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BOUNDARY CROSSING PROBABILITIES FOR LOCALLY
POISSON PROCESSES

By CLIVE R. LOADER
AT &T Bell Laboratories

We derive large deviation approximations to boundary crossing prob-
abilities for a class of point processes which can be approximated locally
as Poisson processes. In the special case of empirical processes, we are able
to obtain second order correction terms. The methods are applied to
Kolmogorov—-Smirnov testing, where we are able to obtain accurate approx-
imations to the significance level when the null hypothesis is an exponen-
tial family with unknown nuisance parameters.

1. Introduction. Suppose {X(¢); 0 < ¢ < T} is a point process. We are
interested in approximating probabilities of the form

(1) P{ inf (X(t)—c(t))sO}

To<I<Ty

for constants 7, and 7,, and a boundary function c(¢). Exact methods for
evaluating (1) are known in only a small number of special cases; for example,
when X(#) is a Poisson process or the empirical process of i.i.d. observations.
Moreover, these methods involve recursive formulae which can be difficult to
evaluate when the number of events grows large; see Shorack and Wellner
(1986) for a discussion of several recursive formulae for empirical processes.

When exact methods are unavailable or computationally difficult, a common
approach is to approximate X(¢) by a Gaussian process with the same mean
and covariance structure. General methods for approximating boundary cross-
ing probabilities for Gaussian processes have been widely studied; see for
example Durbin (1985). The disadvantage to this approach is that the resulting
approximations are not particularly accurate.

In this paper we derive approximations to (1) for a class of processes which
can be approximated locally by Poisson process. Our approximations take the
form

(2) P{ inf (X(t) - (1)) < 0} = [M(e(8) = ult, (1)) &(2) dt,
To<t<Ty To

where u(¢, c(¢)) approximates the local rate at ¢ when X(¢) = c¢(¢) and g(¢) is a

continuous approximation to P(X(¢) = c¢(¢)). Generally, (2) must be evaluated

by numerical integration. However, this involves less work than exact compu-

tations when these are available, and can be applied to problems for which

exact methods are not known. ‘
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In Section 2, we let X(¢) be the empirical process of n iid. 2[0,1]
observations. We replace the boundary by na(¢) and show under regularity
conditions that (2) is a first order asymptotic approximation as n — o, with
error 1 + o(1). Second order corrections, with error 1 + o(n~1), are also
derived.

The approach used to derive (2) for empirical processes is to note that the
first hitting time, 7 = inf{z: X(¢) < ¢(#)}, has a discrete distribution, occurring
only at times ¢; such that c(¢;) = j. The approximation is then obtained by
summing approximations to the individual probabilities P(r = ¢,). These ap-
proximations are obtained by considering the local behavior of X(¢) and c(¢)
for ¢ close to ¢; and noting that the process {X(¢;) — X(¢; — t);¢ > 0} can be
well approximated by a Poisson process. This procedure can be applied more
generally to processes which can be approximated locally by Poisson process.
We explore this idea in Section 3.

Many statistical problems can be expressed in the form (1). The most
frequently used example is the significance level of the Kolmogorov—Smirnov
test. In Section 4 we study this example and in particular use our results when
the null hypothesis consists of an exponential family with unknown parame-
ters. Numerical examples show the results provide reasonable approximations
in the case of exponential and normal distributions. Applications of the results
to a variety of change point problems may be found in Loader (1992).

2. Boundary crossings for empirical processes. Suppose X,,..., X,
are i.i.d. [0, 1] random variables. The empirical process X(¢) is defined by

X(t) = éI(Xi <t).

We obtain an approximation to boundary crossing probabilities for X(¢) in
Theorem 2.1 and obtain second order corrections in Theorem 2.2 below.

THEOREM 2.1. Suppose a(t) is a continuously differentiable function de-
fined on [t,, 1] for some t, > 0. We suppose a(t,) = 0, a(t) < t and ta'(¢) > a(¢)
for all t. Let v, and 7, be constants with t, < 7y < 7, < 1. Further, if the
function

(3) i) = a(t)log(a_(tt)_) +(1- a(t))log( 1 ;j(tt) )

attains its minimum over [7, 7,] at either of the endpoints, then its derivative
is 0 at these points. Then

P{ inf (X(t)—na(t))sO}

a(t)) exp(—nl(t))
t ) Vewa()(1 - a(?))

(4) .
S =V ‘(a'(t) -

dt(1 + o(1))

asn — «©,
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Our approach to proving Theorem 2.1 is to note that the first passage time
has a discrete distribution and then use local approximations to the individual
probabilities. This is similar to the approach used by Woodroofe (1976) to
approximate boundary crossing probabilities arising in sequential analysis. In
the interests of clarity, we only sketch the main ideas here; technical details
are deferred to Section A of the Appendix. The methods of Aldous [(1989),
Chapter D] can also be adapted to derive (4), although proving the stated error
term using this approach seems difficult.

If I(¢) attains a unique minimum at an interior point s of [7,, 7,], then (4)
can be approximated by a Laplace approximation, avoiding the need for a
numerical integration. However, usually s will still need to be found numeri-
cally and the resulting approximation is often less accurate.

Proor or THEOREM 2.1. We first suppose a(r,) > 0, and define first pas-
sage times:

7 = inf{t: X(¢) < na(t)},
7 = inf{t = ro: X(t) < na(t)}.
Then
p{ inf (X(t) —na(t)) < 0}

(5) =P(X(719) <na(ry)) +P(1o <7 <))
= P(X(7,) < na(r,)) + P(1 <79, X(7o) > na(ry), 7 <7,)
+P(1o <7 <7).

We concentrate on evaluating the third term on the right of (5). The first two
terms represent endpoint corrections and are asymptotically of a smaller order
of magnitude; we defer a proof of this to our discussion of second order
corrections. Since X(¢) is nondecreasing and integer valued, + can only occur
when na(t) is an integer. Let ¢; be the solution of na(¢) = j. Since a'(¢) > 0,
we can choose j, and j, such that 7, <¢; < r; if and only if j, <j <j;. We
have

ﬁ P(r= tj)

Jj=Jo

P(ry<7<m)

f: P(r=t;, X(tj) =J)

J=Jo

(6)

: = 3 P(r = 4)X(t,) = J)P(X(5) = ).

J=Jo

The distribution of X(¢;) is binomial, so we can evaluate P(X(¢ ) =j). An
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application of the first order term of Lemma 2.1 shows
P(r=t;X(t;) =j) = P(X(t) > na(t) ¥V t <tjX(t;) = na(t;))
(7) a(z))
t;d(¢;)
The approximation (7) can also be derived by a time reversal argument,
approximating X(¢; — ¢) by a Poisson process with rate na(t;)/¢;, replacing
the boundary by its tangent at ¢; which has slope na'(¢;) and applymg Lemma

A.2. Further, since a(ry) > 0, compactness arguments show that (7) holds
uniformly in ¢;, and from (6) we get

P(rg <1<

+ o(1).

8 J1 t. n n(l—a(t;
v =J-§o(1’%)(mm))t;wu—m‘ W1+ o(1).

Applying Stirling’s formula and approximating the sum by an integral leads to
the right-hand side of (4). The conditions on the location of the minimum of
(3) are necessary to justify passing from the sum to the integral.

