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A MATRIX OCCUPANCY PROBLEM'

By PaTrIcK J. EICKER, M. M. SIDDIQUI
AND PAurL W. MIELKE, JR.

Colorado State University

1. Introduction. Suppose that fori=1, ..., s, x; balls, 1 < x; < T, are ran-
domly placed in the ith row of an s X T matrix. It is assumed that: (i) each
cell contains at most one ball, and (ii) the balls in any row are distributed in-
dependently of the balls in any other row or set of rows. A column of the
matrix will be said to have weight j, 0 < j < s, if exactly j of the s cells in that
column are occupied, the other s-j cells being empty., Let C;, j=0,1, ..., s,
denote the number of columns with weight j. The exact (univariate) probability
distribution of C,, the number of full columns, was first given by Mielke and
Siddiqui (1965) after being implicitly used by Cowan et al. (1963) to describe a
temporal attack pattern of three asthmatics. The purpose of the present paper
is to study the probability distribution of the basic variables associated with the
matrix from which the (multivariate) distribution of the vector C = (C,, - - -, C,)
can be derived easily.

We construct an s X T matrix corresponding to the original matrix replacing
“a ball” by a one and “empty” by a zero. Any column of the new matrix is a
permutation of jzeros and s-jones forsome j =0, 1, - . ., 5. The entire discussion
which follows is in terms of the new matrix. We shall refer to a cell with a
zero in it as a 0-cell, and a cell with a one in it as a 1-cell.

Let

P=|p:p=(a,---,a)a=0 or 1,j=1,...,5
F={peFP:p=(a,---,a), ;a4 =1}, i=0,1,...,5.
There are 2° elements in & and (}) elements in .&,. Note that .Z, and &, each

have only one element which we denote as p, and p, respectively. For each
p €, let N, be the number of columns with structure p, then

n= {Np: pe ‘@}
is a set of 2* random variables. Also,
C; = Tpeo; Ny j=01,.. 5,

is the number of columns with weight j. For example, if s = 2, then
7]:{N00’N01’N10’N11} and C0=Noo’ C1=N10+N01’ C2=N11-

In Section 2 we obtain the exact distribution of ». In later sections we in-
vestigate the asymptotic properties of this distribution under various assumptions
on the behavior of x;’s as T — oo.
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It will be shown that the 2° random variables in 7 satisfy s + 1 linearly in-
dependent linear constraints so that there are only 2° — s — 1 linearly independent
random variables in 7. It is convenient to delete s 4 1 random variables with
largest (or smallest) weight. Let

P*r =P - F, - Z,_,,
then * = {N,: pe J°*} may be taken as a maximal linearly independent subset
of .
2. Exact probability distributions. One of the s + 1 constrains on N,’s is

2.1 DipeaN, =T,

as the T columns of the matrix are partitioned into 2¢ different types contained
in &. To obtain the other s constraints we introduce the following notation:
let, fori=0,1, ...,5, k=1, -..,5s,

w={peFip=(a, --,a),a =0}.

In words, &} is the set of those permutations which have weight i and a zero
in the kth place. Note that, for each k, the set &} is empty, while F*, ,
contains only one permutation.

Since, for k =1, ..., s, there are T — x, 0-cells in the kth row of the matrix,
we have the following s constraints
(2°2) Zg=02pe9kap=T_xk’ k=1,...,s.

Since x,’s themselves have no mutual constraints all those linear constraints
are linearly independent. Thus the random variables in 7 satisfy s 4 1 linearly
independent linear constraints.

Note that if a permutation p has weight i then it will appear as an index of

summation in s-i of (2.2). For example if p = (1,1, 1,0, ..., 0) then pe F}
fork =4,5, ...,s. The following lemma is then obtained easily.
LemMa 2.1. Let &, = {p}, Z, = {p,} and F*,, = {p,_,.} then
(23) NP, = Zg=1 X; — (S - 1)T+ Zi’;g Zpegi (S —i— I)Np ’
NPs—l,sz_xk_Zg;gzz’e??kNp’ k=1,...,s.

REMARK 1. For s = 1(2.3) gives N, = x;, N, = T — x, so that & * is empty.
REMARK 2. For s = 2, (2.3) gives
Ny =% +%—T+ Ny,

Ny=T—x,— Ny,
Ny=T—x — Ny,

so that &°* = {N,}, i.e., there is only one linearly independent random variable.
We can now state the following theorem.
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THEOREM 2.1 (Exact distribution). For any set of integers {j,, p € F *}
T!

Hp69*jp! jpaz Hz=ljp3_,,k! .
where j, = N, ,andj, =N, ,k=1,...,s, are determined in terms of {j,,
p € F°*} by (2.3) when the letter N is replaced by j, and where the factorial of a

negative integer is taken to be + oo.

