SOME RESULTS ON INVARIANT SETS FOR TRANSLATION PARAMETER FAMILY OF PROBABILITY MEASURES—I

By P. K. Pathak¹ and Neil W. Rickert²
University of New Mexico and University of Illinois, Chicago

1. Preliminaries. Let μ be a given probability measure on (X, B), where X is some finite dimensional Euclidean space and B is the class of Borel sets on X. For each $\theta \in X$, let $\mu_{\theta}(A) = \mu(A - \theta)$, where $A \in B$ and $A - \theta = \{x : x + \theta \in A\}$. A set 'A' is called μ -invariant if $\mu_{\theta}(A) = \mu(A) \forall \theta \in X$. For example the null set \emptyset and the whole space X are trivially μ -invariant. The class of all μ -invariant sets is denoted by $A(\mu)$. A set 'A' is called "non-trivial" if $0 < \mu(A) < 1$. That "non-trivial" μ -invariant sets exist is seen by noting that if μ assigns probability $\frac{1}{2}$ each to $\{0\}$ and $\{1\}$, then A is μ -invariant if and only if A' = A + 1, e.g., $A = \bigcup_{-\infty} (2n, 2n+1]$ is μ -invariant with $\mu(A) = \frac{1}{2}$. It is easily seen that $A(\mu)$ is a monotone class, is closed for complementation and disjoint unions, and is not necessarily a σ -algebra. The probability measure μ is called weakly incomplete (weakly-complete) if it has (or does not have) non-trivial μ -invariant sets.

The results we present here have originated from a paper of Basu and Ghosh (1969) on μ -invariant sets. Our main object is to make a careful study of some of the conjectures contained in their paper. A brief account of the results contained in the paper is as follows:

- (i) Let $\hat{\mu}(t) = \int \exp\{i(t, x)\}d\mu(x)$ denote the Fourier transform of μ . Basu and Ghosh show that if $S(\mu) = \{t : \hat{\mu}(t) = 0\}$ consists of finitely many elements, then μ is weakly complete. We shall show that if $S(\mu)$ is compact, or contained in a certain coset of a closed subgroup, then μ is weakly complete.
- (ii) Now let μ be a probability measure on $(\mathbf{R}^1, \mathbf{B})$ and suppose that $S(\mu) = \{\pm 1, \pm 2, \cdots\}$. In this case Basu and Ghosh show that $\mathbf{A}(\mu)$ consists of all Borel sets of period 2π , i.e. a Borel set $A \in \mathbf{A}(\mu)$ iff $A + 2\pi = A$ a.e. We strengthen this result by showing that the same assertion concerning $\mathbf{A}(\mu)$ is true if $S(\mu) = \{\pm 1, \pm 2, \cdots\} \cup K \cup J$, where K is compact and J is contained in a certain coset of a closed subgroup. We thus prove a conjecture mentioned in Basu and Ghosh ((1969) Theorem 8, page 168). Basu and Blum, in a personal communication, have noted that, in this case, μ must necessarily be absolutely continuous.
- (iii) Let $A \in \mathbf{A}(\mu)$. Then $\forall \theta \in \mathbf{X}$, $A \theta \in \mathbf{A}(\mu)$. Thus $\mathbf{A}(\mu)$ is translation invariant. If $\mathbf{A}(\mu)$ is also a σ -algebra, then $\mathbf{A}(\mu)$ becomes a translation invariant σ -algebra. Now let H be a closed subgroup of \mathbf{X} and \mathbf{B}_H be the class of Borel sets E with the property that E + h = E for every $h \in H$. Clearly \mathbf{B}_H is translation invariant. We show that every translation invariant σ -algebra is of the \mathbf{B}_H kind, i.e. the σ -algebra is the σ -algebra of Borel sets that are invariant for some closed subgroup H. An immediation

Received August 6, 1970.

¹ Research supported by the National Science Foundation Grant GP 14786.

² Research supported by the National Science Foundation Grant GP 127-60-346-32-54-327.

ate consequence of this result is that if μ is a probability measure on (\mathbf{R}^1 , \mathbf{B}) and if $A(\mu)$ is a σ -algebra, then $\mathbf{A}(\mu)$ consists of all periodic Borel sets of some period. We also furnish an example to show that μ -invariant sets in general are not necessarily periodic.

