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ESTIMATING THE SIZE OF A MULTINOMIAL POPULATION

BY LALITHA SANATHANAN
University of Illinois at Chicago Circle

1. Introduction and summary. This paper deals with the problem of esti-
mating the number of trials of a multinomial distribution, from an incomplete
observation of the cell totals, under constraints on the cell probabilities. More
specifically let (n,, - - -, n,) be distributed according to the multinomial law
M(N; p,, - -+, py) Where N is the number of trials and the p;’s are the cell
probabilities, 3%, p; being equal to 1. Suppose that only a proper subset of
(ny, - - -, m,) is observable, that N, p,; - - -, p, are unknown and that N is to be
estimated. Without loss of generality, (n,, - -+, m_,), | < k may be taken to
be the observable random vector. For fixed N, (n,, - -+, n,_;, N — n) has the
multinomial distribution M(N; p,, - - -, p;) where n denotes };!=} n; and p, de-
notes 1 — Y !=1 p,. If the parameter space is such that N can take any non-
negative integral value and each p; can take any value between 0 and 1, such
that Y i-lp, < 1 then, clearly, the only inference one can make about N is
that N > n. In specific situations, it might, however, be possible to postulate
constraints of the type

(1.1) p; = fi(0), i=1,...,1

where § = (4, -- -, 0,) is a vector of r independent parameters and f; are
known functions. This may lead to estimability of N. The problem of esti-
mating N in such a situation is studied here.

The present investigation is motivated by the following problem. Experi-
ments in particle physics often involve visual scanning of film containing
photographs of particles (occurring, for instance, inside a bubble chamber).
The scanning is done with a view to counting the number N of particles of a
predetermined type (these particles will be referred to as events). But owing
to poor visibility caused by such characteristics as low momentum, the distri-
bution and configuration of nearby track patterns, etc., some events are likely
to be missed during the scanning process. The question, then, is: How does
one get an estimate of N? The usual procedure of estimating N is as follows.
Film containing the N (unknown) events is scanned separately by w scanners
(ordered in some specific way) using the same instructions. For each event
E let a w-vector Z(E) be defined, such that the jth component Z; of Z(E) is 1
if E is detected by the jth scanner and is 0 otherwise. Let.” be the set of 2*
w-vectors of 1’s and 0’s and let I, by the vector of 0’s. Let x, be the number
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of events E whose Z(E) = I. For Ie..# — {I}, the x,’s are observed. A proba-
bility model is assumed for the results of the scanning process. That is, it is
assumed that there is a probability p, that Z(E) assumes the value [ and that
these p,’s are constrained by equations of the type (1.1) (These constraints vary
according to the assumptions made about the scanners and events, thus giving
rise to different models. An example of p,(6) would be E(vEi=17i(1 —v)*~Zj-115)
where I, is the jth component of Iand expectation is taken with respect to the
two-parameter beta density for v. This is the result of assuming that all scanners
are equally efficient in detecting events, that the probability v that an event
isseen by any scanner is a random variable and that the results of the dif-
ferent scans are locally independent. Fpr a discussion of various models, see
Sanathanan (1969), Chapter III. N is then estimated using the observed x,’s
and the constraints on the p,’s, provided certain conditions (e.g., the minimum
number of scans required) are met.

The following formulation of the problem of estimating N, however, leads
to some systematic study including a development of the relevant asymptotic
distribution theory for the estimators. The Z(E)’s may be regarded as reali-
zations of N independent identically distributed random variables whose
common distribution is discrete with probabilities p, at I (In particle counting
problems, it is usually true that the particles of interest are sparsely distributed
throughout the film on account of their Poisson distribution with low intensity.
Thus in spite of the factors affecting their visibility outlined earlier, the events
can be assumed to be independent.). The joint distribution of the x,’s is, then,
multinomial M(N; p;, Ie .#). The problem of estimating N is now in the
form stated at the beginning of this section. Since the estimate depends on
the constraints provided for the p,’s, it is important to test the “fit” on the
model selected. The conditional distribution of the x,’s (I  I,) given x is
multinomial M(x; p,/p(I # 1,)) where x is defined as ¥ ,,, x;and pas 3,,; p;.
The corresponding y* goodness of fit test may therefore be used to test the
adequacy of a model in question.