The case a(1,) = 0 follows by first choosing 7;, > 7,, applying the preceding
argument and letting vy —» 7,. O

We note that there is some similarity between the method developed here
for Poisson processes and Durbin’s (1985) result for Gaussian processes which
behave locally like Brownian motion. Define I(s, X) by

1, X(¢) >na(t)Vit<s,
» X) =
I(s, X) {0, otherwise,
and write
P(r =t;X(t;) = J)
lim E(I(s, X)IX(t;) =j)
sty

©® natt)sl;t = El(e(4) = a()) (s, DOIX(t)) =)
1

= ) dm (K@) ~ ra()) (s DX () =),

since if X(¢;) =j, I(s, X) =1 and s > ¢;_;, then X(s) =j = na(¢;). By com-
parison, Durbm (1985) shows the first passage density p(¢) for a Gaussian
process to a smooth boundary can be factored in the form

. p(t) =b(2) f(?),
where f(t) is the marginal density of X(¢) on the boundary and b(¢) has a
form similar to (9). The extra factor of na'(t;) in (9) disappears when we
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approximate the sum over j by an integral over ¢. The approximation (7) can
be obtained by deleting the indicator function I(s, X) from (9) and hence
corresponds to Durbin’s p,(2).

THEOREM 2.2. Suppose the conditions of Theorem 2.1 hold and in addition
a(t) is twice continuously differentiable and a(ry) > 0. Let p = a(ry) /7,
A =1 —a(7y))/QA — 7,) and define i and X to be the solutions of

’

r  log(A) = —— — log(X
7 BN = gy N
o
,(t) *log(p) = oy T log(k),

subject to w > a'(ry) > N. Let 74, = a ((na(ry)] + 0.5) and 7} =
a~(na(r,)] + 0.5). Then

p( inf (X(2) - na()) <o)

_ Al o e ta(t)a'(t)
=Vn f (a(t) t 2n(td(?) —a(t))z)

y (1 _1l-a(t)+ a(t)? ) exp(—nl(t)) dt
12na(¢)(1 - a(t)) | y2mwa(t)(1 — a(t))

(B/N)™ 2 (X" [ n px
+(1—n/A+,~§1( ) "(a(fo) a(fo)))

—nl 1
o)}, (1))
n\/2~rra(*ro)(1 —a(7y)) n
where h(-, - ) is defined by (39) and x; = na(ry) —|na(7,)| +i;i=0,1,....
To a good approximation,

o i; x; m wx _ (a’('ro) - l‘l')(X/l",)xl
S ( ) (a'(m ’ a'(fo)) ~ W —d()) - XY

i=1

The second order corrections consist of adjustments to the integral in

Theorem 2.1 and approximations to the endpoint corrections in (5). The key to

adjusting the integral is Lemma 2.1 below, which provides second order

corrections to P(r = ¢;|X(¢;) = j). Similar results are obtained by Woodroofe
and Takahashi (1982) for sums of normal random variables.

The endpoint corrections are derived through a local expansion around 7.

. For the accuracy of the 1 + o(n71) error term it is only necessary to include

thge" endpoint corrections when I[(7) is maximized at 7 = 7,; however, the

inclusion of these corrections improves the accuracy of the approximation

more generally.
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LEmMMA 2.1. Suppose X(t) is the empirical process of n i.i.d. %[0,1]
observations, conditioned on X(T') = na(T). In addition to the conditions of

Theorem 2.1, we assume the boundary a(t) is twice differentiable. Then if
70 < T,

P{3t < T: X(t) < na(t)}
(11) IICOIN Ta(T)a'(T)
Td(T) 2na(T)(Td(T) - a(T))?

as n > «. If a(t) is only once differentiable, the first term of (11) still holds
with error o(1).

+o(n7?)

Proor. We will only sketch the main ideas here; technical details are
deferred to Section A of the Appendix.
A straightforward argument shows

{(Y(£);0 <t <T)

is a martingale, where

1 T
Y(t) = T—_t(X(t) - na; )t).

Let 7 =inf{t: X(¢) — na(?) < 0}. Choose ¢ such that na(¢) > na(T") — 1. If
7 > ¢, then X(¢) = na(T'), so the martingale stopping theorem gives
0=E(Y(rAt);r>t) +E(Y(TAE);7 <)
(12) na(T) n(Ta(7) — 7a(T))
G T(T - ) ”<t)‘

P(r=T) + E(
A Taylor series expansion gives a(7) = a(T) — (T — 7)a'(T) +
(T — 7)%a"(T') /2. Substituting this into (12) and rearranging gives
a(T)  a'(T)
Td(T) | 24(T)
Approximating X(T') — X(T — ¢) by a Poisson process with rate na(T)/T and
na(t) by na(T) — n(T — ¢t)a'(T) and applying Lemma A.5 gives

Ta(T)
n(Ta/(T) - a(T))*’

P(r<T)= E(T - ).

E(T-r)=

which gives (11). O

Proor oF THEOREM 2.2. We analyze each of the terms in (5) separately. We
" evaluate the P(ry < 7 < 7,) term as before. The terms P(r = ¢,|X(¢;) = na(¢;))
are approximated using the second order result given by Lemma 2.1. When
approximating the binomial coefficients, the second order correction to Stir-
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ling’s formula must be used, giving

n B 1
("a(t)) ~ V2mna(t)(1 - a(t))

y 1 . 1—a(t) + a(t)? (1)
- +ol—]|.
Making the approximation of summation by integration accurate to the second
order requires some care with the limits. The simple endpoint approximations
used in the first order approximation will have error of order 1/n. If we
instead choose limits 7, = a ' ([na(7,)] + 0.5) and 7; = a~((na(r,)] + 0.5),
the summation (8) is a midpoint approximation to (4) and hence has the

required second order accuracy.
The first endpoint correction is a binomial tail probability,

P(X(7,) <na(rg)) = P(#(n,7) < na(7,))
_ exp(—nl(7,))
V2mna(ro)(1 - a(r,))
(M/A)(na(fo)—[na(fo)J)
1+u/A

as n — o, where u = a(ry)/75 and A = (1 — a(7r,))/(1 — 7,). This approxima-
tion uses an expansion of the binomial probabilities in conjunction with
Stirling’s formula,

(1 +o(1))

exp(=nl(r) (A"
V2mna(ro)(l - a(re)) (u ) (1+0(1))

(13) P(X(7o) = na(r,) +x) =

for x = O(1).
The second endpoint correction can be written

P(1 <79, X(79) = na(ry), ™ <7y)
(149 _ Y P(r <1y, 7 <11X(70) = na(ry) + x)P(X(79) = na(r,) +x),
where the sum is taken over those values of x for which na(r,) + x is an

integer and x > 0. Conditional on X(r,), {X(¢),¢ < 7} and {X(¢),¢ > 7} are
independent and

P(1 <79, 7 < 711X(79) = na(r,) +x)

- P(tigf (X(2) - na(t)) < 01X(ro) = na(r,) + )

K x P( inf (X(2) - na(t)) < 01X(7o) = na(ro) + x)