(iv) Let E be a set on the plane. Let μ be the normalized restriction of the Lebesgue measure on E. Basu and Ghosh noted that μ is weakly incomplete if E is a parallelogram, and raised as an open problem the question of weak incompleteness of μ when E is, for example, a disk or a triangle. In this paper we show that, at least in one case, μ is weakly incomplete when E is a triangle.

Before we present these results, it is considered worthwhile to describe a few useful results from harmonic analysis. Consider $L^1(\mathbf{X}, \mathbf{B}, \lambda)$, where λ denotes the Lebesgue measure. For every $f \in L^1(\mathbf{X}, \mathbf{B}, \lambda)$, or simply L^1 , let I(f) denote the ideal generated by f and $S(f) = \{t: \hat{f}(t) = 0\}$ where \hat{f} denotes the Fourier transform of f. The following theorems are then well known (see, e.g. Rudin (1962), page 160).

THEOREM 1.1. If $f, g \in L^1$ and $S(f) \subset S(g)$ and if the intersection of the boundaries of S(f) and S(g) is countable, then $g \in I(f)$.

THEOREM 1.2. Let K be a compact set. Then there exists a non-trivial bounded function $h \in L^1$ such that $\hat{h}(x) = 1$ if $x \in K$.

THEOREM 1.3. Let $f \in L^1$, let $u \in L^{\infty}$ and suppose that u * f = 0, where * denotes the convolution operation. Then $u * g = 0 \ \forall g \in I(f)$.

THEOREM 1.4 (Basu–Ghosh). Let $f \in L^1$ and $S(f) = \{\pm c, \pm 2c, \cdots\}$. Let $g \in L^{\infty}$ and suppose that $g * f = \alpha$, where α is a constant. Then $g(x+2\pi/c) = g(x)$ a.e.

THEOREM 1.5 (Basu–Ghosh). Let μ and ν be two probability measures. Suppose that $A \in \mathbf{A}(\mu)$. Then $A \in \mathbf{A}(\mu * \nu)$ and $\mu * \nu(A + \theta) = \mu(A) \ \forall \ \theta \in \mathbf{X}$.

2. A useful theorem. The following theorem and its corollaries will be found particularly useful in our work.

THEOREM 2.1. Let $f \in L^1$ and S(f) be compact. Let $g \in L^{\infty}$ and suppose g assumes finitely many values. Let f * g = 0. Then g = 0 a.e.

PROOF. Let K be a compact set such that int $(K) \supset S(f)$. Let h be a non-trivial bounded function in L^1 such that $\hat{h}(x) = 1 \ \forall \ x \in K$. Let $k \in L^1$ and consider l = k * (1-h) so that $S(l) \supset K \supset \operatorname{int}(K) \supset S(f)$. From Theorem 1.1 it follows that $l \in I(f)$. Consequently g * l = 0 so that $(g-g*h)*k = 0 \ \forall \ k \in L^1$. Hence g = g*h a.e. Thus g and g*h have the same essential range. Since X is connected and g*h continuous, it follows that the essential range of g*h, and consequently of g, is a connected set. The hypothesis that g assumes finitely many values and g*f = 0 now imply that g = 0 a.e. \square

COROLLARY 2.1.1. Let $f \in L^1(\mathbf{R}^1, \mathbf{B}, \lambda)$ and $S(f) \subset \{\pm c, \pm 2c, \cdots\} \cup K$, where K is a compact set. Let $g \in L^{\infty}$ and suppose that g assumes finitely many values. Let g * f = 0. Then $g(x+2\pi/c) = g(x)$ a.e.

