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MARKOYV DECISION PROCESSES WITH A NEW OPTIMALITY
CRITERION: SMALL INTEREST RATES

By STrRATTON C. JAQUETTE
Science Applications, Incorporated

Finite state and action discrete time Markov decision processes with
discounting are considered under the criterion of moment optimality. The
case of small interest rates is studied, in particular the behavior of optimal
policies as the interest rate approaches zero. Laurent expansions in the
interest rate are developed for all moments of return for stationary policies,
and a proof is given that there is a stationary policy which is moment
optimal for all sufficiently small interest rates.

1. Introduction. In this paper the behavior of optimal policies for Markov
decision processes is considered for the case of small interest rates. The problem
was first discussed by Blackwell [1] for finite state discrete time Markov decision
processes under the usual optimality criterion of maximizing the expected total
discounted return. The result obtained in that paper was that a single stationary
policy was optimal for all interest rates sufficiently close to zero. This work
was extended by Miller and Veinott [5] who developed methods for constructing
such an optimal policy, and by Veinott [6] who presented a unified treatment of
the material with several generalizations. In this paper we consider these same
problems for a new optimality criterion called moment optimality developed
and discussed in Jaquette [2], [3], and [4].

Most of the notation used in this paper is standard for finite state and action
discrete time Markov decision processes with discounting. Some notation pe-
culiar to the criterion of moment optimality is explained in detail in Jaquette
[3] or [4], and we give only a brief discussion of this notation here. As usual
the finite state space is given by § = {1, 2, . . ., s}, the finite action set associated
with the ith state is 4;, and the set of all possible action vectors is F = X3i_, 4;.
A policy is a sequence of elements of F, e.g., = = (f;, f,, - - ). Using the policy
= means that if the process is in state i at time ¢, then the action taken is f,(i).
We denote f, for the policy = by =(r). Let f~ = (f,f, f, ...), then /= is said to
be stationary. Using any action vector f, r(f) is the associated column vector
of one period returns and P(f) is the associated matrix of transition probabilities.
Let X, () be the random state of the process at time ¢ using policy z, and let
X, () be the random vector whose ith component is 1 if X () = i and 0 other-
wise. If x and y are vectors with components x(i) and y(i) respectively, x o y is
defined as the vector whose components are given by [X o y]; = x(i)y({). Then
the total discounted return random vector is given by

R(z) = Zio Br(x(1) o Xo(1) -
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[R(7)]; is the return random variable given that the process starts in state i, that
is that X (0) = /, and thus if p is the probability vector representing the initial
state distribution, the total return random variable using policy r is R(z) - p.
The nth moment of return we denote by M, (x) defined by

M, () = E[(R(n))"] (n=1,2,...)
Myz) =1
where (R(7))" = R(z) o R(z) o - - - o R(w). We define the vector N*(z) by
N*(x) = (—=My(m), My(x), —My(x), - - -, (= 1M, (1))

and the vector N(x) we define as N*(x).

A policy #* is said to be moment optimal if N(z*) > N(x) for all policies r,
i.e., 7* lexicographically maximizes the sequence of the moments of return vec-
tors with alternating signs. In addition a policy z* is said to be (m) moment
optimal if N™(z*) > N™(x) for all policies z. It is clear that a policy is moment
optimal if and only if it is (m) moment optimal for all m. We also define sets
F™ to be the set of all stationary (m) moment optimal policies:

F*={f:feF and f~ is (m) moment optimal} .

In this paper we develop two results. We first establish a relationship between
the moments of return for stationary policies and the interest rate. This relation-
ship is a Laurent expansion. The second result is that there exists a stationary
policy which is moment optimal for all sufficiently small interest rates. The
proofs of these results follow the treatment given in Veinott [6] for the Laurent
expansion of the expected return and the treatment of moment optimality given
in Jaquette [3].

2. Laurent expansion for the moments of return. We shall only treat Markov
processes with a discrete time parameter in this paper. For an arbitrary sta-
tionary policy we let P denote the transition probability matrix and r the one
period return vector. We assume discounting with a discount factor 8, which
is related to the interest rate p by g = (1 + p)~.

It is quite simple to verify the following recursion for the nth moment of return:

M, = 30 B'()()"" o PM,

where we take (r)° = 1 and PM, = 1. This can be seen by expanding the total
return R into r + SR o X, expanding (r + SR o X(1))", and taking the expectation.
We can rewrite the above expression in closed form as long as 8 < 1:

2.1) M, = (I — §"P)™ 5153 B()(E)" o PM .