P(N, = jppe Z*) = [[11 ()™

Proor. Obvious combinatorial considerations.

ReEMARK 3. For s = 2 we have

T!
Joo! (T — x; — Jo) (T — %, — jioo)! (% + %, — T + jyo)!

P(No, = joo) = [T )
and the positive probabilities are associated only when max (0, T — x, — x,) <
Joo < min (T — x,, T — x,). This distribution may be recognized as a hypergeo-
metric distribution. In the discussion of the asymptotic distributions in the fol-
lowing sections we will notice parallels with the asymptotic distributions of this
hypergeometric distribution, namely, normal, Poisson, and binomial. For ready
reference we note the following properties of this hypergeometric distribution:

ENy = T(1 — x/T)(1 — %/T),
Var Ny, = (T — 1) %, x,(1 — x/T)(1 — x,/T) .

Asymptotic normality. Assume that x;, i = 1,2, depend on T and x,/T — a;,
0<a;<1,as T— oco. Then, if T— oo, the limiting distribution of T-}(N,, —
EN,) is N(0, ¢%), where ¢* = a,a(1 — a;)(1 — a,).

Limiting Poisson. Assume that as T— oo, x;/T—> 1, T — x;, > 00, i=1,2, .
and ENy,, — 2 < oo. Then, if T — oo, the limiting distribution of N,, is Poisson
with mean parameter 4.

Limiting binomial. Assume that T — x, = ¢, a constant, and x,/T — a,, 0 <
a, < 1, as T— oo. Then, if T— oo, the distribution of N, converges to the
binomial distribution with sample size parameter ¢ and probability parameter
1 — a,.

The Moments. To obtain the moments of N,’s, a useful device is to introduce
the indicator functions of p’s. Let, for pe &,

0, = 0;(p) =1 if column i hasstructure p,

=0 otherwise,

sothat N, = 37, 0,. If I={1,2,...,s}and I, C Iis the set of indices of O-

i=1"4*

cells of p, and I,, = I — I, then

PO = 1) = TLer,,, Hje,0p<1 - ﬁ) i=1,...,T.
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Note that d,, i = 1, - -, T are identically distributed (although not mutually
independent). The joint distribution of any set of d; = d,(p)’s can be obtained
through straightforward combinatorial arguments. Means, variances, covari-
ances, and higher moments of N,’s can then be evaluated. Thus

¢, = EN, = TP(9; = 1,
x;, — 1 )
Vo= 1 0 T, () o (1= ) =]

and, for p, # p,,

x, — 1 Xx;
Cov (Nm’ sz) = ll,,zli(T — 11, 11,,111,,2< ;., 1 >‘Hje Iyp Topg <——T _J 1 )

x;, — 1 X;
X Hjelop11“,2<1 - Tj._ 1>Hjezo,,lzo,,2<l - T—J 1>_ F‘pl:l-

3. Asymptotic normality. In this section it will be assumed that (i) s = 2, (ii)
x,i=1,...,s are functions of T and, as T— oo, x;/T — a;, 0<a; <.
Then, as T — oo,

T-'EN, — B, = Hjelm a; Hje,op(l —a;),
T-'Var N,,~‘> 0,,2 = ﬂ,, +[s—1- Zjelu, a'j_l - Zjelo,,(l - a;‘)_l]ﬁp2 ’

and, for p, # ps,
T-'Cov (N,,N,)—0,,,
= By Bls — 1 = Tierpurin @7 — Lie rogyiany (1 = @71
It can also be shown that
lim,_, T*E(N, — p,)* = 30,'.
Introduce, for each pe &,
Z,=T*N, — 1)
then {Z,: pe Z°*} is a set of 22 — 5 — 1 linearly independent random variables.

THEOREM 3.1 (Asymptotic normality). Under the conditions (i) and (ii) stated
above the set {Z,: pe F°*} has a limiting distribution which is multivariate normal
with mean vector zero and the covariance matrix ¢ = (0, ,;p,€ T *, p,€ PH),

— 2
Opp = (P

Proor. Rosén (1967b) develops conditions ((C1)—(C4) of his paper) for the
asymptotic normality for sums of dependent random vectors, these conditions
being an immediate generalization of the conditions given by him in an earlier
paper (1967a) for dependent random variables. To verify these conditions for
the matrix occupancy problem, we introduce the double sequence of random
vectors
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1 1 1
X0, X0, . X
k (k k
X0, X0, . X

where T, — oo as k— oo, and X* is a 2° — s — 1 dimensional vector with
components

X;k;:Tk-é(ajm_@>, y=1,2, ., —s— 1,
. T,
o =1 if jth column in the s X T, array has structure p,

=0 otherwise.

