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A CONVERSE TO A COMBINATORIAL LIMIT THEOREM

By J. ROBINSON
University of Sydney

_ Let an(i), bu(i), i=1, - - -, n, be 2n numbers defined for every n and let
A(k) = 17, |an(d)|* and Bk) = X7, [ba(i)|F. Let (In1, -+, Iua) be a ran-
dom permutation of (1, ---, n) and let S» = 27—, bu(d)an(In:). If

AK)[AQP -0  and  Bk)/[BQR)tk -0,
then it is known that the condition of Hoeffding,
ntk=14(k)B(k)[A2) B2 -0, k=3,4,---,

is sufficient for the standardized moments of S, to tend to the moments of
a standard normal variate. It is shown here that these conditions are also
necessary. The relationship of these conditions to the Liapounov con-
ditions is pointed out.

1. Introduction. Let (/,,, ---, I,,) be a random vector which takes on the n!
permutations of (1, ..., n) with equal probabilities. Sufficient conditions for
the asymptotic normality of
1 S, = L ba(Day (1)
were given by Wald and Wolfowitz (1944) and weakened conditions were given
by Noether (1949). Hoeffding (1951) obtained more general sufficient con-
ditions. These authors obtained sufficient conditions for the stronger result that
the standardized moments of S, tend to the moments of the standardized normal
distribution. Motoo (1957) obtained weaker conditions for sufficiency which
Héjek (1961) subsequently proved were also necessary for asymptotic normality
of S,.

It is the purpose of this note to prove that the conditions of Hoeffding (1951)
are necessary and sufficient for S, to have standardized moments tending to the
moments of the normal distribution. This result is similar to the results of
Bernstein (1939) and Brown and Eagleson (1970) who prove that the Liapounov
conditions are necessary and sufficient for the convergence of the moments of a
sum of independent random variables to the moments of the normal distribution.

2. A combinatorial limit theorem. We assume that for every integer n there are
2n numbers a, (i), b,(i), i = 1, - - -, n, which are not all equal. For notational
convenience we will assume that a,(+) = b,(+) = 0, where the dot denotes the
arithmetic mean. Further, we will write

A(el’ ] em) = Zil'“im anel(il) vt anem(im) ’

Bley, « -+ ) = iy, Ou(0) -+ - Bym(0y)
A(e) = Tiala,(lr  and  Ble) = T [ -
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We assume that the a,(i) and b,(i) satisfy the conditions

) lim, 40 _ o, k=3, 4,
[4(2)]*
and )
(3) limn—vak) = s k= 3, 4a
[B(2)]**
THEOREM. If a,(i) and b,(i) satisfy conditions (2) and (3), then
) lim, _ES* _ o, k odd,
[VS,]*
=k-1)...3, k even,
if, and only if, :
(5) lim, . et _AK)BK) k=3,4,...

[4(2)B(2)]*
Proor. Sufficiency has been proved by Hoeffding (1951).

We note that VS, = 4(2)B(2)/(n — 1). In the following we will assume
n'A(2)B(2) = 1. Then it is sufficient to prove that ES,* — (2k —1)...3
implies that n='4(2k)B(2k) — 0 as n — oo, for k = 2,3, .. ..

The 2kth moment of S,

(6) ES ™ = E X5 -+ Diy=a 6a(@) -+ - b,(i)an(Ls) -+ - au(ly,)

can be written as a sum of terms of the form [n(n — 1) ... (n — m 4 )]
A(ey, -+, e,)B(e, ---,¢,), wheree; = 1, e, + ... + ¢, = 2k. The number of
each of these terms occurring in the sum is independent of n. We may write
A(ey, - -+, e,)B(ey, - -+, e,) as a linear combination of terms of the form A(a,) - - -
A(e,)B(By) - - - B(B,) where a; + -+ + a, =2k, B, + --- + B, = 2k and the
a, -+, a,and g, ..., B, correspond to sums of the e, - - -, e,. We may assume
thata; > 2, 8, 22(i=1,---,9;j=1, ..., h), since A(1) = B(l) = 0.

First, consider the case 2k = 4. The only terms appearing in the sum (6) are
A(4)B(4), [A(2)]’B(4), A(4)[B(2)]* and [A(2)][B(2)]*. The first of these appears in
the terms of the sum for m = 1, 2, 3, 4 with coefficients of order n=%, n—2, n-3,
n~*, respectively. The others appear in the terms of the sum with m = 2, 3, 4
with coefficients of order n=%, n=%, n=*. Using (2) and (3) we see that the terms
involving [ 4(2)]*B(4) and A(4)[ B(2)]* tend to zero. The terms in [4(2)B(2)]® with
coefficients of order n=* and n~* tend to zero and the term with coefficient of
order n~? appears in the limit with coefficient 3, since this is the number of
times that 4(2, 2)B(2, 2)/n(n — 1) appears in the sum (6). Thus

lim,_,, ES,* = lim,_,, n='A(4)B(4) + 3,

but ES,* — 3, so n"'4(4)B(4) — 0, as n — co. The proof will be completed by
induction. We assume that

lim, . n'4Q2)BQRl =0, 1=2,4,...,k—1.
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From this assumption and the inequality
AQ2k) A2k — 2) = [A2k — D],
it is clear that
©) lim,_., n"'A(nB(r) = 0, r=3,4,...,2k —2.
Let s be the greatest possible number such that there exist numbers y,, - - -, 7,

which are sums of disjoint subsets of both a,, - - -, @, and 8, .- -, 8,. Form > 1,
consider the following cases for A(a,) - - - A(a,)B(B,) - - - B(B,):