Various estimators of N are considered in this paper and among them is, of
course, the maximum likelihood estimator of N. Asymptotic theory for
maximum likelihood estimation of the parameters of a multinomial distribu-
tion has been developed before for the case where N is known but not for the
case where N is unknown. Asymptotic theory related to the latter case is
developed is Section 4. The result on the asymptotic joint distribution of the
relevant maximum likelihood estimators is stated in Theorem 2.

A second method of estimation considered is that of maximizing the likeli-
hood based on the conditional probability of observing (n,, ---, n,_,), given
n. This method is called the conditional maximum likelihood (C.M.L.)
method. The C.M.L. estimator of N is shown (Theorem 2) to be asymptotically
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equivalent to the maximum likelihood estimator. Section 5 contains an ex-
tension of these results to the situation involving several multinomial distri-
butions. This situation arises in the particle scanning context when the
detected events are classified into groups based on some factor like momentum
which is related to visibility of an event, and a separate scanning record is
available fer each group.

A third method of estimation considered is that of equating certain linear
combinations of the cell totals (presumably chosen on the basis of some cri-
terion) to their respective expected values. Asymptotic theory for this method
is given in Section 6. This discussion is motivated by a particular case which
is applicable to some models in the particle scanning problem, using a cri-
terion based on the method of moments for the unobservable random variable,
given by the number of scanners detecting an event (Discussion of the par-
ticular case can be found in Sanathanan (1969) Chapter III.).

In the next section we give some definitions and a preliminary lemma.

2. Likelihood. The observation of (n,, - - -, n,_,) yields the likelihood function
L(N; 0) = (N!/(n! -+ m! (N — m)))(py ()" - - - (P @) -1(pi(0))Y "

where p,(0) = fi(f) of (1.1), i=1,...,L
L(N; 6) may also be written as L(N; 0) = L,(N; p,(0))L,(0) where

@1 LW p(0) = (NY(nt (N — m))(1 — p&)(pu0)*
Ly0) = (m! [(n! - - i DAGO)™ - - - (q-(0))
with ¢,(0) = pO)[(1 —p9)), i=1,---,1—1.
It is easily seen that L, is the likelihood based on the probability of » and

hence L, is the likelihood based on the conditional probability of (n,, - - -, n,_;)
given n. The following lemma is known (see e.g. Chapman (1951)).

LemMma 1. For any given p, N = [n/(1 — p,)] (greatest integer < n/(1 — p,))
maximizes L,(N; p,), where L(N; p,) is defined in (2.1). If 1 — p, = n/N’ for
some integer N', then N and N — 1 both maximize L(N; p,). Otherwise N is the
unique maximum.

3. Maximum and conditional maximum likelihood estimates of N. Two esti-
mates of N arise naturally. The first is, of course, the maximum likelihood
estimate to be denoted as N, and defined by the condition that there exists a
value 8, of 8 such that (N, 6) = (N, §,)) maximizes L(N; 6) over all admissible
values of (N; #). The second estimate which will be called the conditional
maximum likelihood estimate to be denoted by N, is defined by the condition
that N = N, maximizes L,(N; p.) where p, = p,(0,) and 6, is the value of ¢
which maximizes L,(#). That is, we first make a conditional inference about
p, based solely on L,(#) and then infer about N on the basis of L,(N; p,) with



ESTIMATING THE SIZE OF A MULTINOMIAL POPULATION 145

p. replaced by its estimate. By Lemma 1, except when p = n/N’ for some integer
N', N, = [n/(1 — p,)]- In the exceptional case, let us define N, to be
(n/(1 — p,)) and thus N, is well defined. The problem then is to get 4, from
which p, may be calculated. But L, involves only # and not N and hence
maximizing L, is simpler than maximizing L. This is especially helpful when
we have a combined likelihood involving several multinomial populations.

