, d,)p,. has the property,

P: the risk function of any completion of (6, d,)p,c can only be
minorized by the risk function of another completion of

(01, 02)pye

The (k+ I)st stage of the construction entails finding a nonempty subset, D, , ,
of D, and a function (6, 6 2)pg, » an extension of (4, 6,)p,e, With P.

The densities for (X;, X,) at the kth stage are the conditional densities given
D, and their limits as p; and/or p, approach 0 or 1 appropriately. The densities
obtained as limits concentrate their mass on lines of support of D,. If p; — 0 and
P2 — p (0, 1), then the mass is confined to the line x; = min (x;: (x{, x,) € D)).
The density is of the form H(p,)h(x,)p**~**(1—p,)*"~*?, where x,’ and x," are,
respectively, the smallest and largest values of x, in the intersection of this line and
D,. If x,+ax, = b, aand b > 0, is a line of support and p; and p, go to zero
so that p,%/p, — 0, then the mass is confined to this line. The density is of the form
H(p)h(x,)p™>~**(1—p)™"~*2, where x,” and x,” are as above and 0 = p/(1—p).
For the purpose of defining a topology on the densities, we identify generic density
by P,, »,» to be interrupted as follows. If (p,, p,) € (0, 1)2, the density is the con-
ditional density determined by (p,, p,). If p, = 0 and p, € (0, 1), the density is of
the first type considered above. If p, = p, = 0, the density is of the second type
considered above. The interpretation of the other extreme values of p; and p, is
similar. If P, ,, and P, . ,.. are two densities, define

d(Ppl,pz’ P;l';l’z') = MaXy p, len,pz(x)—len’,pz'(x)I + |p1 _pl,l + IPZ _Pz'l~
The class of densities at the kth stage is clearly compact in the topology induced
by d.
To complete the definition of the ancillary problem at the kth stage, f; and f,
must be defined at each density. At P, ,, we take the determination fi(p,), i = 1, 2.
Clearly, the f; are continuous.

A consequence of the above remarks is that the class of Bayes procedures is
complete for the ancillary problem at the kth stage. If a unique Bayes procedure is
chosen for this problem, the construction is terminated and the resulting estimator
is admissible. Otherwise there is a closed subset of the boundary of the parameter
or density space, A4, which is the support of the a priori measure corresponding to
the procedure chosen. Let A, be the subset of D, on which the procedure is deter-
mined by its Bayes character. Then A, = (x: P(x) > 0, for some P € 4,). In fact,
the inequality must hold on a set of positive a priori measure. In both Problems
I and 11, it is easily verified that the restriction to A, of the procedure chosen is a
unique Bayes procedure for a correspondingly restricted version of the ancillary
problem; that is, the problem with parameter space A;. Thus, D, = D, ~ 4,
and the extension provided has property P. Otherwise, the restriction to A, of
some completion of (8, 8,)p, would have risk minorizing that of the unique
Bayes procedure for the problem with parameter space A,. Iteration of the above
results in the construction of an admissible estimator for the original problem.
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Let 9, be the class of estimators which can be constructed in this manner.
That any admissible estimator, (J,, §,), belongs to 2, is implicit in the preceding
discussion. Suppose that the restriction of (¢, §,) to D, can be constructed. Then,
in view of the hypothesized admissibility, the restriction of (6., J,) to D,° must be
admissible for the ancillary problem at the kth stage defined above. Thus, it is a
Bayes procedure and unique or not the construction of (4, §,) may be continued.

In the case of ¢ = 2, three types of A, arise in the construction of an estimator.
They are identical for both Problems I and II.

(A) Suppose that x, +ax, = b, aand b > 0, is a line of support to D, with no
point of D, below it. Take A, to be the points of D, on the line. The corresponding
A, is all densities denoted by P, o and the determination of the estimator on A,
is (f1(0), £,(0)) (or f(0, 0) for Problem II). From the point of view of construction
it is evident that we may as well take A, = (x: x,+ax, < b) n D, where a and b
are positive and the line is not necessarily one of support, with the same deter-
mination of the estimator. The other corners of the parameter space are similarly
handled.

(B) Consider the rectangle containing D, with sides parallel to the x,, x, axes
and supports to D,. The A, consist of points in D, and on the sides of the rectangle
and are specified as follows. If x € A, and is on exactly one side of the rectangle,
then all points in D, on this side are in A,. If x and x’ are distinct points of A, and
belong to different sides, than all “intervening” lattice points on the sides of the
rectangle in either the clockwise or counterclockwise direction belong to A,.
Four species of A, arise depending on the number of sides involved. In all cases
the corresponding 4, may be taken to be the densities for which A, has mass one.
Further, the determination of the estimator on A, may be assumed to be that of a
unique Bayes procedure for the ancillary problem with parameter space A,.

