The Annals of Mathematical Statistics
1971, Vol. 42, No. 5, 1562-1568
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By P. K. PATHAK! AND NEIL W. RICKERT?
University of New Mexico and University of Illinois, Chicago

1. Preliminaries. Let u be a given probability measure on (X, B), where X is
some finite dimensional Euclidean space and B is the class of Borel sets on X. For
each 0 € X, let py(4) = w(4—0), where A € Band A—0 = {x: x+6 € A}. A set
‘A’ is called p-invariant if ug(A) = u(A) V 6 € X. For example the null set &f and
the whole space X are trivially u-invariant. The class of all p-invariant sets is
denoted by A(u). A set ‘A’ is called “non-trivial” if 0 < u(4) < 1. That “non-
trivial” p-invariant sets exist is seen by noting that if u assigns probability 4 each to
{0} and {1}, then A is p-invariant if and only if 4" = A+1, eg., 4=()_,
(2n, 2n+1] is p-invariant with u(4) = . It is easily seen that A(u) is a monotone
class, is closed for complementation and disjoint unions, and is not necessarily
a o-algebra. The probability measure p is called weakly incomplete (weakly-
complete) if it has (or does not have) non-trivial y-invariant sets.

The results we present here have originated from a paper of Basu and Ghosh
(1969) on u-invariant sets. Our main object is to make a careful study of some of the
conjectures contained in their paper. A brief account of the results contained in the
paper is as follows:

(i) Let A(#) = | exp {i(t, x)}du(x) denote the Fourier transform of u. Basu and
Ghosh show that if S(u) = {¢: i(¢) = 0} consists of finitely many elements, then u
is weakly complete. We shall show that if S(u) is compact, or contained in a certain
coset of a closed subgroup, then p is weakly complete.

(ii) Now let u be a probability measure on (R, B) and suppose that S(u) =
{+1, +£2, ---}. In this case Basu and Ghosh show that A(u) consists of all Borel
sets of period 2, i.e. a Borel set 4 € A(u) iff A+2n = A a.e. We strengthen this
result by showing that the same assertion concerning A(u) is true if S(u) =
{£1, 2, ---} U KU J, where K is compact and J is contained in a certain coset of
a closed subgroup. We thus prove a conjecture mentioned in Basu and Ghosh
((1969) Theorem 8, page 168). Basu and Blum, in a personal communication, have
noted that, in this case, 4 must necessarily be absolutely continuous.

(iii) Let A € A(u). Then V 6 € X, A—6 € A(w). Thus A(y) is translation invariant.
If A(u) is also a o-algebra, then A(u) becomes a translation invariant o-algebra. Now
let H be a closed subgroup of X and By, be the class of Borel sets E with the property
that E+h = E for every h € H. Clearly By is translation invariant. We show that
every translation invariant g-algebra is of the By kind, i.e. the o-algebra is the
g-algebra of Borel sets that are invariant for some closed subgroup H. An immedi-
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ate consequence of this result is that if u is a probability measure on (R, B) and if
A(p) is a g-algebra, then A(u) consists of all periodic Borel sets of some period. We
also furnish an example to show that u-invariant sets in general are not necessarily
periodic.

(iv) Let E be a set on the plane. Let u be the normalized restriction of the
Lebesgue measure on E. Basu and Ghosh noted that u is weakly incomplete if £
is a parallelogram, and raised as an open problem the question of weak incomplete-
ness of u when E is, for example, a disk or a triangle. In this paper we show that, at
least in one case, u is weakly incomplete when E'is a triangle.

Before we present these results, it is considered worthwhile to describe a few
useful results from harmonic analysis. Consider L'(X, B, 1), where A denotes the
Lebesgue measure. For every f € L'(X, B, 1), or simply L', let I( f) denote the ideal
generated by fand S(f) = {t: f(t) = 0} where fdenotes the Fourier transform of f.
The following theorems are then well known (see, e.g. Rudin (1962), page 160).

