The Annals of Mathematical Statistics
1972, Vol. 43, No. 2, 553-568

TRANSFORMATION GROUPS AND SUFFICIENT STATISTICS

By J. PFANZAGL
University of Cologne

Let (X, Z) be a pathwise connected and locally connected topologi-
cal space with countable base, and (8, 77") be a connected and locally
connected continuous transformation group on X which is Abelian. Let
.7 be the smallest g-field containing all open sets and P|.97 a proba-
bility measure such that P(U) > 0 for every openset U # @. Forevery
9€ 0 let Py denote the probability measure generated by the transfor-
mation 9, i.e. Py(A): = P(9-14), A€.7. Assume that Pyadmitsa con-
tinuous density relative to P for every 9€©. Assume finally that for
some sample size n > 1 there exists a real-valued, continuous statistic

T» which is equivariant (i.e. Tu(x1, +-+, Xn) = Ta(y1, -+, y») implies
Tn(9%1, ++ +y 9%2) = Tu(Iy1, - -+, Jya) for all 9€ ©) and sufficient for Py~,
JeO.

Under these assumptions there exists a real-valued, continuous
statistic .S on X which is sufficient for Py, 9€ 0, such that thedistribu-
tion of S is either the location parameter family of normal distributions
with variance 1 or a scale parameter family of gamma distributions.

In a nutshell: Among the families of distributions which are gen-
erated by Abelian transformation groups, and which fulfill certain regu-
larity conditions, the location parameter family of normal distributions
and the scale parameter families of gamma distributions are essentially
the only ones admitting for some sample size greater than one a sufficient
statistic which is real valued, continuous and equivariant.

0. Summary. Any family of probability measures with continuous densities
which is generated by an Abelian transformation group and which admits an
equivariant, real-valued and continuous sufficient statistic for some sample
size greater than 1, is either equivalent to the translation parameter family of
normal distributions with variance 1 or to a scale parameter family of gamma
distributions. Using a theorem of Borges and Pfanzagl (1965), this result is
established under natural assumptions on the topological structure of the basic
space and the transformation group.

1. The mainresult. Let (X, Z/) be a topological space.! A topological trans-
formation group (©, 9%77) on X is continuous if the maps (9, ) — Iz, 9 — 97!
and (9, x) — 9x are continuous.

Let .7 c Z(X) be the o-field generated by % and P|.%7 a p-measure
(=probability measure). We remark that x — 9x is continuous and therefore
&7, -measurable for every 9 € ®. This implies in particular that 94 € &7
for every 9e€0, Ae 7.
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For every ¥ ¢ © let P,|.%” denote the p-measure defined by
Py(A): = P(97'4), Ae V.

In particular: P, = P, if ¢ denotes the unit element of ©. We shall say that
the family P, 9 € O, is generated by the transformation group ©.

A map T': X" — Y is equivariant if T(x,/, - - -, x,/) = T(x,", - - -, x,”") implies
T(9x/, -+, 9x,") = T(Ix,", - - -, 9x,”) for all 9¢O. (In a similar, but not
equivalent sense, the word “equivariant” is used by Berk [1].) The word
“sufficient” will be used in the same sense as in [10] (pages 47, 48).

THEOREM. Assume that

(i) (X, ') is pathwise connected and locally connected with countable base;

(ii) (®, 277) is a connected and locally connected continuous transformation
group on X which is Abelian,

(iif) P is a p-measure on the o-field .07 such that P(U) > 0 for every U e %,
U+ @

(iv) the generated family P,|.7, 9 € ©, contains more than two elements;

(v) for each 9 € O, the p-measure P;|.57 admits a continuous density relative
to P|.97, say h (x, 9);

(vi) for some sample size n > 1 there exists an equivariant, real-valued, and
continuous statistic which is sufficient for P,"| 07", 9 ¢ O.

Then there exists an equivariant, real-valued and continuous statistic S on X which
is sufficient for Py|.7, 9 € O, such that the family of induced distributions, say
Py x S, 90, is either the location parameter family of normal distributions with
variance 1 or a scale parameter family of gamma distributions.

More precisely: There exists a continuous function w: © — IR such that P, x S
has one of the following densities relative to the Lebesgue measure:

(a) r— 2y texp[—(r — w(9))/2] for reR;
w(8r) = w(9) + w(z)
(b) r— L(pyw()yrre=texp [—w(I)r] for r>0;

p>0,w) >0 and w(Ir) = w)w(z) .

This implies in particular that an equivariant, real-valued, and continuous statistic

which is sufficient for P," | .27, 9 € O, exists for everyn € N, namely (x,, - - -, x,)—
Po1 8(x;)-

Proor. Let T, denote the sufficient statistic with the properties specified
in (vi). Let Z™ denote the product topology on X and .2 the product
o-field. As %7 has a countable base, .%* is the Borel field of Z/*. In the
following we shall apply Lemma 7 for X, 2/, .7, P*instead of X, %, .%7, P.
To this aim, we first remark that (X, % ") fulfills assumption (i) and P*|.o7"
fulfills assumption (iii) of Lemma 7.
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The family Py"|.&7", 3 € 0, is generated by the transformations on X" de-
fined by

Hxyy - e ey x,) = (9%, -+ -, 9x,), 9e6.