(C) A, = D, and we may suppose that the determination of the estimator on
A, is that of a unique Bayes procedure for the ancillary problem.

For ¢ > 2, the possibilities for the A, are more numerous but are obvious
generalizations of the above.

It is easily shown that &, is closed. Let (6, ,, 0,,,), m = 1, -+, be in D; and
converge to (0, 4,). By choosing an appropriate subsequence we may suppose
that each can be constructed by applications of (A), (B), and (C) in the same order
and with identical A, and 4,. Thus we need establish the same result for the
ancillary problems with parameter space 4,. For A, of type (A), this is trivial.
The proofs for A, of types (B) and (C) are essentially the same. We examine the
latter. Consider the ancillary problem with parameter space 4, and sample space
D,. We assume that the construction of each member of the subsequence is com-
pleted by an application of (C) to this problem. Suppose that the restriction of
(6, 6,) to D, may be constructed on D, ~ D* by applications of (A) and (B)
but that no further application of (A) or (B) is possible. Define

(5ik,m" ;,m')Dk = (51,m’a 52,m’) on D*
= (51a52) on DkN D*.
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It is easily seen that these estimators are admissible for the ancillary problem. In
fact, (01 > 02,m)p+ the restriction of (8 ., 0gm) to D*, is a unique Bayes
procedure for the ancillary problem determined by D*. Let 4* be the parameter
space for this problem and =,,. the corresponding a priori measures. The class of
probability measures on A* is tight so we may suppose 7, converge weakly to =.
(64, 0,)p» is clearly Bayes relative to n. If unique Bayes, the assertion follows.
Otherwise (J,, 0,) can be constructed past D, ~ D* by applications of (A) and
(B).

We summarize the preceding for both problems in Theorem 2.

THEOREM 2. The classes of admissible estimators for problems 1 and 11, 9, and
D1, are precisely those estimators which can be constructed. 9 and D, are closed.

Several examples of Problem I of interest are contained in the following
theorem.

THEOREM 3. Let the f;, i = 1, .-+, q, be as in Problem 1. Suppose that 6,(X;) is
admissible for fi(p;) against squared error loss. Then (04, -+, d,) is admissible for
Problem 1.

Proor. Suppose the assertion established for 1 through ¢—1 parameters. In
view of Theorem 1, there are integers r; and s; and a measure 7; such that §; has the
representation therein. Suppose r; = 0 and set A, = {(x;, -, x,): x; = 0}.
Then by the induction hypothesis (f1(0), 05, -+, §,) is admissible for the ancillary
problem with 4, = {(p;, -, p,)) : p1 = 0}. Although it will not in general be a
unique Bayes procedure for this problem, it is evident that the contribution to the
risk of the original problem from this determination on A, cannot be minorized by
any other determination. Thus property P prevails. Iteration of this decomposition
continues the construction to the point that D, = {(xy, -+, X)) :ry < x; < 5,
for all i}. An application of (C) with a priori measure 7 = [ [{—; m; completes the
construction. []

The following examples are illustrative of applications to Problem II:

ExampPLE 3. Let f(py,p,) = max(p;, p,). Then &(X,, X,) = max (X,/n,,
X,/n,) is admissible. The estimator may be constructed on (0, 0) and {(x,, x,):
X, = ny or x, = n,} by applications of (A). Let D, consist of these points. Take
Al ={(x,0:x, =1,---,n,—1} and 4, = {(p1,P,): P, = 0}. An application
of (B) with uniform a priori measure yields the estimator on A;. The same is true
for A, = {(0, x,): x, = 1,---,n,—1}. Suppose that n, = n, and let a be the
integer part of ny/n,. Then A, = {(k—2,x,):x, =1, .-, n,—1} for k =3, .-+,
a+2, Ajy3 = {(xy,1): x; = a+1,--,n —1}, and so on. In all cases an appli-
cation of (B) suffices. The a priori measure for the kth stage is a Beta with para-
meters b and 1, b being the minimum value of the coordinate which is not fixed

in A,

ExampLE4. Letf(py, p,) = pip,. Thend(X,, X,) = (X{/n)(X,/n,)is admissible.
The estimator may be constructed on (n, n,) and {(x;, x,): x,;x, = 0} by appli-
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cations of (A). Let D¢ consist of these points. Take A; = {(xy, ny):x; =1, -+,
n,—1} and A, = {(n;, x,): x, = 1,---,n,—1}. In both cases an application
of (B) with uniform a prior measure suffices. The construction is completed by an
application of (C) with uniform a priori measure.

