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THE ASYMPTOTIC INADMISSIBILITY OF THE SAMPLE
DISTRIBUTION FUNCTION

By R. R. READ
Naval Postgraduate School

Given a sample of size n, a continuous estimator for a distribution
F (based on Pyke’s modified sample distribution) is shown to have the
property that its expected squared error, for almost all x in the positive
sample space of F, is no larger than that of the sample distribution
function given F and # sufficiently large. Letting risk be given by the
expected squared error integrated with respect to F, it is shown that this
estimator dominates both the sample distribution and the other best
invariant estimator found by Aggarwal, given F and nsufficiently large.
Other common estimators cannot serve in this dominating role. Explicit
calculation of risk is made when F is the uniform distribution. In this
case the estimator strictly dominates the sample distribution for alln=1.

1. Notation and background. Let X, X,, - .., X, be the order statistics of a
random sample from an absolutely continuous distribution F having density f.
Following Aggarwal [1], let us use the risk function

(1.1) R(F, F‘) =Ef{|F— F‘]zk(F) dF

where k is a positive weight function. Somewhat stronger results are obtained
by considering the pointwise risk

(1.2) R,(F, F) = E{|F(x) — F(x)]*} .

In order to contrast the two, the function (1.1) will be called the integrated risk.
Let N, be the number of observations in (— oo, x]. It is known (see [1] or
[4]) that the sample distribution function, defined by

(1.3) D(x) = N,/n

is the best invariant estimate if the weight function k(f) = [#(1 — #)]7*. Also
it is known that the estimator
(1.4) H(x) = (N, + 1)/(n + 2)
is best invariant if k(f) = 1. Neither D nor A is continuous and A does not
achieve the values 0 and 1.

Let us assume that the population sampled is bounded and contained in a
finite interval. There is no loss in using the interval [0, 1]. It will be con-

venient to carry this assumption throughout the paper. It will be shown that
the asymptotic results are not affected by it. Thus we can define X, = 0,
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x,,, = 1 and let U, (V,) be the distances from x to the nearest observation on
the left (right). Letting the relative distance be

define
(1.6) ) = (N, + W)[(n + 1).

This function is continuous and consonant with Pyke’s suggestion [6]. That
is, the statistic C, can be calculated from

(1.7) C, = maxos::slé(x) — F(x)| .

We mention in passing that the small sample distribution of C, is included in
the works of Brunk [2], Durbin [3], and Steck [7], and has been tabled in [5].
The referee has pointed out that since C(x) lies between D(x —) and D(x) at
all observations, C, is stochastically smaller than Kolmogorov’s statistic. The
numerical effect of this is indicated in [5] and [7].

Since € is not a step function it is not invariant under the full group of
strictly increasing continuous transformations as are D and #. A weakening
of invariance should provide better estimators. It can be shown that C is
invariant under the subgroup of linear transformations having positive slope.

2. Asymptotic behavior of the pointwise risk. We work with the form
@.1) (24 1YR(F, €)= E{N, + W, — (n + DFx)}
= Var (N,) + E{W, — F(x)* + 2Cov{N,, W,}.

Clearly N, is a binomial variable (n, F(x)). The joint distribution of U,, ¥V, N,
is given by
(2.2) PlU, >u,V,>v,N,=r} = (F(x —u)[l — F(x + v)]*"

0su<x, 0v<ll —x,
with singularities on the boundary given by
P{szx,Vx>v,Nx:0}:[1—F(x—l—'v)]”, 0§’U<l—x
P(U,>u,V,=1—x,N,=n} =[F(x — )], 0su<x.

x

(2.3)

PRrOPOSITION 1. If x is a point of continuity of f and f(x) > 0, then
(2.4) (n + 12R,(F, C) = (n — )F(x)[1 — F(x)] + o(1).

Proor. Use (2.1). Clearly Var (N,) = nF(x)[1 — F(x)]. The variables nU,
and nV, are asymptotically independent exponential variables with mean 1/£(x)
and it follows that W, is asymptotically a uniform random variable. Thus

(2.5) EW, — Fof =3 — Fx)[1 — F(x)] + o(1) . -
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Similarly, letting D,, denote the second partial derivative operation with re-
spect to # and v, and n'”’ = n!/(n — r)!