THEOREM 1.1. If f, g € L' and S(f) = S(g) and if the intersection of the bound-
aries of S(f) and S(g) is countable, then g € I( f).

THEOREM 1.2. Let K be a compact set. Then there exists a non-trivial bounded
function h € L' such that h(x) = 1 if x € K.

THEOREM 1.3. Let fe L', let u € L™ and suppose that u x f = 0, where * denotes
the convolution operation. Thenu « g = 0¥ ge I(f).

THEOREM 1.4 (Basu-Ghosh). Let fe L' and S(f) = {£c, +2¢, ---}. Let g € L®
and suppose that g * f = o, where o is a constant. Then g(x+2n/c) = g(x) a.e.

THEOREM 1.5 (Basu-Ghosh). Let p and v be two probability measures. Suppose
that A € A(u). Then A € A(u * v) and i % v(A+0) = p(4) v0eX.

2. A useful theorem. The following theorem and its corollaries will be found
particularly useful in our work.

THEOREM 2.1. Let f € L' and S(f) be compact. Let g € L® and suppose g assumes
finitely many values. Let f « g = 0. Then g = 0 a.e.

PrOOF. Let K be a compact set such that int (K) > S(f). Let /& be a non-trivial
bounded function in L' such that i(x) = 1 V x € K. Let k€ L' and consider
[ =k (1—h) so that S(/) o K > int (K) o S(f). From Theorem 1.1 it follows
that/ € I(f). Consequently g * / = Osothat(g—g * h) x k =0 V ke L'. Hence
g = g = h a.e. Thus gand g * /& have the same essential range. Since X is connected
and g * h continuous, it follows that the essential range of g * A, and consequently
of g, is a connected set. The hypothesis that g assumes finitely many values and
g * f = 0 now imply that g = O a.e. []

COROLLARY 2.1.1. Let fe L'(R!, B, ) and S(f) = {#+¢, +2¢, ---} U K, where
K is a compact set. Let g € L™ and suppose that g assumes finitely many values. Let
g *f = 0. Then g(x+2n/c) = g(x) a.e.
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PrOOF. Let u(x) = 1if0 £ x < 2n/cand = 0 otherwise. Let 4 € L' be such that
S(h) is compact and int [S(h)] = K. Clearly S(u * ) o {£¢, £2¢, -} U K; and
from Theorem 1.1, & * u € I(f). Consequently, g * & * u = 0. Since g * h € L*, it
follows from Theorem 1.4 that g % A(x+2n/c) = g * h(x). Therefore (g2,.—9)
* h = 0, where g,,,.(x) = g(x+2n/c). Since S(h) is compact and (g2, — g) assumes
only finitely many values, we have, from Theorem 2.1, g ,,.(x)— g(x) = g(x+2n/c)
—g(x)=0ae. [

COROLLARY 2.1.2. Let feL'(R!, B, 1) and S(f) < cZ+b, where ¢Z =
{0, +¢, +2¢, -} and 2b €' ¢Z. Let g € L* and suppose that g is real-valued. Let
g *f=0.Then g(x) = 0 a.e.

ProoF. The equation g * f = 0 implies that

g*f, = [ gy—x) exp {ibly—x)} fi(x)dx = 0
where f,(x) = f(x) exp {ibx}.

Since S(f,) = S(f)—b < cZ, it follows from Theorem 1.4 that g(x+2n/c)
exp {ib(x+2n/c)} = g(x) exp {ibx} a.e. Thus g(x+2n/c) exp {i 2nb/c} = g(x) a.e.
Since the left side of this last equation is complex and the right side real, it follows

that g(x) = 0 a.e. []
The following corollaries can be proved in a similar fashion.

COROLLARY 2:1.3. Let fe L'(RY, B, 1) and S(f) =« HuU J U K, where H = aZ,
J = cZ+bwith2b € ¢Z and K a compact set. Let g € L* and suppose that g assumes
finitely many real values. Let g * f = 0. Then g(x+2nfa) = g(x) a.e.