T1>1>71

which can be approximated using local linearizations of a(¢) and applying the
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results of Lemmas A.1 and A.3. This can be justified rigorously using trunca-
tion arguments similar to the proof of Lemma 2.1 in Section A of the
Appendix. We get

P(ti?f (X() - na(t)) < 0lX(r,) = na(r,) + x)
(15) v s
- (a’(fo)  @(7o) )

P(_inf (X(t) - na(t)) < 01X(r,) = na(ro) + x)

T1>t>7

~ o iy () - (A)

as n — o, where h(-, - ) is defined by (39). Using (13) and (14) gives
P(r <7y, X(79) > na(ry), 7 <7)
e—nl(‘ro) © X x; M )
= —| A 1+o0(1
Vet (= atra) & (u ) (2t 2y + o),

where x; = na(ry) —|na(7,)| + i.
The approximation (10) is obtained by applying Lemma A.4. O

(16)

A similar result can be obtained for a Poisson process Z(¢) with rate A. In
this case,

P( inf (Z(t)—Aa(t))<0)

ToSI<ST)

_ Al o) w@®d@)
- ‘/)T{[Ho (a (£) - — 2A(ta/(t) — a(t))z)

1 exp(—Am(t)) dt
( B 12)«a(t)) V2ma(t)
+ i
1-p

o o e I e ))exp(—m(fo))}
im1 # ’
X(1+o0(A71)

a'(1y) d(7g) )t\/217a(7'0)
as A - », where u = a(ry)/7y, x;=2ra(ry) —|Aa(7y)] +i, p<1 is the
smallest positive solution of log(p) = (p — 1)/a/(7,) and

¥

m(t) = a(t)log( () ) +t—a(t).

The derivation of this result is very similar to the proof of Theorem 2.2.
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3. Locally Poisson processes. The approximation given by Theorem 2.1
is based on a local approximation of the empirical process by a Poisson process
and therefore we might expect similar results to hold for other counting
processes which behave locally like a Poisson process. To define locally Poisson
processes requires magnifying the local behavior of sample paths. For mean-
ingful results, the process must be embedded in a sequence of processes such
that the overall rate increases with the magnification.

Let (Q, &, P) be a probability space and .#[0, 1] be the class of integer-val-
ued, nondecreasing right-continuous functions f on [0,1] with f(0) > 0. A
counting process on [0, 1] is a function X: Q — .#[0, 1] such that the random
variable X(A) = [, dX is measurable for all Borel subsets A of [0, 1]. That is,

{0 Q: X, (A) =k}eF

for all £ > 0 and Borel sets A. Suppose X(A) has a Poisson distribution with
mean A|A| for all Borel sets A. Then X is a Poisson process with rate A. Here,
|A| denotes the Lebesgue measure of A.

Let {Y,);_; be a sequence of counting processes on (. Then Y, converges
weakly to a Poisson process with rate A if for all finite sequences A,,..., 4,,
of disjoint Borel subsets of [0, 1],

(AIA |) ’\|Ai|)

l

(17) P( N Y(4) =k,-) ﬁ(
i=1 i=1
as n — oo,

DerFINITION 1. Suppose {X, ), _, is a sequence of counting processes on ().
For constants {c,);_; with ¢, > 0 and ¢, — 0, and fixed T, 0 < T < 1, define

Yn(t) = Xn(T + cnt) - Xn(T)

If, for all z > 0, {Y,} converges weakly to a Poisson process with the rate p*
on [0, 2], then X, is locally right-Poisson at T and X, has local rate u*/c,,.
If T>0 and {X,(T) — X,(T — c,?)7)} converges to a Poisson process with
rate 1~ on [0, 2], then X, is locally left-Poisson. If the pair {X,(T) — X, (T —
c,t), X,(T + c,t) — X,(T)} converges to independent Poisson processes, then
X, is locally Poisson at T.

For our applications, n will represent the total number of events and we
take ¢, = 1/n; we omit the subscript n. A simple example of a locally Poisson
process is the sequence of empirical processes X(¢) of n iid. %[0, 1] observa-

. tions, for which the left-hand side of (17) is a multinomial probability and a
straightforward expansion shows u*= u~=1 for all T. Slightly more gener-
ally, if we condition on X(T') = na(T), then u*= (1 — a(T))/(1 — T) and
o= a(T)/T.

'Establishing results similar to Theorem 2.1 for locally Poisson processes
requlres an extension of the first order term of Lemma 2.1 and a continuous |
uniform approximation g(¢;) to P(X(¢;) = na(¢,)).
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Conditioning on X(T') = na(T), we have

P{T_z/i’rzliKT(X(t) — na(t)) < 0|X(T) = na(T)}

< P{(KiltlfT(X(t) — na(t)) < 0IX(T) = na(T))}

< P{T_sz£t<T(X(t) - na(#)) < 0IX(T) = na(T)}

+ P<0<t<ilql1f_z/n(X(t) — na(t)) < 0IX(T) = na(T)}.

Now suppose X(2) is locally left-Poisson at T with rate u(T, a(T)) < o'(T).
Letting n - © and z —» © and using the definition of locally Poisson in
conjunction with Lemma A.2, we obtain

T,a(T
D+ tim tim P{ it (X() - na()

< 0IX(T) = na(T)}
(18)

v

JEP{OE?ET(XU) — na(t)) < 0IX(T) = na(T))
#(T,a(T))
o(T)

We assume the limits in (18) exist; otherwise, similar relations hold with
lim sup’s and lim inf’s. The extension of the first order term of Lemma 2.1 to
locally Poisson processes now requires showing the last term of (18) is 0. This
must be carried out in special cases using the structure of X(¢) and the
boundary a(¢), but given the large deviation scaling, the necessary conditions
will be mild. The main requirement will be

(19) linlinf%E(X(t)lX(T) = na(T)) > a(t)

for all T and ¢ < T, which generalizes the condition ta'(t) — a(¢) > 0 in
Theorem 2.1 and ensures boundary crossing is a rare event. Subtracting a(T')
from each side of (19) and letting ¢t » T shows a necessary condition is
u(t, a(t)) < a/(¢); unfortunately, this is not a sufficient condition.

THEOREM 8.1. Suppose there exists a large deviation approximation g(t) =
n"u(t)e ""® such that ‘

P(X(t;) = na(z;)) = g(¢;)(1 + o(1))

uﬁiformly in t;; u(t) and v(t) are continuous and if u(t) attains its minimum
over [7y,7,] at one of the endpoints, its derivative exists and is 0 at these
points. Suppose also that X(-), conditioned on X(t) = na(t), is locally Poisson
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with left rates u(t, a(t)) and the remainder term of (18) is 0. Then

P( inf (X(t) - na()) so}

(20) TOStST;
= j n(a'(t) — u(t,a()))g(t) dt(1 + o(1))

asn — o,

The proof of Theorem 3.1 essentially follows that of Theorem 2.1 and is
omitted.

Often, it is difficult to verify directly that a process is locally Poisson.
However, for processes arising naturally in statistics, we may be prepared to
assume without rigorous proof that a process can be approximated locally as a
Poisson process. In this case, it will still be necessary to find u(z, a(¢)). There
are several possible representations; one which may be useful is

(21)  lm %E(X(t) — X(s)IX(t) = na(t)) = nu(t,a(t)).