We can also write (2.1) in the same form that it takes for n = 1:

2.2) M, = (I — §,P)r,,

where 3, = g~ andr, = 377 B'(?)(r)"~* o PM;. Equation (2.2) is the same form
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as the expression for the expected return using a stationary policy; cf. Veinott
[6]. We shall treat the nth moment just like the first moment.
The resolvent of a matrix Q, denoted by R,(Q), is defined as
R,(Q)= A - Q).

By defining Q = P — I, we can rewrite (2.2) in terms of the resolvent and the
pseudo-return r,:

(2'3) M'n = (1 + p'n)an(Q)rn ’
where o, = 8,7 — 1 = (1 + p)* — 1.
We now make some additional definitions which will enable us to apply some

well-known results to the present problem. Let
P* = lim, . (n + 1)~ X1, P*,
H, = R,(Q)(I — P*), and
H = R(Q — P*)(I — P¥).

It is well known that P* exists for a stochastic matrix P. We now state Lemma

2.1, which can be found in Veinott’s paper [6] in a more general setting, without
proof, and we refer the reader to that paper for the details.

LeMMA 2.1. If p + 0 and p < ||H||™, then
R,(Q) = p7IP* + N7, (—p)H*.
A direct application of Lemma 2.1 to (2.2) yields
(2.4) M, = (I + o)"[ X (en) ulr,

where we have rewritten (2.3) with (1 + p,) expressed as (1 + p)" and expressed
R, (Q) in the form

(2:5) R, (Q) = i (ea)ts s
where
u_, = P* and u; = —(—H)* i=0,..-.).
The condition for convergence in Lemma 2.1 applied to (2.4) and (2.5) can be
written as (1 4+ p)* — 1 < ||H||~!, which is satisfied for small enough p.
We shall now show that (2.5) can be expressed as a convergent Laurent series

in p instead of p, as written. Consider first the term for i = —1. We have p,~'P*.
Since p, = (1 + p)* — 1, we can write this as
(2-6) [ S e D = (541 )

The expression [ Y22} (;*,)0] ! is positive for p > 0, and it clearly has no poles
for o = 0. We can in fact, write a power series for [ Y 7= (;%,)0t]~* which con-
verges for o € [0, 1):

(2.7) [Z15 (h)e'l™ = i ato’,

where a* = n7', a* = —n~' 300 (j1)ar;, and (n — 1) A i = minimum of
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{n — 1,i}. By using (2.7) in (2.6) we obtain a Laurent expansion which con-
verges in (0, 1):
(2.8) 0,7 P* = (X at, p)P* .
For the remainder of (2.5) we have terms (p,,)! fori > 0. We can write these as
(X35 (Ge))'s
which is still a polynomial in p. We can therefore simply collect terms with
the same power of p to obtain a new power series

2o (0n)'u; = X5 0°;
where the #; are polynomials in the #’s. Thus we can combine this result with
(2.8) to obtain the formal result )

(2.9) R, (Q) = X piC,
where C;" are matrixes; C*; = q,"P*and C," = a?,, P* + i, (i = 0). The Laurent
series in (2.9) converges in the region specified by Lemma 2.1: p small enough
that (1 + p)* — 1 < [[H]|,

We now show inductively that r,, as defined in (2.2), and M, in (2.4) have
convergent Laurent expansions in p of the forms

(2‘10) l' - Z1——fn+1 (’1 = 1, 2’ c ’) ]
and
(2'11) Mn=(1 +p)n Zz;—npiyi” (n= 1,2, "')’

where the vectors b, and y,” are fixed vectors expressible in terms of P*, H, r,

and binomial coefficients.
For the case n = 1, we have the case of the expected return, and using the

results of Miller and Veinott [5] we have
n=r and M, =(1+p) X, 0our,

so we can take by' =r, b! =0 (i = 0) and y;'! = u;r. The expression for M,
converges for p < ||H||7!, and the expression for r converges for all p.