3. Main results. We now state and prove the results outlined in Section 1.

3.1. Existence of u-invariant sets. Given a p.m. y, it is perhaps natural to ask if
p admits non-trivial p-invariant sets. An answer to this question, as the following
theorem shows, depends more on the set S(u) rather than the p.m. u itself.

THEOREM 3.1. Let u, and p, be two absolutely continuous p.m.’s with S(u,) =
S(u,). If the boundary of S(u;) is countable, then A(u,) = A(u,).

PROOF. Let f; = du;/dA. Let A € A(u,). The proof follows easily on noting that
A€ A(uy) iff [I_ 4—c] = f; = 0, where ¢ = p,(A). Since S(f1) = S(f2) [= S(uy) =
S(ut,)] and the boundary of S(f;) is countable, it follows from Theorem 1.1 that
f, € I(f,) so that [I_,—c]=*f, =0. Consequently, A€ A(u,) and u,(4) =
() =c. []

COROLLARY 3.1.1. If, in the above theorem i, is absolutely continuous and u, any
p.m., then A(u,) < A(u,).

ProoF. The above theorem yields A(y, * ;) = A(u,). By virtue of Theorem 1.5,
we have A(uy) = A(uy * py) = Auy).

That the strict inequality A(u;) = A(u,) does indeed hold is seen by observing
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thatif 4 € A(u,), then every B, with A(4 A B) = 0, belongs to A(u,). The converse,
however, is not true.

Basu and Ghosh show that if p is a p.m., S(u) consists of finitely many elements,
then u is weakly complete. Our next result is a strengthening of this theorem. We
show that if S(u) is compact, then p is weakly complete.

THEOREM 3.2. Let u be a p.m. and suppose that S(u) is compact. Then u is weakly
complete.

PRrROOF. First let u < A and f = du/dA. Let A € A(u) with u(4) = c. Then
(I_4—c¢) * f = 0. Since S(f) is compact, it follows from Theorem 2.1 thatI_, = ¢
a.e. Hence ¢ = 0 or 1. In the general case let v be an absolutely continuous p.m.
with S(v) = J. Then 4 € A(u) implies that A € A(u * v) with u(4) = p * v(A).
But p * v is absolutely continuous with S(u * v) [= S(u)] compact. Consequently
u(A) = u = v(4) = 0 or 1. Thus pu is weakly complete. []

THEOREM 3.3. Let p be a p.m. on (R', B) and suppose that S(u) = J U K, where
J = ¢Z+b with 2b € ¢Z and K compact. Then u is weakly complete.

Proor. This is clear from Corollary 2.1.3.

THEOREM 3.4. Let u be a p.m. on (R', B) and suppose that S(u) « H U J U K,
where H = aZ,J = cZ+b with 2b € ¢Z and K a compact set. Let A € A(u). Then
I(x+2nfa) = I,(x) a.e.

Proor. This is clear from Corollary 2.1.4.

It is worthwhile to point out that the above theorem originated in an attempt to
establish a conjecture made by the referee of the Basu-Ghosh paper ((1969) page
168). The theorem shows that the referee’s conjecture is indeed true.

3.2. Periodicity of p-invariant sets. In all our standard examples on (R', B) we
noted that all u-invariant sets are periodic sets of some period. Basu and Ghosh
established that if A(u) is a separable o-field, then every 4 € A(u) is periodic. We
were then tempted to conjecture that the class A(u) consists entirely of sets that are
periodic of some period. This conjecture is valid with certain reservations. We first
present an example to show that p-invariant sets in general need not be periodic.