Extension of the second order correction to locally Poisson processes ap-
pears difficult; moreover, our applications involve two boundary problems for
which our numerical examples suggest the effect of the second boundary is
often larger than the error of the approximation (20).

4. Application to Kolmogorov-Smirnov testing. The Kolmogorov-
Smirnov test is designed to test the null hypothesis that independent observa-
tions come from a prespecified distribution. The significance level is defined as
a boundary crossing probability for the empirical process for which we can
apply the methods developed in Section 2.

Suppose X,,...,X, are iid. from a continuous distribution F. The
Kolmogorov-Smirnov statistic for testing #,: F = F,, versus #,: F # F, is

D, = suplF(x) - Fy(2)|,
x
where F(x) is the empirical distribution function. The distribution of D,
under #;, does not depend on F,, so without loss of generality we assume
Fo(x) =x for 0 <x < 1.

The Kolmogorov-Smirnov test rejects #, if D, > n for some n > 0. The

significance level is

(22) a= Po( sup |X(¢) — nt| > nn).
0<t<l1
Letting a(t) = t — n and applying (4) gives
1 exp(—nl(#))
(23) * 217‘[1; ty2mn(t—n)(1—¢t+mn) di(1 + o(1))



210 C.R. LOADER

TaBLE 1
Approximations to significance level of the Kolmogorov—Smirnov test

[

n Method 1.0 1.25 1.5 1.76 2.0
Gaussian 0.2707 0.08787 0.02222 0.00437 0.000671
20 Exact 0.2326 0.07121 0.01651 0.00286 0.000363
Large Dev’'n 0.2376 0.07285 0.01693 0.00294 0.000374
2nd Order 0.2196 0.06819 0.01590 0.00275 0.000347
Smirnov 0.2332 0.07293 0.01777 0.00337 0.000498
50 Exact 0.2458 0.07742 0.01877 0.00349 0.000495
Large Dev'n 0.2486 0.07808 0.01892 0.00352 0.000499
2nd Order 0.2451 0.07728 0.01875 0.00349 0.000495
Smirnov 0.2463 0.07810 0.01929 0.00371 0.000556
100 Exact 0.2527 0.08050 0.01984 0.00378 0.000555
Large Dev’'n 0.2542 0.08080 0.01991 0.00379 0.000557
2nd Order 0.2531 0.08050 0.01984 0.00378 0.000555
Smirnov 0.2532 0.08085 0.02010 0.00389 0.000587

as n — », where
n ]
I(t)=(t- n)log(l - 7) +(1-t+ n)log(l + 1——_t)

The leading factor of 2 in (23) arises from the upper boundary which is treated
by time reversal. Since a”(#) = 0, the second order term in lemma 2.1 disap-
pears. To obtain second order corrections, we use the second term of Stirling’s
formula, replace the lower limit by n + 1/2n and add (1 — )", which is the
probability of hitting the boundary at 7.

Several other methods for approximating and evaluating (22) are available.
These include combinatorial recursions and Gaussian approximations; see
Durbin (1973a) for details. Smirnov’s approximation is

c

24 P( sup (F(x) —x) > ):e—20(0+1/3‘/ﬁ')’
4 0 Oles)l( (=) ) Vn

which we multiply by 2 to obtain a two-sided approximation; see also Section
3.6 of Durbin (1973a). The approximation given by Siegmund (1982) can be
obtained by applying a Laplace approximation to (23).

The approximations are compared in Table 1. Here, ¢ = nvn . The large
deviation approximation performs very well, with relative error about 3%
when n = 20 and much less for larger n. The second order approximation is
inferior to the first order approximation for n = 20 but very good for n = 50
,and n = 100. The error in the fourth decimal place when ¢ = 1.0 in these
casé's can be attributed to the probability of crossing both boundaries. The
Gaussian approximation [obtained by letting n —  in (24)] performs poorly.
Smirnov’s approximation (24) performs slightly better than the large deviation
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TABLE 2
Approximations to the significance level of the likelihood ratio test for a Poisson process change
point with 10% truncation

n Method 2.0 2.5 3.0 3.5 4.0
Gaussian 0.4639 0.1890 0.0578 0.01332 0.00234
50 Exact 0.4399 0.1771 0.0563 0.01430 0.00230
Large Dev’n 0.4484 0.1836 0.0576 0.01356 0.00218
2nd Order 0.4313 0.1782 0.0569 0.01460 0.00234
100 Exact 0.4431 0.1782 0.0539 0.01258 0.00225
Large Dev’'n 0.4501 0.1820 0.0553 0.01279 0.00228
2nd Order 0.4333 0.1770 0.0539 0.01261 0.00227

approximation for small ¢ and slightly worse for large c; however, (24) does
not require numerical integration.

As an example where the second order terms play a greater role, we consider
the likelihood ratio test for a Poisson process change point. Suppose a Poisson
process Z(t) is observed on [0,1], with rate A, for 0 <t <7 and A, for
T <t <1; Ay A, and 7 are all unknown. The log-likelihood ratio statistic for
testing H#}: Ag = A, versus H#: Ay # A, is sup, ., <; nl(2), where I(¢) is defined
by (3) with a(¢) = Z(¢)/n and n = Z(1); see Loader (1992) for more details.
We reject #, if sup, _,., 1(#) = n?/2 for some n > 0and 0 <7, <7, < 1.
Defining p, < ¢ < q, to be the solutions for a(¢) obtained by setting (3) equal
to n2/2, the significance level is then

a=1-Py(np, <Z(t) <nq,V7,<t<mZ(1) =n).

We condition on Z(1) to remove dependency on the common value of A, and
A Note p, = ¢ — n{t(1 — )}/2 + o(n) and q, = ¢ + 7{t(L — £)}*/2 + o(n) and
hence these boundaries are similar to those proposed by Anderson and Darling
(1955) for testing goodness of fit.

We compare the approximations in Table 2 for n = 50 and n = 100, 7, =
1 -7, =0.1 and various values of ¢ = ny/n. The Gaussian approximation
used is

P( sup (IWo(2)l - eyt(1 —¢)) > o)

Te<t<Ty
(1—-7 \
1( 0)) +4C_1),
To(1 — 79)

where W,(¢) is a Brownian bridge; this may be derived using the methods of
Jennen (1985). The exact calculation again uses recursive methods described
in Durbin (1973a). The Gaussian approximation performs much better in this
case than in many problems arising in sequential analysis [see Siegmund

= ¢(c)((c - c‘l)log(
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(1985) for some examples]. The large deviation approximation is slightly better
and the second order approximation is generally excellent, especially for the
small significance levels of interest for testing purposes.

4.1. The unknown parameter case. Let %= {F(x,0),6 € O} be a one-
parameter exponential family, with densities

(25) f(x,0) = exp(6x — (6)) f(x)

for some nonnegative function f(x) and © = {0: [e®*f(x)dx < »}. The null
hypothesis is now 7#,: F € & and the Kolmogorov—Smirnov statistic is

D, = sup|F(x) — F(x,6)l,

where 6 is the maximum likelihood estimate of 6. We assume 6 exists and is
the solution of the likelihood equation

n
Y X, =ny'(9).
i=1
In a few special cases, for example if 6 is a location or scale parameter,
invariance arguments can be used to show the distribution of D, does not
depend on 8. However, this is not true in general, and we must condition on
L ,X,. By sufficiency, the distribution of D, is then independent of 6. We
reject #;, if D, > n for some n > 0. The s1gmﬁcance level of the test is

n
(26) a=Py|D,2nl Y X;=ny|,
i=1
where under P,, X,,..., X, are iid. from F(x, 6) for some 6.