Suppose now that r, has the form (2.10), that M, has the form (2.11) for
k < n, and that these Laurent expansions converge in some common interval
(0, 8,). Now consider r,,,. We combine the expressions for M; from (2.11) in
the expression for r,,, given in (2.2) as follows to obtainr, ,,

Lo = Lo BCENE)™ 0 P[(1 4 o) X5 0%Y,]
= Do ("PE) e P YT 0%y,
= D5 DT (HDeY(r)i o Py,
= 27 PN (3E)(r)* T o Py,mF)
— zo=_n pibin+l s

Where bi'n+1 = Zn/\(’n+'») (@I;)(r)j+l ° Pyin—j.
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We can see that r,,, has the form of (2.10). We can then use this expression
in (2.4) to obtain
M, ., =1+ o) D, 0 G (D5 0D
— (1 _|_ p)’n+1 ;:)o=—l Z;.c;_n p‘i+jci'ﬂ-+lbj’n+l
= (1 4+ )" ZZca 0¥
where y,"! = yinti, Cntbrtl .

This has the form of (2.11). From the manner in which we calculated the
expressions for r,,, and M, , and the convergence of the expansions used in
the induction hypothesis, it follows that there is some region of convergence,
(0, §,.1), where we can take p,., < §,. This completes the induction.

We introduce the notation M,,(f, p), where M,,(f, p) = M, (f>). We append
the p merely to make explicit the dependence of the moments of return on the
interest rate. We now state the following result, which we have already proved.

THEOREM 1. Choose any stationary policy f~. The nth moment of return using
[ has the Laurent expansion
(2.12) M.(f, 0) = (1 + 0)* Dz 0¥:"(/) » n
which converges in some interval (0, p,), where y,(f) are vectors depending only on
i, n, and f.

v

1,

The calculation of the y,"(f) is complicated. We have given only an indica-
tion of the steps needed to perform the calculation of the y,(f) in the proof of
Theorem 1, but as we shall not need the y,*(f) in explicit form, we shall not
pursue the subject further.

3. Moment optimal policies for small interest rates. We use Theorem 1 to
show that there is a single stationary policy which is moment optimal for all
sufficiently small interest rates. We begin by stating the following lemma.

LemMa 3.1. Let h(x) = X 3 _, a;x* and suppose h(x) converges in the region

i=—n 1

(0, x,). Then there exists an x, > O such that either (a), (b) or (c) holds.

(a) h(x) > 0, for all x (0, x,)

(b) h(x) < 0, for all x € (0, x,)

(¢) h(x) =0, for all x.

Proor. Suppose the first nonzero coefficient among the a; is a_, for some
k > 0. Then for sufficiently small values of x, the term a_, x~* dominates all
other terms in the Laurent expansion. Since 4(x) is continuous on (0, x,), and
a_, + 0, the function A(x) must have the same sign as a_, in some region of x
near zero. It then follows immediately that either (a) or (b) holds.

Suppose instead thata_, = ... =a_, = a_, = 0. Then i(x) has no poles at
zero and is an ordinary power series. The conclusion that either (a), (b), or (c)
holds in this case is easily reached under the assumptions and is given in detail
in Jaquette ([2] Lemma 9.1).
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We now define some notation which will simplify the discussion. For a fixed
interest rate we have previously defined F™ as the set of action vectors generating
stationary (m) moment optimal policies. The F™ clearly depend on the interest
rate, and we now make this dependence explicit by writing F™(p). We then
define new sets of action vectors G™ and associated interest rates p,, as follows:

(3.1) Gm={feF: thereexistsa p, > 0 suchthat fe F"(p) all p€(0,p0,)},
= F and

00 = +00.

We shall always associate the largest such p,, with G™. The sets G™ are the sets
of action vectors generating stationary policies which are (m) moment optimal
for all interest rates in some region (0, p,). It follows, by definition, that if f
and g are in G™, they have the same moments of return for all kth moments,
k< m:

(3.2) M,(f, o) = Mi(g, 0)
all f,geG™, all k <m, andall pe(0,p,) .

We now show that the sets G™ are in fact nonempty and that the definition
(3.1) yields sets of some interest.

LeEmMA 3.2. G™ is nonempty.

Proor. We shall prove this lemma inductively by showing that G™ = F™(p)
forall p € (0, p,). For m = 0 the lemma holds trivially by definition (3.1) since
F'(p) = F.

Now assume that G* &= @ and G* = F*(p) for all p € (0, p,). For any f and
g in G* and for any o’ in (0, p,] we have

M,(f, p) = M(g, o) forall i<k and pe(0, o).