PROOF. Let u(x)=1 if $0 \le x \le 2\pi/c$ and =0 otherwise. Let $h \in L^1$ be such that S(h) is compact and int $[S(h)] \supset K$. Clearly $S(u*h) \supset \{\pm c, \pm 2c, \cdots\} \cup K$; and from Theorem 1.1, $h*u \in I(f)$. Consequently, g*h*u = 0. Since $g*h \in L^{\infty}$, it follows from Theorem 1.4 that $g*h(x+2\pi/c) = g*h(x)$. Therefore $(g_{2\pi/c}-g)*h = 0$, where $g_{2\pi/c}(x) = g(x+2\pi/c)$. Since S(h) is compact and $(g_{2\pi/c}-g)$ assumes only finitely many values, we have, from Theorem 2.1, $g_{2\pi/c}(x) - g(x) = g(x+2\pi/c) - g(x) = 0$ a.e. \square

COROLLARY 2.1.2. Let $f \in L^1(\mathbf{R}^1, \mathbf{B}, \lambda)$ and $S(f) \subset cZ + b$, where $cZ = \{0, \pm c, \pm 2c, \cdots\}$ and $2b \in cZ$. Let $g \in L^{\infty}$ and suppose that g is real-valued. Let g * f = 0. Then g(x) = 0 a.e.

PROOF. The equation g * f = 0 implies that

$$g * f_1 = \int g(y-x) \exp \{ib(y-x)\} f_1(x) dx = 0$$

where $f_1(x) = f(x) \exp \{ibx\}$.

Since $S(f_1) = S(f) - b \subset cZ$, it follows from Theorem 1.4 that $g(x + 2\pi/c)$ exp $\{ib(x + 2\pi/c)\} = g(x)$ exp $\{ibx\}$ a.e. Thus $g(x + 2\pi/c)$ exp $\{i\ 2\pi b/c\} = g(x)$ a.e. Since the left side of this last equation is complex and the right side real, it follows that g(x) = 0 a.e. \Box

The following corollaries can be proved in a similar fashion.

COROLLARY 2.1.3. Let $f \in L^1(\mathbf{R}^1, \mathbf{B}, \lambda)$ and $S(f) \subset H \cup J \cup K$, where H = aZ, J = cZ + b with $2b \in cZ$ and K a compact set. Let $g \in L^{\infty}$ and suppose that g assumes finitely many real values. Let g * f = 0. Then $g(x + 2\pi/a) = g(x)$ a.e.

- 3. Main results. We now state and prove the results outlined in Section 1.
- 3.1. Existence of μ -invariant sets. Given a p.m. μ , it is perhaps natural to ask if μ admits non-trivial μ -invariant sets. An answer to this question, as the following theorem shows, depends more on the set $S(\mu)$ rather than the p.m. μ itself.

THEOREM 3.1. Let μ_1 and μ_2 be two absolutely continuous p.m.'s with $S(\mu_1) = S(\mu_2)$. If the boundary of $S(\mu_i)$ is countable, then $\mathbf{A}(\mu_1) = \mathbf{A}(\mu_2)$.

PROOF. Let $f_i = d\mu_i/d\lambda$. Let $A \in \mathbf{A}(\mu_1)$. The proof follows easily on noting that $A \in \mathbf{A}(\mu_1)$ iff $[I_{-A} - c] * f_1 = 0$, where $c = \mu_1(A)$. Since $S(f_1) = S(f_2)$ [$\equiv S(\mu_1) = S(\mu_2)$] and the boundary of $S(f_1)$ is countable, it follows from Theorem 1.1 that $f_2 \in I(f_1)$ so that $[I_{-A} - c] * f_2 = 0$. Consequently, $A \in \mathbf{A}(\mu_2)$ and $\mu_2(A) = \mu_1(A) = c$. \square

COROLLARY 3.1.1. If, in the above theorem μ_2 is absolutely continuous and μ_1 any p.m., then $\mathbf{A}(\mu_1) \subset \mathbf{A}(\mu_2)$.

PROOF. The above theorem yields $A(\mu_1 * \mu_2) = A(\mu_2)$. By virtue of Theorem 1.5, we have $A(\mu_1) \subset A(\mu_1 * \mu_2) = A(\mu_2)$.

That the strict inequality $A(\mu_1) \subset A(\mu_2)$ does indeed hold is seen by observing

that if $A \in \mathbf{A}(\mu_1)$, then every B, with $\lambda(A \Delta B) = 0$, belongs to $\mathbf{A}(\mu_2)$. The converse, however, is not true.