Durbin (1973b) shows that under &, the process
Y,(¢) = Vn (F(t) - F(¢,6))
converges weakly to a Gaussian process Y(#) with mean 0 and covariance

g(s,0)8(t,9)
———RBT—, s<t,

where g(¢,0) = (3/06)F(¢,0) and 1(6) = —E((32/06%)log( f(X,, 9))). Although
Durbin works with the unconditional distribution of Y,(2), the result also
holds conditionally if y is fixed and 8 =  in (27). Standard methods for
approximating boundary crossing probabilities for Gaussian processes, such as
those given by Durbin (1985), can be used to approximate P(sup, Y(¢) > c).

To apply our large deviation methods, we let X(¢) = nF(t) and define
boundaries p, = F(¢, 6) — n and q, = F(¢, 6) + m. To achieve suitable approxi-
mations to the local rate and distribution of X(¢), we embed % in two-param-

- eter exponential families %, with densities

(28) fx,0,8) = exp(6x + 81(x > t) — (6,5)) (%),

27 o(s,t) =F(s,0)(1 - F(t,0)) —
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where
Ui(6,5) = w(0) + log(F(t,0) + (1 - F(z,6))).
The reason for choosing this exponential family is that X(#) is the sufficient

statistic for 8.

THEOREM 4.1. Assume for each t the maximum likelihood estimates 8, and
81, dependent on t, exist and are the solutions of

, (1 —e®)(3/36) F(¢,6)
(29) y=y'(0) + F(t,0) +e’(1 — F(t,0))’

e’(1 - F(t,0))
F(z,0) + (1 - F(,0))

(30) 1-p, =
Then
P(inf(X(t) —np,) < 0| Y X, = ny)
¢ i=1

(31) - X wy Ay 1/2
=i ["(F(6,8) - ut, py)—L O
fo (27T|1//t(01, 1)|)

where t, is the solution of F(¢, ) = n, |}| denotes the determinant of the
second derivative matrix of §, and

v exp( —nl(t)) dt,

0,2
VA p.e 1f(t’0)
w(tp) =ft7,0,,8,) = Jtue?¥f(x,0) dx

1(t) = (8, — )y + 8,(1 — p,) + w(6) — v(,)
— log(F(z,8,) + eB(1 — F(t,6,))).

A similar approximation to the probability of crossing q, is found by time
reversal.

Proor. This is just an application of (20). The large deviation approxima-
tion to the conditional distribution of X(¢,) is derived in Lemma B.1 in Section
B of the Appendix. We give a heuristic derivation of u(¢, p,) here; a rigorous
proof that X(¢) is locally Poisson is outlined in Lemma B.2.

By the strong law of large numbers,

X(2) — X(s)

- Py (s<X;<t) ae.
" ,
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This suggests
1 n
;E(X(t) - X(s)IX(t), ¥ Xi) - P s(s<X;<t) ae.
i=1

Now suppose 0 = 51 and 6 = 51. By the strong law of large numbers,
X(@)/n - p, and L?_,X;/n - y a.e., suggesting

1 n
;ﬂﬂn—mﬁmo=wu2&=w}+mw<&<n
i=1
The representation (21) conditioned on X 7_,X;, then gives

. teéltf t,0
u(t,p) =f[t,6,,8,) = ,t_};ale(i 0))dx '

To justify the local approximation, there is a two-sided generalization of
(19),

q,> (limsup > liminf)%E(X(u)lX(t) =np,) > p,
n—o n—x
for all ¢t and u # ¢, and similarly when conditioning on X(¢) = ng,. For the
examples below, this condition is not satisfied for all values of ¢; however, the
exceptions generally occur only for extreme values of ¢ when the probability of
being on the boundary is very small and hence this does not cause any
difficulty. O

The method developed here can be extended to cases with more than one
nuisance parameter; for example, a normal distribution with unknown mean
and variance. In this case, (29) will become a system of equations, one for each
component of 6. Also, ¢"(9) will be a matrix and so we replace "(8) by 4" ()|
in (31).

4.2. Examples. We use the exponential and normal distributions as exam-
ples to compare Gaussian and large deviation approximations to the signifi-
cance level of the Kolmogorov—Smirnov test.

The exponential density is

f(x,0) = exp(6x + log(—0))I(x = 0),
where 6 < 0. Letting y = £7_,X,/n, we have
1

b=-2,

y

F(t,6) =1 —exp(—g).
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The covariance function (27) is given by

ste sty
a(s,t) =(1—e/?)e™ "/ — —
which enables us to compute the Gaussian approximation to the significance
level using the approximation p,(¢) given by Durbin (1985), which involves a
one-dimensional numerical integral.
The embedded exponential family (28) has the form

_ 0e0x+81(x >1)

ft(x’ 0, 3) =

1 - eot + e5+0t
and
¥,(0,8) = —log(—0) + log(1 — ef + ea*"”)_

In this case (29) and (30) can be written as

1 (1 — eb)tebr
(32) y=—% - F
6 1-—(1-e%)e%
e.s“leélt
(33) 1-p,=
1o (1-ef)e

which can be simplified to
od1 = (1 —p,)(1—e™)

0,2

y
and hence
1 -1+
(34) y_ L _HMoitm
t olt 1 - e

There is no closed form solution for 8, so (34) must be solved numerically. The
second derivative matrix ¢; is found by differentiating (32) and (33).

When evaluating the integral (31) over the lower boundary, the lower limit
isty, = 4 log(1 — n). Also, if X(¢) = np,, then L?_, X; > nt(1 — p,) and hence
we require 1 — p, <y/t. Since y/t >0 and 1 — p, > n as ¢ = =, we have a
finite upper limit of integration defined by the solution of #(1 — p,) =y. We
have

6.t A ,0it
Flt,6) - 2 Loy Piae T
ft 61 dx y 1 — et
- We now have all the components needed to evaluate the integrand of (31)
Since 6 is a scale parameter, the distribution of D, is independent of Z,=1
so we can fix y to be an arbitrary positive number. The probability of crossmg
the upper boundary q, = F(t, 6) + 7 is evaluated by time reversal. The limits
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TABLE 3
Approximations to significance level of the Kolmogorov—Smirnov test for the exponential
distribution
c
n Method 0.6 0.8 1.0 1.2 1.4
Gaussian 0.9511 0.3478 0.1004 0.0225 0.0039
20 Simulation 0.6574 0.2607 0.0719 0.0149 0.0019
Large Dev’n 0.7829 0.2768 0.0742 0.0146 0.0021
50 Simulation 0.6844 0.2814 0.0815 0.0182 0.0028
Large Dev’'n 0.8415 0.3005 0.0834 0.0176 0.0028
100 Simulation 0.7059 0.2948 0.0865 0.0184 0.0023
Large Dev'n 0.8702 0.3129 0.0881 0.0191 0.0032
200 Simulation 0.7059 0.3019 0.0864 0.0210 0.0033
Large Dev’'n 0.8917 0.3223 0.0916 0.0202 0.0034
Simulation s.e. 0.005 0.005 0.003 0.0015 0.0006

of integration are 0 and y log(7), and the derivative-local drift term is

(1- ‘It)eélt 1 A
N 77— (1-q,)6;.