The set of these transformations, endowed with the given topology 777, is a
continuous transformation group fulfilling (ii) of Lemma 7. The densities

(% v v5 %) = [ h(xi'! ‘9)

of P,*|.&7" relative to P"|.&7™ are continuous by assumption (v) of the
Theorem. Assumption (v) of Lemma 7 is assumption (vi) of the Theorem.

Therefore, by Lemma 7, there exists a function ¢: R x © — [0, co) such
that

roh(x, 9 = o(T(xy, - - -, x,), ) forall (x,---,x,)eX", 3¢O.
By Borges and Pfanzagl [2] (page 263, (2.3)) we have
h(x, Hh(I'x, 9y =1 P-a.e.

As the densities are continuous in x, this equation holds everywhere by assump-
tion (iii). This implies i(x, 9) = 0 forallxe X, 9e©. Ash(x, 9) = 0 P-a.e.,
a continuity argument reveals that A(x, 9) > 0 for all xe X, 9e€©. By the
same argument as in the proof of the corollary in [13] we get from the Theorem
in [9] that there exist functions a, ¢: ® — Rand a continuous function g : X—R
such that

h(x, 9) = c(9) exp [a(9)g(x)]

forall xe X, 9 € ©. (Thisisthe point where the assumption enters that (X, %)
is pathwise connected.)

By Borges and Pfanzagl [2] (page 263, Theorem) for any one-dimensional
exponential family generated by a transformation group there exists a sufficient
statistic §: X — IR and an invariant measure 1|.% such that the A-densities
of Py, 9 € 0O, are of one of the following two types:

(a) exp[—(S — w(9))*/2] with w(Ir) = w(I) + a(I)w(r), a(Ir) = a(Ha(z),
tl(19) = +1;

(b) (w(9)S)? exp [—w(9)S] with p > 0, w(9r) = w(9)w(r), w(9) > 0.

As S is a linear function of g (see [2] page 268, (5.4) for case (a) and [2]
page 269, (6.5) for case (b)), S is continuous.

Now we shall prove part (a) of the assertion. We have (see [2] page 268,
(5.8))

S@'x) = a(I)(S(x) — w(9)) for P-a.e. xeX

and all 9 € ©. Since S is continuous, x — S(97'x) and x — a(I)(S(x) — w(I))
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are continuous functions. As above we conclude from assumption (iii) that
S(H7'x) = a(9)(S(x) — w(9)) forall xecX, 9¢0O.

Now we shall show that the functions ¢ and w are continuous. As P|.%7,
9 € 0, contains more than one element, S is not constant. Let x,, x,c X be
such that S(x,) = S(x,). Asa(9) = [S(97'x;) — S(I71x,)]/[S(x,) — S(x,)], 9 €O,
the function a is continuous. As O is connected, this implies that {a(9) : 9 ¢ 6}
isconnected. As{a(9): 9 e 0} c {—1, 1} by Borges and Pfanzag] ([2] page 263)
and as a(e) = 1, we have a(9) = 1 for all § € ®. Hence w(97) = w(I) + w(z)
and S(97'x) = S(x) — w(9). The continuity of w now follows immediately
from the continuity of S.

By Borges and Pfanzagl ([2] page 268) we have 1(94) = A(4) for every 9 € O,
Ae.®7. This implies 2« S(B 4+ w(#)) = A(S7Y(B + w(9))) = A(IS7Y(B)) =
A(S7Y(B)) = 2« S(B) forevery B ¢ <7, (the Borel field of R). Hence the induced
measure 1 x S| .57 is invariant under the translation group {w(J): 9 ¢ 6}.

As wis continuous and not constant by assumption (iv) and as © is connected,
{w(9): 9 € B} is connected and nondegenerate and therefore the full translation
group of R. Hence 1« S| <% is invariant under the full translation group,
and therefore proportional to the Lebesgue measure.

As Py|.%7 has density exp [— (S — w(§))?/2] with respect to 2, Py« S|
has density r — exp [ —(r — w(9))*/2] with respect to 1 x S|.<Z and therefore
density r — (27)"t exp [ —(r — w(9))?/2] with respect to the Lebesgue measure.

Finally, we shall prove part (b) of the assertion. We have (see [2] page 270,
(6.7)) S(¥'x) = w(9)S(x) for P-a.a. xe X and all § ¢ ©. AsSis continuous,
the pertaining P-null set is open and therefore empty by assumption (iii).
Furthermore S(x) > 0 for P-a.a. xec X (see [2] page 270, (6.8)). Let x,e X
be such that S(x,) > 0. Then

W) = S(I7"x,)/S(xo)
which implies the continuity of w. As in case (a) we obtain:
Ax Sw(9)B) = A(B) forall 9¢0O, Be Z.