(i) s > 1. Then Hoeffding (1951) has shown that # + g < m 4 s and that
®) nmAay) - - B(By)| = n* T n T AGr) B(r)| - - (n T AG) Bl

(i) s=1. Thenkh + g <m + 1. .
(iia) # =2, g = 2. Using the following inequality due to Brown and
Eagleson ((1970) Lemma 4),

9) L |EX*r| £ EX'E|X|*2,

where w, > 2,1 >2, w, + ... 4+ w, = k, we have

(10) n~™A(ay) - - - B(B,)| < n"to"A(2) A2k — 2)B(2)B(2k — 2) .
(iib) g = 2, » = 1. Then using (9), we have

(11) n~™A(ay) - - - A(a,)B(2k)| < no"A(2)A(2k — 2)B(2k) .
(iic) h =2, g = 1. Asin (iib), we have
(12) n| AQK)B(B,) - - - B(B,)| < m-""2A(2k)B(2)B(2k — 2) .

(iid) k=1, 9 = 1.

For m > 1, the terms appearing in (6) fall into one of these cases. For case
(i), (7) implies that these terms tend to zero, except for s =kand y, = ... =

7, = 2. The case y, = ... = 7y, = 2 appears with coefficients of order n~*,
n~*-1, ..., n~%* and these terms tend to zero except for the term with coefficient
of order n~*, occurring when m = k, ¢, = ... = e, = 2. This term appears in

the limit with coefficient (2k — 1) ... 3, since this is the number of times that
A2, ---,2)B2, ---,2)/n(n — 1) ... (n — k + 1) appears in the sum (6). For
case (iia), (7) implies that these terms tend to zero. For case (iib) we note that

nAR2)AZKk —2) _ T gai
A(2k) R
where g,; = |a,(i)|/[4(2)]t. Now if
. g?k—Z
(13) lim,,_, —lﬁL_ =0,
n 3o O

then case (iib) gives terms of smaller order than n~'A4(2k)B(2k). Otherwise, we
must have a number K, independent of n, such that

nyr g N gnt < K.
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Then
nyii 9% < K 2t g,

Now »r_, gim/3:%, g2»=? is strictly monotone increasing inm = 2,3, ..., k, so

g <K B gt < < KV Y g0 = KR
That is, n*=*4(2k)/[A(2)]* is bounded. Using this result and (3), we have
lim, _,,, n*~1A4(2k)B(2k)/[A(2)B(2)]* = O,

which is the result we require. In the following we assume that (13) holds.
Case (iic) is similar to case (iib). For m = 1 and case (iid), we have terms in
A(2k)B(2k) with coefficients of order n~* for m = 1 and of order n=2, n~3,. .., n=%
for case (iid). Thus

lim, ., ES®™ = lim, ., n—A(2k)B(2k) + (2k — 1) ... 3,

but ES,* — (2k — 1) ... 3, so n7'4(2k)B(2k) — 0, as n — oo. So the theorem
is proved by induction.

3. Relationship with sums of independent variables. It is interesting to notice a
relationship with the theorem of Bernstein (1939). Let the sequence a,(i) be

renumbered such that q,(1) < q,2) < .-+ < aq,(n). Let
a'(d) = a,(i), (=< rAgiln, 1<ign.
Let U,, ---, U, be a sequence of independent uniform variates and let /,; be the

rank of U;, 1 < i < n, and let
T, = X bu(D)a,(U) -
This T, was considered by Hajek (1961) and it was shown that
lim,_, E(S, — T,)?}/(VT,) = 0.

We can prove a theorem on the limits of the moments of T,.
THEOREM. In order that forall k = 3,4, ...

(14) lim,_, ET,*/[VT,]* = 0, k odd,

=k-—-1)...3, k even.

7n—00

it is necessary and sufficient that
(15) lim,_., n"'A(k)B(k) = 0, k=3,4,....
Proor. The theorem will be proved if we can show that (15) is equivalent to

the Liapounov condition of order k. That is

?:1 Elbn(l)an'(Uz)'k — 0 .
[VT,]*

lim

7 —00

Now the left-hand side is
lim,_., [VT,]7% X2, § |x|* dP[b,(i)a,’(U;) < x]

= Lim, o nt B (B, D e (D) -
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Then the result follows from the theorem of Bernstein (1939) and Brown and
Eagleson ((1970) Corollary 2).
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