The appropriateness of inference based on conditional distributions is a topic
which has been discussed widely in the literature (Fisher (1956), Cox (1958a),
Cox (1958b), Bartlett (1956), Welch (1956)) No special effort is therefore
made here to justify the estimates §, and N,

Some properties of N, and N, are‘dlscussed in the next section. In par-
ticular, their asymptotic distributions are derived under certain regularity
conditions, and are shown to be the same. Thus they are asymptotically
equivalent. This equivalence can also be seen heuristically as follows.

Assume that the partial derivatives dp,/d6; exist for all i and j., Since § = 4,
maximizes L(N,; ), 6 log L/30; at (N, 6,) = 0. Therefore,

(3.1 — (1)(1 = py) — Wy — m)[po)pus(0p) + Ly j0p) =0, j=1,--,r
where p, = p,(0,), p,, 1(01,) denotes dp,/d0; at f,and L, ;(8,) denotes 3 log L,/00,
at 0,. If N, = [nj(1 — p,)] is replaced by n/(1 —p,,) in (3.1) the first term
becomes 0 so that we have L, 1(0U) =0,j=1, ..., ryielding the same pro-
cedure as that used in getting N,.

4. Asymptotic distributions of N, and N,. We now proceed to derive the
asymptotic distributions of N, and N,. The following assumption is made
throughout. _

Al. At every admissible value of ¢, the functions p,(f) admit continuous
first-order partial derivatives.

The notation —, _ is used to denote almost sure convergence, —, to denote
convergence in probability, —, to denote convergence in law, and _#7(0, X)
to denote a normal random vector with mean vector 0 and covariance matrix X.

Let p,(#), L(N; 6) and L,(f) be denoted by p,°, L° and L," respectively when
(N, 6) = (N,, 6,) and by p;, L and L, respectively when (N, §) = (N, #). Simi-
larly let the partial derivatives of p,(¢), log L(N; 6) and log L,(¢) with respect
to 6; be denoted by p? ;, L L3, respectively when (N, §) = (N,, 6,) and by
P, ,, L;and L, respectively when (N, 6) = (N, 0).

THEOREM 1. Let N, be the true value of N and 6, = (6, - - -, 0,,) be the true
value of . Let N and 0= (91, -« -, 8,) be the estimates of N, and 0, respectively
such that as Ny — oo,

(i) §—,. 0,;
(il) Ny¥E — nj(1 — p))) —,..0;
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(lii) No_it‘jb"’a‘s.o’ j: 1’ RN
Let X7 be the (r + 1) X (r + 1) matrix given by

P[]

a’O a’OO
where A = (a;;) defined by a,; = 3\, (p,)*p2:plis Lj=1,--,r 2 =
(aIO’ ttt arO) deﬁnedby aioﬂz —(PLO)_IP?,i, i=1,...,r,and Ay = (1 _plo)/(plo)'
Then, (N}0 — 0,), N, YN — N,)) is asymptotically _1"(0, Z).

A is the usual information matrix for the multinomial distribution
M(N; p,(0), ---, p/(f)) when N is known. (See Rao (1965) pp. 295-299 for a
derivation of 4.) That X is nonsingular is assumed implicitly in the above
theorem.

.

Proor. Throughout the proof of this theorem, unless otherwise specified,
the subscript i will range from 1 to / and the subscripts j and m from 1 to r.
Let n, denote N, — n. We, then, have

Nyt 3 (P 'mps; = _No—i(pt)_l(ﬁ — Ny)p,; + No—ii’j .
Since Y}, p; ; = 0, it follows that ,
(4.1) N7 2 (B (m — Nop)pi; = Not 25 (B (P: — PO) By
— NyHp) (N — No)p,; + N, 4L,

If we use the mean value representation

pi - pio = Zm(ém - 00m)p1,,m(01) ’ 0mi € (ém’ 00m)
(4.1) can be written as
(4'2) Zm bj,mNoi(ém - 00m) + bj,r+1N0—*(N - No) = 1\/0_i Zz dijyi - No—if'j

where for j=1, ..., rand for m from 1 to r + 1 b; , —
the (j, m)th element of X,

_g¥™, gi™ being

a.s

(4.3) dij =5 (PP
and
yi=n— Nyp°.
Since N,"ty; has a limiting distribution
(4.4) Nt 3idy —z;—,0
where
(4.5) z; = NP 2 (p) 7 Py = Nt 2 (p0) 7 PR s

Thus using (iii) in the statement of the theorem,
(4.6) Ym b w N0, — O0) + by, aNHN — N) — 2, —,0.