Hence the induced measure 2 x S| .2% is invariant under the group of similarity
transformation {w(J): 9 € ®}. Asw is continuous and not constant by assump-
tion (iv) and as © is connected, {w(J): 9 e ®} is the full group of similarity
transformations in R. Hence 1 x §|.# is invariant under this group, and
therefore proportional to the Haar measure on the multiplicative group of
positive real numbers which has density r — r'1, ,(r) with respect to the
Lebesgue measure on <%. As P,|.%7 has density (w(9)S)? exp [—w(9)S] for
all 9 € ©, Py « Shas density r — (w(9)r)? exp [ —w(9)r] with respect to 2 x S| &
and therefore density r — I'(p)(w(9))Pr*~* exp [—w(J)r] with respect to the
Lebesgue measure on <%’ N (0, oo) for all 9¢ 6.
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2. Discussion of the results. It is well known that, under appropriate regu-
larity conditions, any family of p-measures admitting a real-valued sufficient
statistic for some sample size greater than 1 is an exponential family. It is
therefore obvious that, by combining this result with the characterization of
the one-dimensional exponential families generated by transformation groups
given in [2], one can obtain a result like that stated in the Theorem. The only
problem is whether this is possible under natural conditions on the space, the
transformation group, and the sufficient statistic. This is not clear in advance,
since the conditions needed to obtain exponentiality from the existence of a
sufficient statistic are rather artificial (see Section 3). The Theorem demon-
strates that more natural conditions can be stated in the particular case of a
family of p-measures which is generated by a transformation group.

In our Theorem, the emphasis is placed upon minimizing the conditions on
the sufficient statistic. Example 1 and Proposition 1 show that none of the
conditions on the sufficient statistic is dispensable.

Probably, some of the conditions on X and © can be weakened or replaced
by other more natural conditions. Of particular interest is the problem whether
the conclusion of the Theorem can be obtained without assuming © to be
Abelian in advance.

In the author’s opinion, the relevance of the Theorem does not consist in
possible applications (as a tool for proving that certain statistical problems
can be reduced to problems concerning families of normal or gamma distri-
butions) but in the statement that for families generated by transformation
groups sufficiently regular real-valued sufficient statistics do exist in excep-
tional cases only.

ExampLE 1. Let X = IR, © be the group of all translations on R and P|.<Z
the Cauchy distribution, say.

(i) For every ne N there exists a bimeasurable 1—1 map 7,: R* — R.
(Hint: Apply the Isomorphism Theorem in [12] page 14, Theorem 2.12 for
X,=E =R, X,=E,=R") AsT,is 1—1, it is trivially equivariant. As
it is bimeasurable, it is sufficient for Py"| <", 9 ©. Hence the continuity
condition cannot be omitted.

(ii) For every ne N there exists a continuous map 7, : R* — R whose re-
striction to the complement of an appropriate Lebesgue null set in &% is 1—1
(see Denny [5]). T, is sufficient for the family of all p-measures which are
dominated by the n-dimensional Lebesgue measure on <%’ and therefore, in
particular, sufficient for Py"| <#'", 9 ©. Hence the equivariance condition
cannot be omitted.

The following proposition shows that similar results for families of p-
measures admitting R’-valued sufficient statistics cannot be expected unless
the equivariance condition is replaced by a more stringent condition.
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PROPOSITION 1. Let © be the group of translations on R and P| <% any p-
measure having a continuous and positive density with respect to the Lebesgue measure
on ZZ. Then the family Py, 9 ¢ ©, admits an equivariant, R*-valued, and con-
tinuous sufficient statistic for every sample size n.

Proor. For n < 2 the assertion is trivial. Let n > 2 in the following. By
Denny [5] there exists a continuous map S, _,: R"' — R and a Lebesgue null
set N,_, € &Z """ such that the restriction of S, , to N, , is 1—1.

n—1

Let N,:={(x, - -, x)eR" (%, —x,--+,%x, —x)eN,_}. We have
N,e.Z"and 2*(N,) = § 2*"Y(N,_, + x,) di(x;) = 0 (where 2| <%’ * denotes the
Lebesgue measure). The statistic 7,: X" — R? defined by T,(x,, - -+, x,) =
(%5 Sp—i(*; — x4, - -+, X, — X;)) is equivariant and continuous, and the restric-
tion of 7, to N, is 1—1. Hence T, is sufficient for the family P,*| %",
Je0.

We shall not enter into the question of whether the conditions on the family
Py, 9 €0, (i.e. conditions (iii) and (v)), can be relaxed. The following example
shows, however, that the conclusion of the Theorem cannot be obtained with-
out any such conditions.

ExampLE 2. Let X = (0, c0), let © be the group of similarity transformations
and let P|.<Z be defined by having density 1, relative to the Lebesgue
measure. The pertaining family P,|.<Z, 9 € ©, admits an equivariant, real
valued and continuous sufficient statistic for every sample size n, namely
T, (%, +++,x,) =max {x;, ---, X,}.

3. Historical remarks. Asalready mentioned above it is well known in liter-
ature that the existence of a real-valued sufficient statistic characterizes the
one-parameter exponential family. The most recent result in this field is
Theorem 4.1. of Denny ([6] page 408), referring to arcwise connected and
locally connected spaces. He assumes that (i) the densities are continuous, (ii)
the sufficient statistic preserves ample sets (i.e. for each pair of nonvoid open
sets U,, U, the relation T(U,) = T(U,) implies that T(U, N N) N T(U, N N) = @&
for every P-null set N), (iii) there is a measure P, of the family and a nonvoid
arcwise connected open set U, such that the continuous density of P, relative
to P is not constant on some open ¥V C U,.