3.3. An example. Let g(x) = x—[x], where [x] denotes the greatest integer less
than x. Let a be a positive real number. Define A(x) = g(x)+ g(ax)—(g(1+a)x).
It is easy to verify that 4 takes only the values 0 and 1, and hence is the indicator
function of a set. Now let u = pu; * p, * p3, where g, is the uniform p.m. on [0, 1],
U, the uniform p.m. on [0, 1/a] and u; the uniform p.m. on [0, 1/(1+a)]. Since g(x)
is periodic of period 1, V 0, [5 g(x+0)dx = 1/2so that (g—1/2) * ;= 0. Similarly
(g(ax)—1/2) * u, = 0 and (g(1+a)x)—1/2) = u3 = 0. Consequently (h(x)—1/2)
% u = 0. It thus follows that the set A with I_ 4(x) = h(x) is a p-invariant set.

If a is irrational then A is not periodic.

This example shows that on (R', B) not all y-invariant sets can be periodic. It
therefore seems natural to investigate conditions under which the class A(u) consists
of periodic sets. As an attempt in this direction, we show here that if A(u) is a
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o-algebra, then A(u) consists entirely of periodic sets of a given period. We shall
need the following definitions and results in this connection.

DEFINITION 3.1. Let m be a positive measure on (X, B). Let B, be a sub-o-field.
Anelement fon L®(X, B, m) will be called B;-measurable if there is a B;-measurable
function in the equivalence class determined by f.

The B,-measurable elements of L evidently form a uniformly closed subspace
of L®, and this subspace obviously determines the measure algebra of B,.

DEFINITION 3.2. A function fin L'(X, B, m) will be said to have the conditional
expectation zero iff, V B€ By, | Iy fdm = 0.
The following lemma is now easy to establish.

LemMA 3.1. Let m be o-finite. A member g of L® is Bl-measurable iff {fgdm =0
for every f in L* with conditional expectation zero.

PROOF. We first assume that m is a probability measure and denote by ‘E’ the
expectation operator with respect to m. Now if g is B;-measurable and f has condi-
tional expectation zero, we have E[fg] = E[gE[f[ B,]] = 0. Now suppose that
E[f - g] = O forevery f with E[f | By] = 0. Let h € L'. Let f = h—E[h | B,]. Then
E[f - 9] = 0 by hypothesis. Also, by what we have already seen, E[f - 4] =0
where § = E[g | By]. Thus E[f - (g—4)] = 0so that E[h(g—§)] = E[h(g—§)] = 0.
Therefore E[h(g—g)] =0 Y heL'. Hence g =g a.e. Consequently g is By-
measurable. This completes the proof when m is a probability measure. For the
general case we can find a probability measure p equivalent to m. A function fis in
L'(m) iff f - (dm/dp) is in L'(p). Likewise f has conditional expectation zero with
respect to m iff f - (dm/dp) has conditional expectation zero with respect to p. It is
now a simple matter to translate the proof for a probability measure to the general
case.

LEMMA 3.2. The space of B-measurable elements of L* is a weak*-closed subspace
of L®.
ProoF. This is clear from Lemma 3.1.

THEOREM 3.5. Let X be a finite dimensional Euclidean space. Let B be the class of
Borel sets on X. Let B, be a translation invariant o-field of Borel sets. Then there is a
closed subgroup H such that By is, modulo null sets, the o-field of H-invariant Borel
sets (i.e. A B iff Vhe H A+h = A a.e.).