Basu and Ghosh show that if μ is a p.m., $S(\mu)$ consists of finitely many elements, then μ is weakly complete. Our next result is a strengthening of this theorem. We show that if $S(\mu)$ is compact, then μ is weakly complete.

Theorem 3.2. Let μ be a p.m. and suppose that $S(\mu)$ is compact. Then μ is weakly complete.

PROOF. First let $\mu \ll \lambda$ and $f = d\mu/d\lambda$. Let $A \in \mathbf{A}(\mu)$ with $\mu(A) = c$. Then $(I_{-A} - c) * f = 0$. Since S(f) is compact, it follows from Theorem 2.1 that $I_{-A} = c$ a.e. Hence c = 0 or 1. In the general case let v be an absolutely continuous p.m. with $S(v) = \emptyset$. Then $A \in \mathbf{A}(\mu)$ implies that $A \in \mathbf{A}(\mu * v)$ with $\mu(A) = \mu * \nu(A)$. But $\mu * v$ is absolutely continuous with $S(\mu * v) = S(\mu)$ compact. Consequently $\mu(A) = \mu * \nu(A) = 0$ or 1. Thus μ is weakly complete. \square

THEOREM 3.3. Let μ be a p.m. on $(\mathbf{R}^1, \mathbf{B})$ and suppose that $S(\mu) \subset J \cup K$, where J = cZ + b with $2b \in cZ$ and K compact. Then μ is weakly complete.

PROOF. This is clear from Corollary 2.1.3.

THEOREM 3.4. Let μ be a p.m. on $(\mathbf{R}^1, \mathbf{B})$ and suppose that $S(\mu) \subset H \cup J \cup K$, where H = aZ, J = cZ + b with $2b \in CZ$ and K a compact set. Let $A \in \mathbf{A}(\mu)$. Then $I_A(x + 2\pi/a) = I_A(x)$ a.e.

PROOF. This is clear from Corollary 2.1.4.

It is worthwhile to point out that the above theorem originated in an attempt to establish a conjecture made by the referee of the Basu-Ghosh paper ((1969) page 168). The theorem shows that the referee's conjecture is indeed true.

- 3.2. Periodicity of μ -invariant sets. In all our standard examples on (\mathbb{R}^1 , \mathbb{B}) we noted that all μ -invariant sets are periodic sets of some period. Basu and Ghosh established that if $\mathbf{A}(\mu)$ is a separable σ -field, then every $A \in \mathbf{A}(\mu)$ is periodic. We were then tempted to conjecture that the class $\mathbf{A}(\mu)$ consists entirely of sets that are periodic of some period. This conjecture is valid with certain reservations. We first present an example to show that μ -invariant sets in general need not be periodic.
- 3.3. An example. Let g(x) = x [x], where [x] denotes the greatest integer less than x. Let a be a positive real number. Define h(x) = g(x) + g(ax) (g(1+a)x). It is easy to verify that h takes only the values 0 and 1, and hence is the indicator function of a set. Now let $\mu = \mu_1 * \mu_2 * \mu_3$, where μ_1 is the uniform p.m. on [0, 1/a] and μ_3 the uniform p.m. on [0, 1/(1+a)]. Since g(x) is periodic of period $1, \forall \theta, \int_0^1 g(x+\theta) dx = 1/2$ so that $(g-1/2) * \mu_1 = 0$. Similarly $(g(ax)-1/2) * \mu_2 = 0$ and $(g(1+a)x)-1/2) * \mu_3 = 0$. Consequently $(h(x)-1/2) * \mu = 0$. It thus follows that the set A with $I_{-A}(x) = h(x)$ is a μ -invariant set. If a is irrational then A is not periodic.

This example shows that on $(\mathbf{R}^1, \mathbf{B})$ not all μ -invariant sets can be periodic. It therefore seems natural to investigate conditions under which the class $\mathbf{A}(\mu)$ consists of periodic sets. As an attempt in this direction, we show here that if $\mathbf{A}(\mu)$ is a

 σ -algebra, then $\mathbf{A}(\mu)$ consists entirely of periodic sets of a given period. We shall need the following definitions and results in this connection.