We are unaware of any computationally feasible method for evaluating (26)
exactly. We use simulations of size 10,000 to check the performance of the
Gaussian and large deviation approximations. The results are shown in
Table 3.

The large deviation approximation is outperforming the Gaussian approxi-
mation, especially in the tail of the distribution. Neither approximation per-
forms particularly well for small ¢, partly because there is a large probability
of crossing both boundaries which has not been allowed for.

Durbin (1985) reports exact calculations for the asymptotic Gaussian pro-
cesses for the one-sided case. When the true asymptotic boundary crossing
probability p is 0.05, Durbin obtains the first order approximation p; = 0.0507.
This will correspond to a value of ¢ close to 1.0. Table 3 shows the error
arising from the approximation of X(¢) by a Gaussian process is much larger
than the difference between p(¢) by p,(¢). Using more accurate and computa-
tional approximations to the Gaussian process boundary crossing probability
will not improve the performance.

To evaluate (31) for the normal distribution with unknown mean and
variance, we parameterize the density as

1 (x — )\
"'—_?exP(__on_ - P

2o
where y =x% a= —-1/(202) <0 and B = u/0o? This leads to a pair of

f(t’é) -

2

N B 1l T
w+prt g - glog(- 7))
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TABLE 4
Approximations to significance level of the Kolmogorov-Smirnov test for the normal distribution

c

n Method 0.6 0.8 1.0 1.2
Gaussian 0.7313 0.1495 0.0201 0.0018
20 Simulation 0.4476 0.0893 0.0096 0.0010
Large Dev’n 0.5338 0.0976 0.0106 0.0006
50 Simulation 0.4887 0.1036 0.0133 0.0010
Large Dev’'n 0.5954 0.1149 0.0140 0.0011
100 Simulation 0.5058 0.1151 0.0154 0.0009
Large Dev’'n 0.6302 0.1243 0.0158 0.0013
200 Simulation 0.5078 0.1202 0.0167 0.0020
Large Dev’'n 0.6566 0.1313 0.0171 0.0014
Simulation s.e. 0.005 0.003 0.001 0.0004

equations similar to (29) and (30) to define the maximum likelihood estimates
of a and B under the embedded change point family.

Both limits of integration are finite. When X7 ;X; =0 and X?_;X? = n,
the lower limit will be the solution of p, = ®(¢) — n = 0. The upper limit is
derived by noting that if ¢ > 0 and X(¢) = np,, then *7_,X2/n > t*(1 — p,)/p,
and hence we require ¢t%(1 — p,) < p,. By symmetry, the integral over the
upper boundary will be the same as that over the lower boundary.

The Gaussian approximation is fairly straightforward. When u = 0 and
o? = 1, the covariance function is

st
o(s,1) = 2()(1 - 0(0) ~ 1+ 5 |#(5)8()

for s < ¢, and Durbin’s approximation p,(¢) can be evaluated by numerical
integration.

The approximations are compared with simulations of size 10,000 in Table
4. The large deviation approximation tends to overestimate the true probabil-
ity for small ¢ but performs well for the larger values of ¢ which are of
interest for significance testing. The Gaussian approximation substantially
overestimates the true probability.

APPENDIX

A. Derivation of boundary crossing results. In this section we pre-
sent some results used in the proof of Theorems 2.1 and 2.2 and complete the
. proof of Lemma 2.1. We begin with a series of lemmas concerning level
crossing probabilities for the process aZ(¢) + yt, where Z(¢) is a Poisson
process with constant rate A and a and y are constants. We then complete the
proof of Lemma 2.1.
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Most of the results are not new; see Pyke (1959) for related work. The
approximation given in Lemma A.4 is used in Siegmund (1988). However, our
approach appears to be simpler than that taken by other authors and is
included here for completeness.

LEmMMA A.1. Suppose a < 0 and y > 0. Then

c
(35) P{sup(aZ(t) + yt) = c} = exp(—()\’ - A)),
t>0 Y
where
ali aX
(36) — + log(A) = — + log(X)
Y Y
and X <vy/lal.

ProoF. Let .#= sup,. o(aZ(¢) + y¢) and 7, = inf{t: aZ(¢) + yt > c}. Since
a < 0 implies all jumps of aZ(¢) + yt are downward, applying the strong
Markov property to the process restarted at time 7, gives

P(#>c+d#>c) =P(&>d).

This lack of memory property characterizes the exponential distribution.
Therefore,

(37 P(#>c)=eF
for some B > 0. For small & (¢ > y3), we get
e B = P(A>c)
=P(M> clZ(8) = 0)e ™ + P(A> clZ(8) = 1)A6e™* + 0o(9)
= g P8 4 g=Blema=Y)) §e20 + o(§),
1 =e®B"""% 4 \§e® + 0(9).
Letting 6 — 0 gives
Ae®f =\ — 9B,
which reduces to (36) if we let X = A — By and (87) gives (35). O
ThLEMMA A2. Suppose a >0 and y <0. Let I,=inf{t: aZ(t) + yt > 0}.
en:

(@) P(T,< ) =2Ara/lyl. ‘
(ii) Conditionally on I, ,< », aZ(T,) + v, is distributed uniformly on
[0, al.

" Proor. The first part of this result can be derived in many ways; the
simplest is to apply Corollary 8.39 from Siegmund (1985). The second part is
most easily obtained using the Wiener—Hopf factorization.



BOUNDARY CROSSING PROBABILITIES 219

Note that 7, < « is equivalent to sup;sqaj + yT; > 0, where T is the jth
event time. If S; = aj + yT}, then {S;, j > 0} is a random walk and S, has
density

ieA(x—a)/lvl
vl
for x <a.Let r,=inf{n: §, > 0}, 7_=inf{n > 1: S, < 0} and
G .(6) = E(e"+;7,< ).
We have
/\eiaa
A —i0y
and since S; has an exponential lower tail, so does S, . Therefore,

E(eiosl) = eiOaE(eiOyTl) =

(38) G_(0) = 755

Applying the Wiener-Hopf factorization [cf. Siegmund (1985), Theorem 8.41]
gives

A A
1 - - = ifa
( G+(0))(1 A— iOy) 1 A— i0'ye

and therefore
G (6 Aa ei® — 1
+( ) - I 'YI ifa
Letting 6 — 0 gives (i). Dividing by Aa /|yl shows the conditional distribution
of aZ(J,) + v, has characteristic function (e?** — 1) /(i6a) and therefore
is distributed uniformly on [0,a]. O

LemMma A.3. Suppose a > 0 and aA + vy < 0. Then

P(sup(aZ(2) + 7) > ¢} h(Aa "C)
u = ITWERTWE E
e Y Iyl lyl
where
Aa Ac Aa) = [Aa)’
39) 1-h|l—,—|=[1-— — | P(aU,; <
(39) (m m) ( Iyl),go(lyl) (aT; <)
Aa\lezel (—1)* (2 *
40 =1-= —— [ (c - ak)| eXc—abym
( ) ( I'Yl)kgo k! (I'Yl(c “ )) ¢

where U; is the sum of j independent %[0, 1] random variables.