ProOF. Let U be the subspace of L® consisting of B;-measurable functions and
let ¥ be the continuous functions in U. It is clear that U and ¥ are uniformly closed
subspaces. By Lemma 3.2, U is a weak*-closed subspace of L*. Let f be an element
of L' and let g € U. It can then be seen that, by writing the integral in full and
interchanging the order of integration, | (f * g(x))a(x) = O for every 4 in L' with
conditional expectation zero. By Lemma 3.1, f = g is in U. However f * g is con-
tinuous and so in V. Also we can approximate g by functions of the form f * g,
in the weak*-topology, by allowing f to be an element of an approximate identity
for L*(X). It thus follows that ¥ is a weak*-dense subspace of U.
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Let H be the subset of X consisting of all y such that f (x+y) = f(x) for all x
and for all fin V. H is clearly a closed subgroup of X. If a—b € H, it follows from
the definition of H that f (a) = f (b) for all f € V. Conversely if f (a) = f(b) for all
feV,wehave f(x+a—b) = f(x) for all x and fsince f,_, (- ) =f(-+x—b) is
also an element of V. Thus f (@) = f(b) forall f € Viff (a—b) € H. It is now evident
that V is a self-adjoint algebra which separates points in X' | H.

Now let g be a bounded continuous function satisfying the condition g(x) = g(»)
whenever x—y € H. Let hy, ---, h, be in L' and &¢ > 0 be given. Let M be the sup-
remum of |g(x)| and [ |A;]. Choose a compact set K such that [ |h;| < ¢/8m.
Since Vis an algebra and g satisfies the relation g(x) = g(y) whenever (x—y) € H,
it follows from the Stone-Weierstrass theorem that we can find an f in ¥ such that
| f(x)—g(x)| < ¢/4M if x € K. Let M be the supremum of | f|. By the classical
Weierstrass theorem there is a polynomial P such that |t —P(r)| < e/4Mif |t| < 2M,
and |P(t)| < 3Mif |¢t| < M. Set f; = P(f). Then | f; —g(x)| £ 4M for all x. But
now Hhi(x)(g(x)—fl(x))| <egforall i =1, .-, n. This means that g is in the
weak *-closure of ¥V so g is in U and hence g isin V. It follows that V consists of
all bounded continuous functions which are invariant under H, and that U, the
weak*-closure of ¥, consists of all L® functions which are measurable with respect
to the o-field of H-invariant Borel sets. []

COROLLARY 3.5.1. Let u be a probability measure on (R, B) and suppose that
A(u) is a “non-trivial” sub-o-field of B. Then there exists a ‘¢’ such that A € A(p) iff
A+c=A4a.e.

PRrOOF. This is clear from the above theorem on noting that A(u) is translation
invariant and a non-trivial closed subgroup H of R! is of the form H =
{nc :n =0, £1,---} for some ¢. Consequently if A(u) consists of sets invariant
with respect to H, then 4 € A(u) implies that 4+c¢ = A4 a.e. The converse part is
trivial. []

REMARK. In our proof of the above corollary we have tacitly excluded from
consideration the case when H is a trivial subgroup, i.e. H = {0} or H = R'. It can
be easily seen that A(u) coincides with B when H = {0} and consists solely of sets
that are (within sets of Lebesgue measure zero) equal to the null set or the whole
space when H = R'.

3.4. Weak incompleteness of a p.m. Let E be a triangle on the plane and u the
normalized restriction of the Lebesgue measure to E. Is u weakly incomplete ? This
is one of the questions raised in the paper of Basu—Ghosh ((1969) page 173). We
provide here an affirmative answer to this question. For simplicity we consider the
probability measure with the following density f(x, y) = 2 if x >0, y > 0 and
x+y =1, and = 0 otherwise. The characteristic function of f is f(s, t) =
2[{exp (is)— 1}/st—{exp (is)—exp (it)}/(s—t)t] so that

S(f) = {@mn,2nn):m #n= %1, £2, -}

That f does indeed have non-trivial measure invariant sets can be proved as follows.
Let (X, Y) denote random variables with the joint density function f. Let g denote
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the density function of (X+27Y). Then S(g) > {2nn: n = +1, +2, ---}. Thus every
Borel set of period 1 on R' is measure-invariant with respect to the measure induced
by X+2Y. Let B* = {(x, y): x+2y € B}, where B is a Borel set of unit period. It is
now easy to see that B* is measure-invariant with respect to the density function f.

Hence the measure induced by f'is weakly incomplete.
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