DEFINITION 3.1. Let m be a positive measure on (X, B). Let B_1 be a sub- σ -field. An element f on $L^{\infty}(X, B, m)$ will be called B_1 -measurable if there is a B_1 -measurable function in the equivalence class determined by f.

The B_1 -measurable elements of L^{∞} evidently form a uniformly closed subspace of L^{∞} , and this subspace obviously determines the measure algebra of B_1 .

DEFINITION 3.2. A function f in $L^1(\mathbf{X}, \mathbf{B}, m)$ will be said to have the conditional expectation zero iff, $\forall B \in \mathbf{B}_1, \int I_B f \, dm = 0$.

The following lemma is now easy to establish.

Lemma 3.1. Let m be σ -finite. A member g of L^{∞} is \mathbf{B}_1 -measurable iff $\int fg \ dm = 0$ for every f in L^1 with conditional expectation zero.

PROOF. We first assume that m is a probability measure and denote by 'E' the expectation operator with respect to m. Now if g is \mathbf{B}_1 -measurable and f has conditional expectation zero, we have $E[fg] = E[gE[f \mid \mathbf{B}_1]] = 0$. Now suppose that $E[f \cdot g] = 0$ for every f with $E[f \mid \mathbf{B}_1] = 0$. Let $h \in L^1$. Let $f = h - E[h \mid \mathbf{B}_1]$. Then $E[f \cdot g] = 0$ by hypothesis. Also, by what we have already seen, $E[f \cdot \hat{g}] = 0$ where $\hat{g} = E[g \mid \mathbf{B}_1]$. Thus $E[f \cdot (g - \hat{g})] = \hat{0}$ so that $E[h(g - \hat{g})] = E[\hat{h}(g - \hat{g})] = 0$. Therefore $E[h(g - \hat{g})] = 0$ $\forall h \in L^1$. Hence $g = \hat{g}$ a.e. Consequently g is \mathbf{B}_1 -measurable. This completes the proof when m is a probability measure. For the general case we can find a probability measure p equivalent to m. A function f is in $L^1(m)$ iff $f \cdot (dm/dp)$ is in $L^1(p)$. Likewise f has conditional expectation zero with respect to f iff f is now a simple matter to translate the proof for a probability measure to the general case.

Lemma 3.2. The space of \mathbf{B}_1 -measurable elements of L^{∞} is a weak*-closed subspace of L^{∞} .

Proof. This is clear from Lemma 3.1.

THEOREM 3.5. Let X be a finite dimensional Euclidean space. Let B be the class of Borel sets on X. Let B_1 be a translation invariant σ -field of Borel sets. Then there is a closed subgroup H such that B_1 is, modulo null sets, the σ -field of H-invariant Borel sets (i.e. $A \in B_1$ iff $\forall h \in H, A+h=A$ a.e.).

PROOF. Let U be the subspace of L^{∞} consisting of \mathbf{B}_1 -measurable functions and let V be the continuous functions in U. It is clear that U and V are uniformly closed subspaces. By Lemma 3.2, U is a weak*-closed subspace of L^{∞} . Let f be an element of L^1 and let $g \in U$. It can then be seen that, by writing the integral in full and interchanging the order of integration, $\int (f * g(x))h(x) = 0$ for every h in L^1 with conditional expectation zero. By Lemma 3.1, f * g is in U. However f * g is continuous and so in V. Also we can approximate g by functions of the form g in the weak*-topology, by allowing g to be an element of an approximate identity for $L^1(\mathbf{X})$. It thus follows that V is a weak*-dense subspace of U.

Let H be the subset of X consisting of all y such that f(x+y) = f(x) for all x and for all f in V. H is clearly a closed subgroup of X. If $a-b \in H$, it follows from the definition of H that f(a) = f(b) for all $f \in V$. Conversely if f(a) = f(b) for all $f \in V$, we have f(x+a-b) = f(x) for all $f \in V$ and f(x) = f(x) is also an element of f(x) = f(a). Thus f(a) = f(a) for all $f \in V$ iff f(a) = f(a). It is now evident that f(a) = f(a) a self-adjoint algebra which separates points in f(a) = f(a).