A condition on T of a different nature occurs in Brown ([3] page 1458).
Regrettably, his main result (Theorem 2.1, page 458) is wrong. In the revisited
and revised version of his paper (see [4]) Brown uses conditions similar to
those of Denny.

If the set S (see Lemma 4) would be empty, then the conditions of our
Theorem would imply that T, preserves ample sets. Since S # ¥ cannot be
excluded in advance, Denny’s result is not applicable. Furthermore, the ap-
plication of the Theorem of Laube and Pfanzagl [9] yields exponentiality with-



TRANSFORMATION GROUPS AND SUFFICIENT STATISTICS 559

out a condition like Denny’s condition (iii), mentioned above. For these
reasons we have made no immediate use of the results of Denny. The study
of the proof of Lemma 7 reveals, however, that the techniques are strongly
influenced by the techniques applied earlier by Brown and Denny.

Another pertinent reference is Lindley ([11] page 107) who states that the
translation parameter normal and the scale parameter gamma families are the
only families of p-measures which admit a real-valued sufficient statistic and
which can be transformed into a location parameter family. Despite the ad-
ditional condition that the family be transformable into a location parameter
family (which originates from Lindley’s interest in fiducial distributions), his
paper is irrelevant for our purposes because he completely neglects questions
of a more technical nature. So, for instance, the fact that the existence of a
real-valued sufficient statistic for some sample size greater than 1 implies ex-
ponentiality, is used without reference to any regularity conditions.

Our Theorem is also closely related to the theorem that, on X = R, any
location parameter family such that (x,, - - -, x,) — Y7 x, is sufficient for some
sample size n > 1 is a family of normal distributions (with constant variance).
This result was first obtained by Koopman [8] under the assumption that the
family has differentiable densities with respect to the Lebesgue measure. The
most recent version of this theorem, which may be obtained as a special case
of Theorem 1 of Kelker and Matthes [7], yields the same result without any
further assumptions on the location parameter family. Compared with our
Theorem this demonstrates that assumptions on the family of distributions
(i.e. (iii) and (v)) can be relaxed at the cost of more restrictive assumptions
on the sufficient statistic (which, in fact, imply (iii) and (v)). (Thisisrelated to
the fact that any measurable solution ¢ of the functional equation ¢(x,)- ¢(x,) =
¢(T(xy, x,)) is necessarily continuous in the particular case T(x,;, x;) = x, + x,,
whereas measurable solutions other than continuous ones do exist in the general
case.)

4. Lemmas. The main result of this section is Lemma 7 which is needed for
the proof of the Theorem. All other Lemmas are auxiliary results, needed
for the proof of Lemma 7.

If © is a transformation group on X, and Tan equivariant function on X, the
transformations ¥ : X — Xinduce in a natural way transformations & : T(X) —
T(X), defined by &¢: = TIT*{#}. (It is easy tosee that for t ¢ T(X), T9T{1}
consists of a single element only, so that this definition is meaningful.) The
transformations ®: = {#: 9 € ©} form a group which is homomorphic to ®
under 9 — &.

In addition to the notations introduced in Section 1 we shall use <7 to denote
the topology of R and .7 to denote its Borel field. For any p-measure Q | .27,
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let Q x T| <7 denote the induced p-measure defined by Q * T(B): = Q(T'B),
Be Z.

LemMA 1. Let (X, %) be a Hausdorff space and (©, 97") a continuous trans-
formation group on (X, Z7). If T: X — R is continuous and equivariant, then
9 — @t is continuous for every t e T(X).

PrOOF. Let x € T-'{#} be arbitrary. As T'is equivariant, we have {J€©:
Ptc0} ={9cO:T(Ix)e0} = {9e0O:9xe T'0}e % for every Oe 7.

LemMa 2. Let (X, Z') be connected and locally connected; let T: X — R be
continuous. If A C T(X) and T'Ae %, then Aec 7N T(X).

Proor. (i) At first we shall prove the assertion for the special case that 4
is an interval.

If A is an open interval, the assertion is obvious.

If A = [a, b) (including the case b = o0), T'4 € Z implies T'[a, c0) € %
(since T'[a, oo) = T '[a, b) U T7'(a, 0)). As T'[a, co) is closed, too, con-
nectedness of X implies X = T'[a, 00), i.e. T(X) C [a, o0). Then4 C (—o0,b)N
T(X) c [a, b) = A and hence 4 = (— o0, b) N T(X) e 7' N T(X).

If A = [a, b], it can be seen as above that X = T'[a, b], hence T(X) C[a, b].
This implies 4 = T(X) e &2 N T(X).

The case A = (a, b] is analogous to the case 4 = [a, b).

(ii) Now we shall prove the assertion forarbitrary 4 C 7(X) with7'4 ¢ Z.