ESTIMATING THE SIZE OF A MULTINOMIAL POPULATION 147

Now consider the following equation
47 NN — p) — n) = NHN — N)(1 — B)

/ — NXp, — p) — No7¥(n — N(1 — p°)) .
Using the mean value representation for g, — p,°, dividing (4.7) by p,° and
using condition (ii), we have
(4‘8) Zm br+1,mN0*(é'm - 00m) + br+1,’r+1N0_*(N - NO) — Zrn —_’Po
where
br+l,m a.s. ot m=1,...,r +1 and Zpy1 = No_b(]’lo)_l(n - No(l - Plo))'
Let U' = (N0 — 6,), N, N — N,)) and Z’ = (z,, - - -, z,,,). Then by in-
verting the relations (4.6) and (4.8), we have
(4.9) U—-2Z-,0.

Next, we show that Z —, _#7(0, Z7).
Form=1,...,N,letV, =(V,,, -, V¥, ,..) be the random vector such that

(i) when the mth trial results in the ith category, i ranging from 1 to/ — 1,
V..; takes the value (p)~'p?;, j=1,...,rand ¥V, ,,, takes the value 1.

(ii) when the mth trial results in the /th category, V,, ; takes the value
(PyHpl,j=1,---,rand v, ., takes the value — (p,°)(1 — p,%)
Then

(4.10) Z' =Nt SNV,

From the definition of V,,, it may be easily deduced that each V,, has 0 as its
mean vector and X' as its covariance matrix. Also the ¥V,’s are identically
distributed. Therefore, by the Central Limit Theorem

(4.11) Z—, 470,27
Thus by (4.9) U—, _#7(0, Z) and thus the proof of Theorem 1 is complete.

THEOREM 2. Assume Al and
A2. Givena d > 0, it is possible to find an ¢ > O such that

infiy, g5 2351 4:(00) 108 (9:(00)/q:(0.)) > e

where q,(0) = p(0)/(1 — p(9)),i=1,---,1—1.
Then

I. (jYC’/NO’ 9;0’ Be) —as. (1, ‘?o’ p)as Ny— oo
II. (NU/]YO’ 0ys Pv) ""a.s;(l’ 0, p°) as N, — > 5 .
II. (N0, — b5), Ny ¥ Ny — Ny)) and (N0, — 6,), N, H(N, — N,)) are

both asymptotically _1"(0, X) where X is as defined in Theorem 1.

Proor. By the law of large numbers,
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(4.12) n/Ny—, . 1 —p° as N,— oo
and so n—, ; oo as N, — oo.

But d,, is the maximum likelihood estimate of 0, based on an observation from
M(n; ,(8,), -+ > q:_1(8,)) and so by A2, 8, —, 6, as n— oo (for proof see
pages 295-296 in Rao (1965)) and hence by (4.12)

P

(4.13) 0, >, 0, as N,— oo.

We also have p;, — p," as N,— oo by the continuity of p,(6). N, = [n/(1 — f,)]
implies (1/N)(N, — n/(1 — p;)) —,,. 0 as N, — co and so N,/N,—, 1 as
N,— oo. Thus statement I of the theorem is true. Statement II can be proved
as follows: .

It is enough to prove that }!Zi(n,/n)log (qi(éU)/‘(ni/n)) —, . 0 since this
together with A2 would imply 0, —,. 6, (for proof see pages 292, 293 and
295 in Rao (1965)).