Now let g be a bounded continuous function satisfying the condition g(x) = g(y) whenever $x - y \in H$. Let h_1, \dots, h_n be in L^1 and $\varepsilon > 0$ be given. Let M be the supremum of |g(x)| and $\int |h_i|$. Choose a compact set K such that $\int_{K'} |h_i| < \varepsilon/8m$. Since V is an algebra and g satisfies the relation g(x) = g(y) whenever $(x - y) \in H$, it follows from the Stone-Weierstrass theorem that we can find an f in V such that $|f(x) - g(x)| < \varepsilon/4M$ if $x \in K$. Let M_1 be the supremum of |f|. By the classical Weierstrass theorem there is a polynomial P such that $|t - P(t)| < \varepsilon/4M$ if |t| < 2M, and |P(t)| < 3M if $|t| < M_1$. Set $f_1 = P(f)$. Then $|f_1 - g(x)| \le 4M$ for all x. But now $|\int h_i(x)(g(x) - f_1(x))| < \varepsilon$ for all $i = 1, \dots, n$. This means that g is in the weak*-closure of V so g is in U and hence g is in V. It follows that V consists of all bounded continuous functions which are invariant under H, and that U, the weak*-closure of V, consists of all L^∞ functions which are measurable with respect to the σ -field of H-invariant Borel sets. \square

COROLLARY 3.5.1. Let μ be a probability measure on $(\mathbf{R}^1, \mathbf{B})$ and suppose that $\mathbf{A}(\mu)$ is a "non-trivial" sub- σ -field of \mathbf{B} . Then there exists a 'c' such that $A \in \mathbf{A}(\mu)$ iff A+c=A a.e.

PROOF. This is clear from the above theorem on noting that $A(\mu)$ is translation invariant and a non-trivial closed subgroup H of \mathbb{R}^1 is of the form $H = \{nc : n = 0, \pm 1, \cdots\}$ for some c. Consequently if $A(\mu)$ consists of sets invariant with respect to H, then $A \in A(\mu)$ implies that A + c = A a.e. The converse part is trivial. \square

REMARK. In our proof of the above corollary we have tacitly excluded from consideration the case when H is a trivial subgroup, i.e. $H = \{0\}$ or $H = \mathbb{R}^1$. It can be easily seen that $\mathbf{A}(\mu)$ coincides with \mathbf{B} when $H = \{0\}$ and consists solely of sets that are (within sets of Lebesgue measure zero) equal to the null set or the whole space when $H = \mathbb{R}^1$.

3.4. Weak incompleteness of a p.m. Let E be a triangle on the plane and μ the normalized restriction of the Lebesgue measure to E. Is μ weakly incomplete? This is one of the questions raised in the paper of Basu-Ghosh ((1969) page 173). We provide here an affirmative answer to this question. For simplicity we consider the probability measure with the following density f(x, y) = 2 if x > 0, y > 0 and $x+y \le 1$, and y = 0 otherwise. The characteristic function of f is $\hat{f}(s, t) = 2[\{\exp(is) - 1\}/st - \{\exp(is) - \exp(it)\}/(s - t)t]$ so that

$$S(f) = \{(2m\pi, 2n\pi): m \neq n = \pm 1, \pm 2, \cdots\}.$$

That f does indeed have non-trivial measure invariant sets can be proved as follows. Let (X, Y) denote random variables with the joint density function f. Let g denote the density function of (X+2Y). Then $S(g) \supset \{2n\pi \colon n=\pm 1, \pm 2, \cdots\}$. Thus every Borel set of period 1 on \mathbb{R}^1 is measure-invariant with respect to the measure induced by X+2Y. Let $B^*=\{(x,y)\colon x+2y\in B\}$, where B is a Borel set of unit period. It is now easy to see that B^* is measure-invariant with respect to the density function f. Hence the measure induced by f is weakly incomplete.

REFERENCES

BASU, D. and GHOSH, J. K. (1969). Invariant sets for translation-parameter families of measures. Ann. Math. Statist. 40 162-174.

Rudin, H. (1962). Fourier Analysis on Groups. Interscience, New York.