Cov {N,, W,}
n—1 n z(l—2 u
= mralr A7) G5
X D, {Fr(x — u)[1 — F(x + v)]*"}dudv + o(1)
(2.6) =n 5 Sl = W+ ol = Fix o+ 0) + Flx — )

X {(n — 2)F(x — u) + (1 — nF(x))[1 — F(x + v)
+ F(x — u)]}dudv + o(1)
= /(%) §§ e [1 — wyfx)]ly dydw + o(1) = —§ + o(1)
upon summing the binomial, and making the change y = u + v, w = u/y.
Inserting these three quantities in (2.1) proves the proposition.
It is noted that if one modifies functions D and A by connecting the steps

with straight lines, the resulting pointwise risk functions have asymptotic
forms which can be obtained from

(2.7) E{nD(x) + W, — nF(x)}* = nF(x)[1 — F(x)] + o(1),
(2.8)  E((n + 2)H() + W, — (n + 2)F@)}

= (n — 2)F(x)[1 — F(x)] + 2[1 — F(x)]* + o(1)
where (2.7) and (2.8) are obtained analogously to (2.4).

3. Calculation of risk when F is the uniform distribution. Define

(3.1) h(x) = §z [’1‘ = ﬂw dw

and note that
(1 — x) = g;[1 — %J"(l — wydw.
PROPOSITION 2. If F, is the uniform distribution, then
(3.2)  (n+ 1PR(F, €) = (n — Dx(1 — x) + 2(n + 1){(1 — x)h(x)
+ xh(1 — x)}.
Proor. Clearly Var (¥,) = nx(1 — x). Using (2.2) summed over rand (2.3)

E(W — xJ = n™ §§ (u _’"_ - — x>[1 — (@ + W] dudv

— g (L - x) - @+ o)

+ v

— \& <;_+_I_‘—— — x>2d(x —u)".

1 —x



92 R. R. READ

Making the change y = v + «, w = u/y in the first term, defining L(w) =
min {(1 — x)/(1 — w), x/w} for each x, and obvious changes in the other two
terms leads to the representation

E{W — xp = n® ((§5 (w — x)*(1 — y)"2ydydw

- Sé(%—xfd(l —+ 5 (’1‘:;’— x) dy.

Using integration by parts twice on the first term, once in the other terms
and reducing, yields

E{W, — xf = §i(w — x)*dw — 2§z (1 — L(w))"(x — w)wdw
(3.3) — 2§ (1 — Lw))"(w — x)(1 — w)dw
=31—x(1—x) 4+ 2(1 — x)h(x) + 2xh(1 — X)
=21 — Lw)"w(l — w)dw .
The determination of the contribution of the covariance term is similar but

more lengthy. Using (2.2) and ignoring the terms involving the singular part
we have

Cov (N,, W,) = n® {§ % (x—w[l —v —u]dudv
u v

@] — % (1 —v—uydud
+ nt( nx)§§u+v( v — u) u dv
=n® §w {7 (x — wy)y(1 — y)"~ dy
+ (1= mx)n® Gw S0 y(1 — py=tdy
using the same change as before. The inner integrals can be treated by re-
peated integrations by parts. This yields, after reducing,
—n® §iw(x — wL(w))(1 — L(w))"*L(w) dw
(3.4) — (1 — nx)n Gw(l — L(w))"*L(w) dw
— n Y w(x — 2wLw))(1 — L(w))"™*
— (1 — nx) S§w(d — Lw))» + 2 w1l — L(w))"dw — }.
Using the facts that
x —wL(w) =1 — L(w) and Lw)dw = (1 — w)dL(w)
(3.5) for 0=w<x
x —wL(w) =0 and L(w) dw = — wdL(w) for x=wgl