At first we define an equivalence relation on 4 by s ~ ¢ if and only if there
exists U € %/ such that {s, f} ¢ T(U) c 4and T(U)isan interval. The relation
is obviously symmetric and transitive. As X'is locally connected, the relation
is reflexive, too. The pertaining equivalence classes are intervals. Let I be
one of them and let x e 71 be arbitrary. As T—'4 e 77 and as X is locally
connected, there exists an open and connected U — T—'4 such thatxe U. As
t ~ T(x) for all te T(U) and as T(x)el, we have T(U) c I and therefore
U c F-I. This implies T-'/ ¢ 7/ and by (i) Ie 2N T(X). As A is the union
of all equivalence classes, we have 4 € &N T(X).

LeMMA 3. Let (X, %) be connected and locally connected and let (©, 77") be
a continuous transformation group on (X, zZ). If T: X — R is continuous and
equivariant, then t — ¥t is & 0 T(X)-continuous for every 9 ¢ ©.

Proor. It suffices to show that 4: = {tre T(X): 9t e O} € & N T(X) for every
Oe?. As T7'4 =97'T'0 ¢ 7/, the assertion follows immediately from
Lemma 2.

LEMMA 4. Let (X, Z') be a topological space, (0, 77" a connected, continuous
transformation group on (X, Z¢), and T: X — R continuous and equivariant. Let
S:={teT(X): ® = {t}}. Then
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(i) S is invariant and & N T(X)-closed.
(ii) if for some W e 77" and some t € T(X) the set Wt consists of a single point,
then teS.

Proor. (i) is straightforward.

(il) ©,: = {9eO:d =t} is a subgroup of O. If Wt consists of a single
point, we have z7'Wt = {1} for every r ¢ W. Hence t™'W c ©,and therefore
0, = O, 7'W. As t7'W is open, this implies that @, itself is open. As any
open subgroup is closed (see [14] page 102, B), the connectedness of © implies
0,=0.

By definition of sufficiency, for every 4 € .97 there exists a conditional ex-
pectation of 1, given T, relative to Py, which is independent of 9 ¢, say
p(A4, +). We have

§ p(A4, )1 ,(t)Py « T(dt) = Py(A N T7'B)

for every Be &%, 9 € ©. Whenever we speak of a “conditional expectation”
in the following we mean a fixed version of such a “conditional expectation,
given T, relative to Py which is independent of 9€©.”

LEMMA S. Assume that

(i) (X, %) is connected and locally connected;
(if) (®, %7) is a connected and locally connected continuous transformation
group which is Abelian;
(iiiy P(U) > O foreveryUe Z, U = @;
(iv) there exists an equivariant, real-valued, and continuous statistic T which is
sufficient for the generated family of p-measures Py| .57, 9 ¢ ©.

Let S be defined as in Lemma 4. Let t,e S and U ¢ 7 with t,e T(U) be given.
For any conditional expectation p(U, «) there exists a P x T-null set M and a non-
degenerate interval I containing t, such that

(i) p(U, t) > 0 foreverytelI N M,

(ii) I N (ty, o) # @ unless Wty N (¢, co) = @ for some open neighborhood
W of e, and I N (—co, t) #+ @ unless Wt, N (—oco, t,) = @ for some open
neighborhood W of e.

Proor. (A) Let ©,: = {9e0O: ¢t = t}. AsO is Abelian, we have {$¢©:
9t =1} = 0, forevery te @f, = : B.. Ast,¢cSandasSisinvariant (Lemma 4
(i)) we have B, c S.

Let 27,: = {{$€0©:91,e€0}: 0e Z}. As  has a countable base, so has
%, By Lemma l, %7, C %"

The map § — &t is 97 —continuous on O for every te B,: Using that © is
commutative, we obtain with t =z, that {§ € @ : #tc 0} = {9 € O : d71,c O} =
{9e€0:¢t, e 70} e %7 forevery O € & (since 70 € & N T(X)) by Lemma 3).
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Furthermore, Wt e &7 for every We %77, te B,: As (0, %) is locally
connected, W is the union of open and connected sets, say W = J,.5 C,.
By Lemma 1, C,¢ is an interval. If C;t would consist of a single point, we
would havet e Sby Lemma4 (ii). As thiscontradicts the assumptionte B C S,
each C; ¢ is a nondegenerate interval. Hence Wt is the union of nondegenerate
intervals and therefore an element of <%. (Hint: Any union of nondegenerate
intervals can be written as disjoint union of nondegenerate intervals; any class
of pairwise disjoint nondegenerate intervals is countable.)

(B) Let <, denote the o-field generated by 777. As {D c ©: DO, = D} is
a o-field containing %77, we have DO, = D for every D € &Z,. Hence
(5.1) D,D" ¢ Z,and D N D' = @ implies Dt N D't = ( for every ¢ € B,.

From this we easily obtain that {D e &,: Dt e £7'} is a o-field for every ¢ ¢ B,
As this g-field contains 977 (by (A)), we have Dt ¢ <7 forevery D ¢ Z,, t € B,.
This enables us to define a measure v | Z, by

v(D): = P« T(Dt,), Dez,.
That v is, in fact, a measure, follows easily from (5.1). We have
w(©) = P« T(B,) € (0, 1]
and
§ 9(Ft)v(d9) = § g(s)P » T(ds)
for every P x T-integrable function g.