Consider L, and L, as defined in (2.1). Log L, = 0 at the point (N, p,) =
(n,0) and is < 0 at all other points. Since # maximizes log [L(N,; 6)]/n,
we have

1=1 (n,/n) log ¢.(0,) + a negative number
= sup, [ 235 (ni/n) log g:(6) + log [Ly(N; pi(9))]/n]
2 2i5i (m/n) log g.(6,) + log [Ly(No; pu(60))]/n -

Also, by an inequality in information theory
i (/) log 4.(0,) < X!k (mifm) log (mfm) -

Combining the above two inequalities we have

0 = XLk (mfn) log (g:(0,)/(ni/m))
= i3 (m/n) log (qi(00)/(ni[m)) + log [Ly(No; pu(65))]/n .

As N, — oo, nfn—, q(6,). Also, using the normal approximation to
the binomial probability L,(N,; p(d,)) and (4.12) it is seen that
log [L,(N,; pi(6,))]/n —,.,.0. Hence the result.

We will now show that both (N, §,) and (N, 8,) satisfy conditions (ii) and
(ili) of Theorem 1. N, = [(n/(1 — p,)] implies [N, — n/(1 — p,)| < 1 and
therefore condition (ii) of Theorem 1 is satisfied by (N, d,,) and similarly by
(N, 8,). That condition (iii) of Theorem 1 is satisfied by (¥, f,,) is obvious
from the definition of (N,,d,). Coming to (N, d,), by definition 6 = 4,
maximizes L,(#) and since the partial derivatives are assumed to exist, we have

Lz'j(éc)zo, j=1,~~~,l‘.

Therefore
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No_*Lj(Nc; éo) = NO_%LI,J‘(NC; Be)
= Ny tp 0N (W — m)fpe — nf(L — Bo)),  i=1,--+,r.

By (4.13) and Al, pm.(éc) —,s Pl; a8 Ny— co. Also since p, —, . p’
(1\70 — n)/p, — n/(1 — p,) is almost surely bounded in the limit. Therefore
N,*L(N,; 0,) -, ,. 0. Thus condition (iii) of Theorem 1 is satisfied by (N; 6,)
and this completes the proof of Theorem 2.

In finite samples, N, need not be equal to N,. The following inequality
may, however, be derived.

THEOREM 3. N, < N,.

Proof is omitted.
Theory developed in this section is extended in the next section to the case
of independent observations from several multinomial populations some of

whose parameters are interrelated.

5. Case of s populations. Suppose we have observations 0, = (n,,, - - -, 1,,_,),
t=1,...,s such that 0,’s are independent and 0, is the vector of the first
I — 1 cell totals from a multinomial population M(N,; p,, - -+, p,;). Assume
as before that N,’s are unknown and that there are independent parameters
T, +++, 7, such that p,(c) = fi(xr), i=1,.--,; t=1,...,5 where r =
(ty, +++,7,). Define n, to be 3jizin,; and p,, tobe 1 — 3!l p,.. Let N denote
the vector (N, N,, ---, N,). Let Ny = (Ny, --+, N,,) and 7, = (zy, - -+, Toy)
be the true values of N and 7 respectively. The unconditional and conditional
maximum likelihood estimates of (N,; 7,) can be defined analogously as in the
single population case.

Theorems 1 and 2 may be extended to the case of independent observations
from s populations. Some assumptions about the relative sizes of the popula-
tions as they become large are necessary. More specifically, let N, — oo in
such a way that limy,_. N, /N, =c¢c, t=1,...,s where c, is any real number
between 0 and 1 such that }}:_ ¢, = 1 and N, is defined as }}i_, N,,. Then
Theorem 1 may be extended as follows.

THEOREM 4. Let the p,(t)’s admit first order partial derivatives which are con-
tinuous at every admissible value of r. Let N= (N, --.,N,) and # = (¢, - -+, %,)
be estimates of N, and t, respectively such that

(i) ‘? a.s. Tg
(11) < N&Q(Nt - nt/(l - ptl)) >_’a.s. 0, and

(iiiy N,7iL; >, 0,j=1,..-,0
where the symbol {e,y denotes the vector (e,, - - -, e,) and the notations for partial
derivatives are obvious extensions of those used earlier.