Here p,, p,, - - - is simply indexing the elements of Z”*. The condition (ii) stated
in the beginning of this section now reads lim,_., x,;* /T, = a;,, 0 < a; < 1, i =
1, ..., s, where x; is designated as x;,® to indicate explicitly the dependence of
x’son T,. Then the vectors §,*) = Y 7k X ¥ have components Z*, v =1, - - -,
22 — s — 1, where
Z;'ky) = Tk—i(Np,, - f“py) .

Rosén states his conditions on the sums

S0 = yt X, 0sr<1.

His “smallness” conditions (C1) and (C4), stated in terms of second moments,
are implied by the existence of the fourth moments lim,_., E[Z¥']* = 30} , v =
1, --+,2* — s — 1. The dependence conditions are as follows:

(C2) There is a matrix function M(y), defined and continuous for0 <y < 1,
such that
lim,_,, A~ lim sup, ., E||E{(S*%, — S,%)|S,*} — AM(y)S,*|| =0,

0=r<1;

(C3) There is a matrix function D(7y), defined and continuous for0 <y < 1,

such that

lim, o A~ lim sup, .., B[ E{(S1, — S,%)(S&, — §,% | S,%} — AD(p)|| = 0,

0<r<1.

Here, for a square matrix 4 = (a;;), 4’ is its transposed matrix and ||4||* =

23:,; @;. Under our assumptions, foreachi = 1, ..., s, the x;'*’ balls are thrown

in the ith row randomly. If S, is given, the distribution of balls in the first

[yT] columns is fixed. The distribution of balls in columns [yT] + 1to[(y + A)T]

given S ) is easily obtained similar to the distribution given in Theorem 2.1.

Applying condition (ii) to the first two moments of this distribution, we find
that (C2) and (C3) are satisfied by

Mi)=0 and D(y) =0, osr<l1.
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From Rosén’s Theorem 1 (1967b) we conclude that S,*), 0 <y < 1, is as-
ymptotically (k — co) normally distributed with mean vector 0 and covariance
matrix A(y), where A(0) = 0, A(1) = lim, 4, A(7), and, for 0 < y < 1, A(y) satisfies
the differential equation

d%/\(r) = M(DAG) + (MEAD) + D) -

Setting M(y) = 0 and D(y) = o, we obtain A(y) = 7o, so that A(1) = o.
Asymptotic distributions for any type or weight of column may be obtained
from Theorem 3.1 by the use of the appropriate normal theory.

4. Other asymptotic distributions. In the previous section it was assumed that
all the ratios x;/T had limits which were strictly between zero and one. This
implied that the means of the random variables were of the same order as T.
In this section several theorems will be proved in which it is assumed that the
means approach a finite limit as T becomes large. The method of proof is to
show that the moments of the law of the random variable approach the moments
of the limiting law. For this reason the following expression is useful:

!
T n o n: T n
(X)) = zl—l zl + ZIS]ISn—]l W ili=1L12 2_1 5511512 i
n!
4.1) F Disiisipsn-ii—iy 24 15 —
nERETaT AT AL A A
>< Zzl 1 1.2— 3—1 5:115;7225" ]1 ‘12
11*123&13
! e T N T i
+ + n: Zzl—l 12=1 =1 611612 6zn ’ lf Tz n.

TyFigF  Fly

An explanatory word on the above sums in necessary. 3l..; <j <n—j,—j, 21 Me€ans
that the sum is to be taken over all pairs of integers, j and j,, which satisfy

l<jiShsn—j—j» XDio 2i- 2i- means that the sum is to be taken

iy #FigHig
over all triplets of integers between one and T, such that no pair is equal. This

sum is to be taken so that no term appears more than once.

THEOREM 4.1. Let p be a permutation of weight less thans— 1. If lim,_, x,/T = 1
and lim inf (T — x;) = + oo forall ie I, and if lim,_,, p1, = 2 such that 0 < 2 <
oo, then the law of N, converges to the law of a Poisson random variable with pa-
rameter A.

Proor. N, = T, 0; where

0, =1 if column ¢ has structure p,
=0 otherwise.
If T = n, then E(N,") may be evaluated using (4.1). Let B, = B,(jis jo +* > B —
k-1J.) be a function of k arguments such that B, is the number of distinct
permutations of its arguments. Then
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R(E)E©0168 + - - 67 Zr=10r)

1] 1y 41

(Hf:l]r‘)(n - r=1]r)!

E(N,") = T1% Diciyssn-stoys 50 L
Consider
E(Bfllﬁfzz : 5" T 1) (51)

= II* OH,HM,?—‘CHJ“MO T _ ) <k—{1>

= @ i () (= ) [P, 2 Mo, (1= 3)
(=

T
- rH;eI”, T nglop< - ) geI”, + Z]GIOPT >

1
o))
+ T
If the limit is taken, it is seen that lim,_., E(N,") is the nth moment of a Poisson
random variable with parameter 4.

The following theorem is a slight generalization of Theorem 4.1 with essen-
tially the same proof.