(C) As t,e T(U) N S, there exists x,e UN TS with T(x) =1t, As
U N T'S e Z, continuity of (9, x) — Ix implies the existence of connected
sets W,e 277, U,e 2/ with e € W, x, € U, such that
(5.2) w,U,cUNn TS and W, U,c Un T-'S.

ConvenTION. If there exist open sets U’ 3 x,such that T(U") N (t,, o0) = &
or T(U') N (—oo, t,) = @&, then we choose W,, U, such that T(W,U,) N
(ty, 00) = @ respectively T(W,Uy)) N (—o0, t)) = @.

(D) Let

E: ={9,teW,0, x B,: pU, t) < p(U,, #1)} .
In (A) it was shown that 9 — #¢is 97 -continuous on O for every ¢ e B,. For
any J € O, the restriction of t — #¢ to B,maps onto B,. Itis <7 N B,~continuous
by Lemma 3 and therefore 7,: = <&’ N B-measurable. As 777 is countably
generated, we obtain from a well-known lemma that (9, 1) — & is Z, x B~
measurable on ©® x B,. We have W0, = {9e0:81,ec W,t}. As W t,e Z

by (A) and as {9 € ©: #1,e B} € Z, for every Be %, we have W,0, ¢ &, and
therefore
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(5.3) Ece =z, x &,.
Let Ey and E* denote sections of E. We shall show that
(5.4) P« T(E;) =0 forevery deW,0,.
As 2%, C 2%, we have for all 9¢ 0O, Be F,:

§ p(Uy, #1)1 ()P x T(dt) = § p(U,, #t)1,,(B1)P * T(dr)
= § p(Uy, $)1,4(8)Py  T(ds) = Py(U, N T-'¥B) = P(9 U, N T-'B)
= § p(971U,, )1 ,(1)P + T(dt) .

Hence for every 9 € 0:
p(U,, #t) = p(§7U,, t) for P« T-a.a. teB,,

(with the P » T-null set depending on 9 and U,).
As 97U, c U for every § € W,, this implies

(5.5) p(U,, &#t) < p(U, t) for every 9e W, and P« T-a.a. teB,.

As © is commutative, Ot = ¢ for any ¢ B, so that (5.5) holds for every
9 e W,0,. This establishes (5.4).
From (5.4) we obtain

(5.6) vx P+T(E)=0.

(E) Let M: = {teR:v(E*) >0}. By Fubini’s Theorem, (5.6) implies
P+«T(M) =0. Therelation W,t, N (— oo, t,) = @ implies T(U,) N (— oo, 1)~ & .
(For if T(U,) N (— o0, t,) = @&, according to the convention in (C) W,and U,
would have been chosen such that T(W,U) N (—oo, t,) = @. As W t, =
I(W,x,) c T(W,U,), this contradicts the assumption W, N (—oo, t,) # @&.)
As both, T(U,) and W, are intervals containing ¢, with T(U,) N (—co0, t,) + &
and W, N (— oo, ;) + , there exists s’ > ¢, such that (s', ;) C T(U;) N W,t,.
Similarly, W,t, N (f,, o0) = & implies the existence of some s/ > ¢, such that
(o 8"") € T(Uy) N Wit,. As t,e S, W,t, is nondegenerate by Lemma 4 (ii).
Hence at least one of the relations Wy, N (— oo, #,) = @ or Wyt, N (25, 00) #= @
holds true. Correspondingly, we define I to be (s, #,] or [t, s”') or (s, s”) (if
both relations hold true). We have f,e I n T(U) N W,t,. Furthermore,
1N (t, 00) = @ implies W2, N (£, ) = @, and I N (— oo, t,) = @ implies
Wyt N (—oo, ) = @. This proves part (ii) of the assertion.

Now we shall show that p(U, t) > 0 for every telIn M. For every tel
there exists r € W such that t = z¢,. As © is commutative, we have for every
integrable function g:

§ 9(B0v(dI) = § g(zB1,)u(d9) = § g(zs)P * T(ds) = {g(s)P.  T(ds) .
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Hence we obtain for every te I n M:

(5.7) § p(Uys 0t)lwoeoni‘(19)”(d’9) = { p(U,, 0t)lwoeo(‘9)”(d‘9)
= § P(Up, 901y (80)2(d9) = § p(Uy, 5)lyy,u(5) P, + T(ds)
=P (U, N T7'W,1) .

Using (5.2) we obtaint e I ¢ T(U,) C S. Hence the set W, ¢is nondegenerate
by Lemma 4 (ii). Therefore I N W, contains a nonempty open interval, say
I, (If t # 1, this follows immediately from the fact that then te I° by the
definition of I; if t = ¢, we have I ¢ W,t.) AsI, c I c T(U,), U, n T, is
a nonempty open set. As U, N T-'W,t D U, N T~'I,, assumption (iii) implies
P(U,N T7'W,t) > 0.