3. The multinomial case. Let X = (X, ---, X)) have a multinomial distribution
with parameters n and py, -+, p;, n known. Let I’ and II' denote the analogues of
Problems I and II. II' with ¢ = 2 and I with ¢ = 1 are identical problems. The
results are thus contained in Theorem 1. For Problem I' with ¢ = 2, the assertions
of Theorem 1 hold with the representation

61(x1,x2) =f1(0)’62(x1:x2) =f2(1)’ . for X4 __<__ r
51(x1,x2) =f1(1),52(x1,x2) =fz(0), forx; = s

5(x X ) ___j(l)ﬁ(ﬁ)ﬁxl_r—l(l——ﬁ)s—xl—ln(dp)
A A R (O

where p=p if i=1 and 1—p if i =2 and = is a probability measure with
n({0} U {1}) < 1. Generalization to cases g > 2 follows much the lines of the
preceding section. We consider briefly the case g = 3.

At the kth stage of construction we suppose that the determination on D,° has
the property P. The boundary densities for the ancillary problem concentrate
their mass on lines of support to D,, in the plain x, +x,+x; = n. The passage to
stage k+ 1 is achieved by an application of one of the following.

(A") For aand b > 0 take A, = {x: x;+ax, < b} n D,. The determination of
the estimator on A, is §; = f(0), i = 1, 2, and 65 = f3(1) (or f(0, O, 1)).

(B") Consider the triangle in the plain x, +x,+ x5 = #n, containing D,, and with
sides parallel to the intersection of x;+x; = n, i # j, and the plain and supports
to D,. The A, are points on the boundary of the triangle subject to the same
constraints applied in (B). The 4, may be taken to be all densities for which A,
has mass one. Further, the determination of the estimator on A, may be assumed
to be that of a unique Bayes procedure for the ancillary problem with parameter
space A,.

(C") A, = D, and we may suppose that the determination of the estimator on
A, is that of a unique Bayes procedure for the ancillary problem.

The proof of the following is identical to that of Theorem 2.

for r < x; <s

THEOREM 4. The classes of admissible estimators for Problems 1" and 11', D, and
D1, are precisely those estimators which can be constructed. 9. and Dy are
closed.

We consider two examples:

ExamMPLE 5. Suppose fi(p,) = p;. Then (6,, -, 8,), where §(X) = X,/n is
admissible. For ¢ = 3, the vertices of D, are handled by applications of (A"),
the three sides of D, by applications of (B"), and the construction is completed by
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an application of (C"). In the latter cases, the a priori measure is uniform on the
appropriate densities. For ¢ > 3 the construction is identical, proceeding from
lowest to highest dimensional boundary sets of D, and concluding with an appli-
cation of (C).

ExAMPLE 6. Let f(p,, -+, p,) = max;p;. We investigate the admissibility of
8(X) = max; X;/n. For ¢ =2 the admissible estimators are those with the
representation of Theorem 1. For values of n of 1 through 5 and 7, such a
representation is possible. For n even and larger than 4, such a representation
is not possible. The value % can only be realized when the a priori measure
exhausts its mass on the points 0, 4, and 1. For ¢ > 2 a similar behavior may be
observed. For example, if ¢ = 3and n = 3j,j = 4, the estimator is not admissible.
Consider its construction. The vertices of D, may be handled by applications of
(A"). The construction cannot be completed by an application of (C") because the
estimator takes the value §. If » is even, no application of (B’) is possible because
of the value 1. Suppose that # is odd and that the sides of D, can be handled by
applications of (B’). Again, the construction cannot be completed by an appli-
cation of (C’). Further application of (B’) is not possible because the value
(n—1)/2n cannot be realized.

4. Concluding remarks. (a) The characterizations of the admissible estimators of
the preceding sections for Problems II and II' remain essentially unchanged if the
loss is K(p) W(6 — f(p)), where K(p) is positive and finite and W is nonnegative and
strictly convex. The same is true for Problems I and I'.

(b) The continuity assumed of f may be somewhat relaxed without the loss of the
essentially unique Bayes nature of the admissible estimators or their closure
property. For example, if f'is continuous on (0, 1) and on [0, 1] with the compacti-
fication of (— oo, o), then the bounded admissible estimators are precisely those
given and the class is boundedly closed. Also, if f has, for example, a finite number
of discontinuities of the first type and is otherwise continuous on [0, 1], the
parameter space may be compactified in the intrinsic sense by disconnecting it at
the points of discontinuity and then completing it. The admissible estimators for
the new problem are exactly the admissible estimators for the original problem.
The former class is closed and admits of representations essentially identical to
those obtained. In the absence of any continuity assumption, the method of
decomposition may be used to construct admissible estimators.

(c) The constructive procedure is easily modified to problems involving truncated
parameter spaces. For example, if the p; in either the binomial or multinomial
problems satisfy a known ordering, the construction of all admissible estimators
differs only in that certain A,’s are disallowed and the a priori measures are
appropriately restricted.
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