ProoF. Let J be the number of finite ascending ladder times. Then J has
.a geometric distribution, and by Lemma A.2,

p-n=(-2)(2), s-on
(_J)_ IAI I/\,I ’ J_ g Lygeee o
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Also by Lemma A.2, P(#< c|J =j) = P(aU; < ¢), from which (39) follows.
Writing ¢/a = m + y where m is an integer and 0 <y <1 and substituting

1 mAj
(41) Pt <e)= 53 T (1)(-D*m +5 -1y’
gives (40) after some rearrangement. O

Both forms of Lemma A.3 can be numerlcally unstable and are especially
unsuitable for use in Theorem 2.2 since this requires evaluation of A(-,-)
many times. The following lemma gives a useful and fairly accurate approxi-
mation.

LemMMA A4. Suppose a > 0 and y < 0. Then
P(sup(az(s) + 1) > } 7 = da (c X /\))
sup (a ct ~——exp|—(XN — asc — o,
>0 4 Xa =y TPy
where X is defined by (36) and X > |y|/a.

Proor. Let 7, =inf{;: S; > ¢}, where S; is as defined in the proof of
Lemma A.2. Then by Wald’s likelihood ratlo identity [cf. Siegmund (1985),

page 13],

> dP,
P(1, < ) = Zlfh P, —~dP,
= = (i’) e—(’\_’\,xsn_an)/y dPX
n=1"{r;=n}\ X
(42) = e~ 0O E {exp(— (A = X)(S5, - €) /7))
(43) ~ e =Ny = y,{exp(—()t _ A)STJY)} as ¢ > o.

(A - X)E '(ST+)/Y
We have used (8.46) of Siegmund (1985) to obtain (43) from (42). Using Wald’s
equation,

a+y/X
E'(S1'+) =Ey(7,.)Ex(S,) = m
and
1 A
P/(T_= 00) =1- E)‘{exp(;()\ - /\')ST_)} =1- }
by (38), so
X+
(44) B(S..) - .
Similarly,
' 1 Aa
@  Bfes(-20-5.)) -pricor -2

by Lemma A.2. Substituting (44) and (45) into (43) completes the proof. O
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LemMma A5. -Let Z(t) be a Poisson process with rate A <vy and 7=
supl{t: Z(¢) > yt}. Then

(46) B(r) = —2
(v =1

Proor. We assume y = 1; the general case follows by a straightforward
time transformation. Since Z(¢) is nondecreasing, we must have Z(r) = r and
therefore 7 is an integer-valued random variable. We have

P(r=j)=P(r=j,2(z) =Jj)
= P(7=JjlZ(j) =5)P(Z(j) =J)

—(l—A)( J)’ :

using Lemma A.2. Summing over j, we get

B =(-NE, (_”1), -

PN OV )
=1 )‘)ng kgo( (j = D&!
- (1 - k)
(47) =(1-4) ZIAZZ (-1* U=E=D&
(48) - A) Z N—=—— (l D

Here, we have used a comblnatorla] identity given on page 60 of Feller (1968)
to evaluate the inner sum of (47). Evaluating (48) gives (46). O

Proor oF LEMMA 2.1 (Continued). For the remainder of this section, all
probabilities and expectations are evaluated conditionally on X(T') = na(T).
Using the conditions a(¢) < ¢ and ta’(¢) > a(¢) for all ¢, we can find a constant
m such that

ta(T)
T
and since a(?) is twice differentiable, there exists v such that

>a(T)-m(T—-t)za(t) Vi<T

a(t) = o(T) = (T - )a(T) + g(T 52 Ve<T.

. Moreover, for any ¢ > 0, there exists 8 > 0 such that

a(t) = a(T) - (T - )a(T) + a—”(—:’;)—_—e(T—t)z VI-s<t<T.
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Define 7 = inf{¢: X(¢) < na(2)}. Fix k > 0 and choose n large enough so that
k/n <. Choose ¢t such that T — k/n < ¢t < T with na(t) > na(T) — 1. Fol-
lowing the derivation of (12), we get

p T a(T) v - k

) (7<T)> Ta(T) + 2a,(T)E(T—T,7sT—;)
+a_”wE(T_ .T_£< <T)

2a/(T) T n o7 ’

We suppose v < 0; otherwise, the term involving v can be omitted. We then
want an upper bound for E(T — 7;7 < T — k/n). Define 7' = inf{t: X(¢) <
n(a(T) — m(T — ¢))} so ¥ < 7 and hence

k k
E(T—T;TST— —) SE(T—T';T’ST— —).
n n
Let j, =[mk] and ¢; = T — j/(nm). Then

k na(T) J
E T—T';T’ST—;)= Z E(—;T'=tj)

= nm
J=J1
(50) na(T) J
—_— ) = T) -j).
< jg;l nmP(X(t’) na(T) - j)
Split the sum into j < vn and j > Vn. For j < Vn,

2

P(x(5) = na(r) =) = ("0 )(1- 2)'(2

s(na(T))j( j )j(l— j )na(T)(l_ j )_,-

)na(T)—j

J! nmT nmT nmT
ea(T) \’ (M) (, 1\
<|— - - .
\Tmr | ®P\” Tmr VnmT
Summing (50) over j < Vn gives
no
“—P(X(t;) = na(T) —j
£ 2P(X(t) = na(T) -)
( 1 )—»/'7 ® (a(T)el—a(T)/(mT))j
<|1- —
VnmT j—j, hm ‘mT
“’;u(.h)

‘ as' n — », where u( Jj) 2 0 as j;, » ». To establish convergence of the
sum, note that the relation log(x) <x — 1 with x = a(T)/mT # 1 shows
a(T)el oM/ (mD) /T < 1,
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For na(T) > j > Vn, we use standard bounds on factorials to obtain
P(X(tj) =na(T) —j)
1/4‘/ na(T) (a(T) )( 1-j/(nmT) )""‘“‘f
<e N . .
2mj(na(T) —j) \ mT ) \1-j/(na(T))

< We@(—nw(%)),

where

mT 1-x/a(T)
w(x) =xlog(a(T)) + (a(T) —x)log(m)

= sup(xlog(p) + (a(T) — x)log(1 - p))

—(xlog(-mif) + (a(T) —x)log(l - %))

Since w(0) = 0, w(x) > 0 for x > 0 and w'(0) > 0, w(j/n) is minimized over
j=Vn at j = Vn, at least for n sufficiently large. Hence

MiT)P(X(t~) =na(T) —j) <e (—nw(i)){l + (na(T))”?}
A e " |

=o(n71)
as n — « since the first factor converges exponentially to 0. Substituting into
(49) gives

p T a(T) a'(T) - sE(T T k T)
< > = —_ - - —
(r<T) > 7007y = “2a(T) HnETR<TS
(51) ,
-1
+ —Zna’(T) u(mk) +o(n™%).
A similar limiting argument as n — « and an application of Lemma A.5 show

k
lim lim nE T—7;T—;<7<T

koo n—ow

) _ Ta(T)

(Te(T) - a(T))*
Substituting into (51) and letting ¢ — 0 gives
a(T) N Ta(T)a'(T)
Td(T) 2nd(T)(Ta(T) - a(T))?