Then
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WNAE — 1), Na’}(ﬁl — Ngy)y - -y Nt;’}(ﬁa — N,,))
is asymptotically _17(0, £) where £~ = (a'?) is given by
o = Zf:l ¢ Z%:l (P(t)i)—lp(tji,jpgi.m s ] =L ..,o;m=1,...,v
it = —(ph) e tph s j=L e vt=1,...,8
gttty — (p‘t)l)_lst,u(l -2, t=1,.-.,55u=1,...,s
where 0, , =1 if t =u, 9,, =0 otherwise. Proof is analogous to that of
Theorem 1 (referred to as P1 henceforth) and therefore details are omitted.
Condition (iii) of Theorem 1 is replaced here by the condition N, L, —,.0,
j=1,...,v. But
NT—if‘j = 2ia NT_’}Lt.j = 2ia (Noz/NT)iN&if‘t,j .
L, ; here corresponds to L, of P1. Hence using exactly the same arguments,
we get
Z::l NOt/NT an=1 bt,j,mNT*(?m - TOm)
+ Z:=1 (Not/NT)*bj.v+t(Nt - Noz)N&’} — Z; _’pO
where 315, ¢,b, ; m —us 0™ j=1, - c,v;m=1,...,v;
Ctibj.v-rt a.s. Uj'v-H ) j = 1, ce e, U5 t = lr ceey S and
z; = Nt Nt D (Ph) 7P it j=1 0.
Condition (ii) of Theorem 1 is replaced here by conditions of the same type

for the s populations. Hence, just as in P1, we have

Z:n:l (NOL/NT)*bv-{»t.mNT‘}(fm - TOm) + bv+t,v+tN(;i(Nt - NOt) — Zyte ‘_’po ’

t=1,..-,8
where
by iim —as 0™, m=1,.. .05t =1,...,5
bv+t,v+t —gg OVTEUTE t=1,...,s
and
Zyyt — (Pgl)_lNgz(nt/Nm — (1 =p), t=1,...,s.

Further arguments as in P1, with the additional fact that N, /N, —c, as
N, — oo, t=1, ..., syield the result stated in Theorem 4.

Theorem 2 may also be extended analogously. In the extension, assump-
tions Al and A2 are each to be replaced by assumptions of the same type
separately for the s populations.

6. Other methods of estimation. Among other possible methods of estimation,
one that is sometimes computationally convenient is the following. Let r be
the number of unknown 6’s. Based on some criterion, (r + 1) different random
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variables are formed by taking linear combinations of n,, --., n,_, and then
equated to their expected values. Let

(6.1) X, = X by, i=1,...,r+1
where h; ;’s are given constants and let N, II; = E(X;). The equations are
given by

(6.2) NII, (0) = X;, i=1,...,r+ 1L
(6.2) is a set of r 4 1 equations in r + 1 unknowns N, @,, --., 0. Let us
assume that a solution for (¢, N) exists and is unique. Denote this by (,,, N,).
Since X;/X; —,  IL;/Il;, j=2, - --,r + 1 under suitable regularity conditions,
6,—,. 0, The asymptotic distribution of H = (N X8, — 0,), NyH(N,, — N,))
may be derived as follows: ‘ .

By (6.2), we have N, II, (9,,,) =X,i=1,.--.,r+ 1land

NNy — NI, (B,) + NI (B,) — NATLE(6,) = N X, — N, IL, (6,)) -

Using the mean value representation for I, (4,,) — II,(d,), the consistency of

A

0., assumption Al and the fact that fori =1, ..., r + 1,
K, = Ny X, — N, II, (6,)) has a limiting distribution, we have
(6.3) H—-Y7'K—,0
where
K=(K, -, K,,), 2= (97",
o " = 01, (6,)/a0,, , j=1Lr+lim=1,...1

and
o, =11, (6,) , j=1,-,r4+1.
From (6.1) it is easy to see that
(6.4) K—, 470, Zr)
where
2= (s""),

0x™ = Do pi00)(h;; — IL; (00))(h i — 1L, (00))
j=1, .-, r+1;m=1,...,r+ 1 with h; , defined as 0.
(6.3) and (6.4) imply H —, (0, 7' X 22Y)-
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