THEOREM 4.2. Let pe . If lim,_., pr, = A such that 0 < 2 < oo; if there exist
indices j, and j, which have the property that either (a) j, andjor j, are in I,, and
lim,_, x; /T =0 or (b) j, andjor j, are in I, and lim, ., x; /T =1; and if
liminf (T — x;) = liminfx; = 400, 1 < i < &, then the law of N, converges to
the law of a Poisson random variable with parameter 2.

Theorems 4.1 and 4.2 deal with the asymptotic distribution of columns of a
particular structure. It seems that in practice, a theorem dealing with the as-
ymptotic distribution of columns of a particular weight or weights would be
more useful. The following theorem and corollaries deal with this situation.
Their proofs are nearly the same as the proof of Theorem 4.1.

THEOREM. 4.3. Letr < s — 2. Iflim,_, x;/T = 1 andliminf(T — x;) = + o0
forall1 < i< sandif lim,_, p, = 1, <oco forall pe S, and there exists p € &,
such that 2, > 0, then the law of 3 . o N, converges to the law of a Poisson random
variable with parameter 3 .. 4,.

CoROLLARY 4.1. Letr < s — 2. If lim,_ ,x,/T =1 and liminf (T — x;) =
+oo forall1 <i < sandif lim, ., p,=2,< oo forall pe &, and all n < r
and if there exists p e F,, n < r such that 2, > 0, then the law of 337 _ ¥ ,c N
converges to the law of a Poisson random variable with parameter 337 _, 35 ,c 5. 4,

Note that under the hypotheses of Corollary 4.1, 2, = 0 for all pe &, if
n < r. Hence Z:L:O ZpG?n Zp - Zpeg’r,- »*

The following theorem deals with another situation in which the mean
approaches a finite limit. The proofs are essentially the same as the proof of
Theorem 4.1.
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THEOREM 4.4. Let pe . If there is an index j such that je I,, and x; = ¢ (a
constant) and if lim,_ . x,/T = a;, 0 < a; < 1 for all i + j; then the law of N,
converges to the law of a binomial random variable with parameters ¢ and
e piins @ Iies,, (1 — a)).

5. Example. Three asthmatic patients are observed for a period of 120 days.
They have 9, 10, and 22 attacks respectively during the 120 days. If the patients
react independently then the probability distribution of the number of days on
which at least two patients have attacks may be obtained from Theorem 2.1
with s =3, T=120, x, =9, x, = 10, and x; = 22. Table 1 gives this exact
probability distribution with P, = P(Ny, + Ny, + Ny, + Ny = j); that is the
probability that there are at least j days on which two or more patients have
attacks. For purposes of comparison, these probabilities computed from the
asymptotic results are also included. Table 2 gives the probabilities computed
from the normal approximation, Theorem 3.1. Table 3 shows the probabilities
computed from the Poisson approximation, Corollary 4.1. Since the expected
number of columns of weight two or more is small (3.96) compared to the total
number of columns, it would be expected that the Poisson approximation would
be closer than the normal approximation. The main differences in the approxi-

TABLE 1

J P; J P;

0 1.00 x 100 10 4.83 x 104

1 9.93 x 10-1 11 5.40 x 10-5

2 9.50 x 101 12 4.35 x 10-¢

3 8.21 x 10-! 13 2.47 x 10-7

4 6.00 x 101 14 9.53 x 10-9

5 3.54 x 101 15 2.39 x 10-10

6 1.63 x 101 16 3.61 x 1012

7 5.79 x 10-2 17 2.97 x 10-14

8 1.56 x 10-2 18 1.09 x 10-16

9 3.18 x 10-3 19 1.17 x 10-1®

TABLE 2 TABLE 3

J P; J P; J P;
0 9.9389 x 10-1 0 1.0000 x 100 10 7.5951 x 10-3
1 9.6947 x 101! 1 1.8091 x 101 11 2.6260 x 10-3
2 8.9251 x 10-! 2 9.0532 x 101! 12 8.3791 x 10—
3 7.2774 x 101 3 7.5573 x 101 13 2.4808 x 104
4 4.8923 x 101 4 5.5835 x 101 14 6.8479 x 10-5
5 2.5463 x 10-! 5 3.6302 x 101 15 1.7701 x 10-5
6 9.7840 x 10-2 6 2.0839 x 10t 16 4.3007 x 10-¢
7 2.6990 x 10-2 7 1.0638 x 101! 17 9.8561 x 10-7
8 5.2300 x 10-3 8 4.8691 x 10-2 18 2.1371 x 107
9 7.0000 x 104 9 2.0149 x 102 19 4.3968 x 10-8
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mate distributions from the exact distribution is that the critical tail probabilities
are too small and large for the normal and Poisson approximations respectively.
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attention to Rosén’s papers.
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