Together with (5.7) this implies the existence of some 9 ¢ W,0, N E* such
that p(U,, #¢) > 0. As 9e W,0, n E* implies p(U, t) = p(U,, ¥1), we obtain
pU, ) > 0.

A function f: X — Y is a contraction of the function ¢g: X — Y if 9(x') =
9(x”) implies f{x) = f{x""). In this case there exists a function ¢ : g(X) — ¥
such that f= ¢ o g.

A set A is T-saturated if A = T'TA.

LEMMA 6. Let (X, Z') be connected and locally connected, T: X — R con-
tinuous and A a T-saturated closed set. Let h: X — R be a continuous map with
the following properties:

(@) h(x) =1 for xe A° (the interior of A),

(b) h is a contraction of T on A.

Then h is a contraction of Ton X.

Proor. Let x,, x, € X with T(x,) = T(x,) = : ¢, be given. We have to show
that A(x,) = h(x,).

(1) fT(U;) N (—o0, t,) # @ forall open sets U; 3 x;, i=1, 2 or T(U,) N
(ty, 00) # & for all open sets U; 5 x;, i = 1, 2, then A(x,) = h(x;).

Assume that A(x,) # h(x,). Ashiscontinuous, there exist open and connected
sets U; 5 x; such that x e U, implies

Ih(x) — h(x,)] < 4lh(x) — h(x,)| i=1,2.

W.lg: T(U,) N (—o0,t,) + @ fori=1,2. Ast,e Ww,),i=1,2,andas U,
is connected, there exists #, < ¢, such that (¢, t,) ¢ T(U,) N T(U,).

(1a) If (, t,) N T(A) # @, we choose t € (t,, t,) N T(A)and y, e U; N T-{#},
i=1,2. Asy,eT{t} Cc T'TA = A, we have h(y,) = h(y,) by assumption
(b). Asy,eU,, we have

h(y:) — h(x)} < $lh(x) — h(x)| , i=1,2.
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This, however, is contradictory.

(1b) If (4, t,) N T(A) = @, we have (¢, t,) C T(4). We choose te (1, t,)
and y,e U, N T}, i=1,2. As y,eT ™} T\ t,t)C T'TA = A4, we
have y, € A° and therefore A(y,) = h(y,) by assumption. We obtain a con-
tradiction as in (la).

(2) Now weshall prove the assertion for arbitrary x;, i = 1,2. It obviously
suffices to consider the case ¢, ¢ 7T(4).

(2a) If (T7{t,})° = @, we have T(U,) = {t,} for all open neighborhoods
Uosx,i=1,2.

(2aa) Thecasethat T(U,) N (— oo, t,) #+ @ fori=1,20r T(U;) N (t, o0) #= &
for i = 1, 2 was treated in (1).

(2ab) The remaining case is (w.l.g.):

I(U) N (—oco,t)) = @ foralland T(U)) N (¢, o) = @
for some open U, 3 x;;
T(U,) 0 (ty, 0) += @ foralland T(U,) N (—oo,t) = &
for some open U,3 x,.
The sets
U': = (T (—o0, t,])°
U’ = (T7t,, 00))°
areopen; x, € U, x,e U”" and U' N U" = (T*{t,})° = . As X is connected,
this implies U’ U U” + X. x,e U’ n U” implies that x, e T-'{t,} and T(U,) N
(—o0, ty) # @ and T(U,) N (¢, o) + @ for every open U,>x,. Hence the
pair x;, x, fulfills the assumptions of (1) and we obtain A(x;) = h(x,) for
i =1, 2; hence A(x,) = h(x,).

(2b) If (T{t,})° + @, we obtain A(x) = 1 for all xe T-t,}.

At first we remark that ¢, € T(4) implies (77'{t,})° C A° so that A(x) = |
for every x e (T7{t,})°.

Assume that s(x,) # 1 for some x, € T-'{z,}. Thisimplies x, ¢ (7T-'{£})°, so
that T(U,) + {t,} for every open U, 5 x,.

(2ba) If T(U) N (—oo0,t,) + @ and T(U)) N (4, o) = @ for all open
U, > x,, we define

U:=T"(—oco,t) UTt, 00) U{xeX:h(x)+ 1}
U': = (T7t,))° .

U, U" are open; x,e U’ and U” + @ by assumption. Furthermore,
U'nNU" = @ (for U’ c A° implies A(x) = 1 for all xe U”). As X is con-
nected, this implies U’ U U” + X. Let x,e U’ N U”. We have x,e T'{t,}
and h(x,) = 1. Furthermore, x, e U” implies T(U,) + {t,} for every open U, 3 x,.
Hence the assumptions of (1) are fulfilled for the pair x,, x,, so that h(x,) =hA(x,).
This implies A(x,) = 1.
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(2bb) The remaining case is (w.l.g.): T(U,) N (—oo, t,) # @ for all and
T(U,) N (t,, o) = @ for some open U, > x,. The sets

U = T-(—00, 1) U ((T(— 00, &])° N {xe X h(x) = 1))
U": = (T1,, o0))°

are open; x; € U and U D (T7{t,})° #+ @. Furthermore, U’ N U” = (@ (since
xe U n U"” implies x e (T7'{t,})° N {xe X: h(x) # 1}, which is impossible be-
cause of (a)). As X is connected, U’ U U” = X. For x,€ U’ n U”, we have
x, € T-'{t,}. Furthermore, x € U” implies T(U,) N (— oo, t,) # @ for all open
U,> x,. Hence the assumptions of (1) are fulfilled for the pair x,, x, so that
h(x,) = h(x,). It remains to be shown that i(x,) = 1. 1If A(x,) # 1, then x,e U’
implies that not only T(U,) N (— oo, t,) #+ @ for all open U, > x, (which was
obtained from x,e U”) but also T(U,) N (t,, o) # @ for all open U, 3 x,, so
that the assumptions of (2ba) are fulfilled for x, instead of x;. These assump-
tions, however, imply A(x,) = 1.