The relationship G*+' C G* must hold since F**(p) & F*(p) for all p, and
F*(p) = G* on (0, p,). Thus to find an element of G*** we seek a p,,, € (0, 0,]
and an f e G* such that M, ,(f, o) = (—1)*M, (g, ) for all g in G* and pe
(0, 0,,,)- We do this by considering the difference M, ,(f, p) — M,..(9; 0),
which by Theorem 1, can be written as

(3.3) M,.i(f5 0) — Mya(9, 0) = (1 + 0)*** T4 o'a;,

where a, = y;*+}(f) — y;**'(g). Appealing to Lemma 3.1 we conclude that for
each component of the function in (3.3) there is an open interval of p bounded
below by zero on which the function does not change sign. Thus since the state
space is finite, there exists a common open interval on which the vector function
(3.3) does not change sign for the given pair f and g in G*. Since there are only
a finite number of pairs of f and g, there is again a common interval (0, p') with
o' > 0 and o’ < p, such that for any f and g in G* and all p € (0, ©'), either

M, ..(f, 0) = M,..(9, p) or Myi(f5 0) = M,..(9, 0)-
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Choose any f from the nonempty set F**!(p’). For this f we have M,(f, p) =
M;(g, o) for all g € G* and p € (0, o’) and

M. (f, ') = (—1)"M,.(9, o) for all geG*.

IEM, . (f, 0")2(—1)*M,,.(g, 0'), then we must have M, ,(f, 0) = (—1)*M, (g, o)
for all p € (0, p'). With this fact and knowing that F*(p) = G* is constant on
(0, p’), we conclude that fe F**(p) for all p € (0, p'). We also conclude that
F**1(p) is constant on (0, p'). Taking p,,, = o', we see that G*** = F¥*+1(p) for
all pe(0, p,,,). Since F**Y(p) is nonempty, so is G**'. This completes the
induction step and completes the proof of the lemma.

From Lemma 3.2 we see that there are stationary policies which are (m)
moment optimal for all interest rates in the interval (0, p,,) for some p,, > 0.
There may, of course, be nonstationary (7) moment optimal policies, but we
shall not consider them in our attempts to find policies which are moment op-
timal for small interest rates.

We now give the following lemma which characterizes the behavior of the
sets G™ for large m. The main result of this section, Theorem 2, follows directly

from this lemma.

LeMMA 3.3. There exists a finite number n such that G* = G"*' = ... = G* % @
and we can choose the associated interest rate limits such that o, = 0,,, = -+ =

Pw > 0.

Proor. This result that G™ is constant for large enough m is not difficult to
establish, and a detailed discussion of the arguments needed to prove this lemma
is given in Jaquette ([2] Lemma 5.3). We only summarize the arguments here.
Taking G° = F, we have a finite set. As m increases, elements are eliminated
from G™ and G™ is reduced. Since G° is finite, there must be a last number m
such that G™**  G™ (G™*' &= G™). Thus taking » to be this index plus one, we
must have G* = G"*!' = ... = G=. Since G™ + @ for all m, we also must con-
clude that G~ + @.

We now consider the choice of the interest rate limits p, for k = n. Choose

any k = n. Since G* = G**', we have for all f and g in G* and all p in (0, p,,,)

Mk+1(f’ p) = Mk+1(g’ o) -

This implies that for all p > 0 and all f and g in G* M, ,(f, p) = M, ,(9, 0)-
Since F*(p) = G* for in (0, p,), since all elements of F*(p) have identical (k +
1)st moments for all o in (0, p,), and since F*+'(p) < F*(p) for any p, we
conclude that F*+!(p) is constant on (0, p,). This means that we could have
chosen p,,, = p, and still preserved F**!(p) = G*** for all p in (0, p,,,). Since
this holds true for all k > n, we can choose the p, associated with G* such that
On = Pas1 = +++ = P.. Since p, > 0, we have p,, > 0. This complete the proof
of the lemma.

The main result of this section, Theorem 2, is a direct corollary of Lemma
3.3. It follows since G* + @ and p= > 0:
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THEOREM 2. There is a stationary policy which is moment optimal for all interest
rates in some interval (0, p) where p > 0.

We remark that G= gives all the stationary policies which are moment optimal
for small interest rates. The method of proof of Lemma 3.2 also indicates an
algorithm to construct the sets G™ based on the vectors y;*(f). An alternative
algorithm can be devised following the algorithms developed in Jaquette [3] for
the discrete time case and in Jaquette [4] for the continuous time case; the only
changes needed to those algorithms is the explicit accounting of the dependence
on the interest rate, but it is no problem to account for this and to compute p,,
and G™ directly. Since we cannot give a simple closed expression for the y;*(f),
the latter algorithm is more practical.
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