we proceed to integrate the terms in (3.4) by parts until (1 — L(w)) appears
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to the power n in all terms. Treating the first two terms first this process
yields
—n(l —x)§&¢(1 — Lw))*(1 — 2w)dw — (1 — mx)(1 — x)"
+2(1 —nx) {1 (1 — Lw))"waw.
Similarly the third and fourth terms of (3.4) can be represented as
f2 (1 — Lw))"Cw — 3w dw + (1 — x)» — 3 {1 (1 — L(w))"w*dw
—n(l —x)§¢(1 — Lw))"wdw + nx §, (1 — L(w))"wdw
— G = Lw)yrwdw. .
The contribution of the singular part of the distribution to the covariance is
— (1 — X" 4 nx L (1 — Lw))* dw + n(1 — x) §3 (1 — L(w))*dw .
Collecting all the parts and reducing yields
(3.6) Cov (N,, W,) = —} + §5(1 — L(w)"w(1 — w) dw
+ n(1 — x)h(x) + nxh(1 — Xx)

and upon applying the basic formula (2.1), Proposition 2 is proved.
It seems desirable to record the pointwise mean

(3.7) (n + DE(CE)} = nx + 3 + h(x) — h(1 — ).

4. Results. Asymptotic inadmissibility using pointwise risks is shown in
Proposition 3.

PROPOSITION 3. Let F be a distribution on [0, 1] and let x be a point of in-
crease of F. For n sufficiently large for this F,

4.1 (n + DR, (F, 6 — R,(F, D)} < — 3F(x)[1 — F(x)] .

Proor. It follows easily from (2.4). The relaxation of the condition that
f be continuous at x is permitted because the continuous functions are dense
in L.

RemARK. Neither the estimator A nor the polygonal versions of A and D
whose asymptotic risks are given in (2.8) and (2.7) can replace C in the point-
wise dominating role exhibited in (4.1). This is due to the terms F(x)* and
[1 — F(x)]? in the pointwise risk of A which makes the inequality reverse near
0 and 1; to the term 2[1 — F(x)]? in (2.8) which makes the inequality reverse
near 0; and to the fact that the risk of the polygonal version of D behaves the
same as R,(F, D).

The estimator € does not dominate Hin the pointwise sense, but it does in
the integrated sense. This is stated below without proof.

ProPOSITION 4. If k(t) = 1, then



94 R. R. READ

4.2) (n + VHR(F, C) — R(F, A)} = —% + o(1) -

It is also noted that € is itself dominated in this asymptotic sense. For
example, consider the estimator S(x) = (N, + W,)/(n + 5/4) whose integrated
risk is (n 4 5/4)7%(8n — 5)/48 + o(1). It is easily shown that this is smaller
than R(F, C) for sufficiently large n.

Exact comparisons when F is the uniform distribution are of interest.

PROPOSITION 5. If k(t) = [t(1 — t)]™" then for alln = 1,
(4.3) (n + DR(F, €) — R(F,, D)} < —2.

Proor. Consider

@44 (4 1) hodr = (IL_"’;T f1-d(x =

< fhu(l —u)du + Ssl_‘(_x%i)dudxz 1.
Obviously (74 1) §i(1 — x)7*h(1 — x) dx < %. Then the appropriate integral
of (3.2) yields (n + 1)*R(F,, €) < n and'(4.3) follows.

Let us now show that the asymptotic results are unaffected by the assump-
tion that the population sampled is bounded. Without such prior knowledge
we will have either X, = —co or X,,, = +oo or both. In the former case
W, = 1 with probability [1 — F(x)]", in the latter case W, = 0 with probability
[F(x)]" and (1.6) is no longer a distribution. The definition of C (or any other
estimator) can be modified rather arbitrarily in these “tails” because the corre-
sponding change in the risk will tend to zero exponentially fast. Thus Propo-
sitions 1, 3 and 4 remain valid. Propositions 2 and 5, however, depend upon
the use of finite endpoints for defining C and appropriate modifications would
be in order.

Acknowledgment. Iam grateful to the referee whose suggestions led to much-
improved and succinct presentations in Sections 2 and 3.
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