LEMMA 7. Assume that

(1) (X, %) is connected and locally connected;
(ii) (®, ") is a connected and locally connected continuous transformation
group on X which is Abelian,
(iii) P is a p-measure on the o-field .O7 generated by 7/ such that

P(U) >0 forevery Ue %, U+ @
(iv) each p-measure of the generated family Py| .57, 9 € O, admits a continuous
density relative to P| %7, say h(+, 9);
(V) there exists an equivariant, real-valued, and continuous statistic T which
is sufficient for Py| .97, 9 ¢ ©.
Then for every 9 € ©, h(., 9) is a contraction of T.
Proor. Let 4 be an arbitrary element of ® which remains fixed throughout
the following proof. For 4 e .97 let p(4, +) be a conditional expectation.
(A) At first we shall show that #,: = T(x,) = T(x,) € S implies h(x,, 9) =
h(x,, 9). If h(x;, 9) < h(x,, 9) (w.l.g.) we choose re (A(x,, 9), h(x,, 9)) and
define l
U:={xeX:h(x9)<r}, U, ={xeX:h(x,9)>r}.
As U, is open and ¢, € T(U;) N S, we obtain from Lemma 5 the existence
of nondegenerate intervals I; 5 ¢, and of P x T-null sets M, such that
I,NnM;,C B;: ={teT(X): p(U, 1) >0}, i=12.

We shall show that I, N I, is a nondegenerate interval. If this were not
the case, we had I, N I, = {¢,} and therefore w.l.g.: I, N (¢, o) = @ and
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I, N (—o0, t) = @. By the choice of I, (see Lemma 5 (ii)) this would imply
the existence of open neighborhoods W,, W, of ¢ such that W, #, n (tyy 0) = @
and W,¢, N (—oo, 1) = . Hence W: = W, n W, would be an open neigh-
borhood of ¢ such that W, = {#}. This, however, contradicts the assumption
t,€ S by Lemma 4 (ii).

Since I, N 1, is nondegenerate, assumption (iii) implies P x T(I, N I,) > 0.
Hence we obtain

(1.1) P«xT(B,NB)=P+T(U,NMNINM)>O0.

As T is sufficient for P, r € ®, there exist (apply Lehmann ([10] page 48,
Theorem 8 for P instead of 2) .2 N T(X)-measurable functions ¢_: T(X) —
[0, o0) such that A(x, r) = g(T(x)) for P-a.a. xc X. In particular:

N: = {xeX:h(x,9) + gy(T(x))} is a P-null set.
Let
Cri=(teT(X): gy(t) <1},  Cp:={te T(X): gyt) >r}.
We have U, N T-'C; c N and therefore
§ p(U,, t)lgi(t)P x* T(dty = P(U, N T7'C;) = 0.

As p(U;, 9)15(¢) > 0 for e B, n C;, this implies
(1.2) P«T(B,NC)=0, i=1,2.

As C, U G, = T(X), we obtain from (7.2)

P+T(BNB)<P+TB,NBNC)+P+xTB,NBNC)=0.

This, however, contradicts (7.1). Therefore, T(x,) = T(x,) e S implies
h(x,, 9) = h(x,, 9).

(B) Now we shall show that x ¢ (T1S)° implies A(x, 9) = 1.
For all 4 ¢ % and any conditional expectation p(4, ) we have

(7.3) P(ANT'B)=P «T(p(4, +)1;) forevery t¢O, Bc Z.
It follows from the definition of S that

(7.4) Py x T(p(4, )1s) = P« T(p(4, +)1) .
(7.3) and (7.4) together imply
(7.5) P(ANT'S)y=PANTS).

Let U: = {xe(T7'S)°: h(x,9) > 1}. As U c TS, (7.5) (applied for U
instead of A) implies Py(U) = P(U). As PyU) = § h(x, 9)1,(x)P(dx), this
implies P(U) = 0. As U is open, we obtain U = @ by assumption (iii).

The proof for {x e (T7'S)°: h(x, 9) < 1} is the same.
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(C) The assertion now follows from Lemma 6 applied for A(., ) instead
of & and TS instead of 4.

Acknowledgment. The author is indebted to Mr. Ch. Hipp for many valu-
able suggestions. Among others he eliminated an error in the proof of Lemma 5
by contributing Lemma 2, and discovered that the use of regular conditional
probabilities can be avoided in the proof of Lemma 7.
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