A similar upper bound completes the proof. O

P(r<T)>

+o(n7h).

B. Conditional distributions. In this section we derive the approxima-
tion to the conditional distribution of X(¢) used in Theorem 4.1 and sketch a
proof that X(¢) is indeed locally Poisson. Our approach will be based on large
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deviation approximations to the distribution of the sum of independent ran-
dom variables from an exponential family. Suppose X;,..., X, are ii.d.
random variables in %9, from an exponential family %= {F,,0 € ©} with
densities
fo(x) = exp(<0,x) — ¢(0)) f(x),

where 0 = {6: [exp({6, x)) f(x) dx < »} and ¥(6) is the normalizing function.
Denote by f;™ the n-fold convolution of f,. Assume for each x there exists a
solution 6 of the likelihood equations

x=y(0); i=1,...,d,
where x = (x,,..., x;). The large deviation approximation to f{™ is

(52) fi(nx) ~

Gy A @i )

where nl,(x) is the log-likelihood ratio statistic for testing the null hypothesis
of known 6 against the general alternative,
lo(x) = <6 - 6,%) — (w(8) - w(6)).

For our purposes the important feature of (52) is that it provides an asymp-
totic approximation as n — « with x fixed; see Borovkov and Rogozin (1965).
By contrast, a central limit approximation will only hold for values of x in a
set which shrinks to the point E,(X;) as n —» . We can view (52) as applying
the central limit theorem to fé(") and applying a likelihood ratio argument to
obtain f{™.

LEmMA B.1. In the setting of Theorem 4.1,
) ~ wl”(é)Il/Z
(277n|d/”(51, 51)

P(X(t) = np £ X, m ;e O(1 + o(1))

i=1

)1/

as n — o with t, p, and y fixed.

Proor. The proof involves writing the conditional probability as the ratio
of densities,

n P(n—-X(t) =n(1-p,), 27X, =ny)
Pl X(t)=npl ), X,=n ) = — ,
( 2 i iz=:1 Y P(X}_1X; = ny)
writing n — X(¢) = L7_,I(X, > ¢) and applying (52) to both the numerator
and denominator. The exponential family (25) is used for the denominator and
the embedded exponential family (28) is used for the numerator. O

LEmMMA B.2. Let X(t) be as in Theorem 4.1. Condition on X(¢) = np, and
*_1X; = ny. Then X(¢) is locally Poisson at t, with left rate

. ' A oA pteéltf(t’o)
w(tp) =1 00 81) = S
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Proor. To simplify the notation, we only show for each z > 0, X(¢) —
X(¢t — z/n) converges in law to a Poisson random variable with mean u(¢, p,)z.
Establishing that (17) holds more generally is similar. In addition, some
uniformity conditions are omitted.

Let S, = X?_,X;. Denote by P'™ the measure P conditioned on X(¢) = m
and m = np,. Then

P(’")(X(t) - X(t - %) — kIS, = ny)

P™(X(t) —X(t—2z/n) =k, S, =ny)
(53) - P™)(S, = ny)

P™(X(t) — X(t —2/n) =k)P™9(S,_, = ny — kt)
P™(S, = ny)

as n — ©, where S,_, denotes the sum of n —k random variables
X, ..., X, _, from a density

- f(x,0)
f(x) =
F(t—2/n,0) +1—F(t,0)
We treat each of the terms in (53) separately. Under P™), X(¢) — X(¢ — z/n)

has a #{(m,(F(t) — F(t — z/n))/F(¢)} distribution and the standard Poisson
limit theorem gives

(1 — It - %,t]).

1(m#awwk ( m#aww
1 (peaf(@.0) )" [ P (5:6)

(54) P(m)(X(t)_X(t—§)=k)_)k! F(t,0) F(t,0)

as n — oo,

The second term in the numerator of (53) can be written

P(S,_, = ny — kt, X(t) =m — k)
P(X(t) =m — k)

(55) P™ (S, , =ny — kt) =

Embedding f(x) in a two-parameter exponential family with a change point of
size & at ¢, we can approximate the numerator of (55) by

P(S, . =ny — kt,X(t) =m — k)
1 -kt _n—m

. ny
27Tn|l/;;,(0~, g)ll/z eXP( (n )(( ) n—=k n—Fk

; | ~0(6,8) + (0,0

as n — », where b and § are the maximum likelihood estimates of b and &
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and
¥(0,8) = ¢(6) + log(F(t - %,0) +e?(1 - F(t,0)))
B 2f(t,0) o
= ¥(8,9) - n(F(¢,0) +e®(1 - F(t,0))) *to(r™).
This gives
P(gn_k =ny —kt,X(t) =m — k)
1 - .
TG exp(— (0 — 6)(ny — kt) — 5(n — m)
(56)

+(n - k)(w(6,8) - v(6,0)))
2f(t,6)
T F(t,0) + eS(1 - F(t,9))
When & = 0, X(¢) has a binomial distribution with success probability
F(t-2z/n,0)
F(t-2z2/n,0) +1-F(t,0)

X exp +zf(t,0)).

which gives
P(X(t)=m—k)
=(n_k)( F(t - z/n,06) )”'"’
m—kJ\F(t-2/n,0) +1— F(t,0)
(57) 1 - F(¢,0) nom
X(F(t—z/n,()) +1 —F(t,o))

- (,'; “_’;)F(t,o)"“ku — F(¢,0)" " exp(zf(t, 0)(1 - F(f”o) ))

as n — oo,
We can write the denominator of (53) as

P(S,=ny,X(t) =m)
P(X(t) =m)
and using the large deviation approximation,
P(S, =ny, X(t) =m)
1

)Il/z exp(—n((é1 - 0)y\+ 5,1 -p,)

P™(S, =ny) =

(58) " 2l (6,5,
—(%(91,51) - w(ﬂ,O))))

as n — o, Also,
(59) P(X(t) =m) = () F(t,0)"(1 - F(t,6)"".
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Substituting (54), (56), (57), (58) and (59) into (53) gives
z
P(’”)(X(t) - X(t - —) =klS, = ny)

p.Af (¢, 0) _ p:2f(t,0)
“w\F@,e) | ¢ F(t,0)

nl(m —k)!
(60) XmF(t ,0) exp( 2f (¢, 0) 1— F(t 0) )
X exp((t&?1 - 0)ny — (6 — 0)(ny — kt) + n(1 —p)(¢§ 5))

x exp((n - k)(4(6,8) - 9(6,0)) — n(v(6:,8,) - w(o, 0)))
2f(¢,9)
F(t,0) + e5(1 - F(¢,6))

2f(¢,0
Y (pF(t( 0))) ( ) F(¢,0)" exp(k(¥(6,0) — 6t))

2f(t,0)
F(t,0) + e5(1 — F(t,6))

X eXP((él - é)ny +n(1 _pt)(gl - 5) + n(qp(é 5) - "’(él’ A)))

The first line of (60) arises from (54), the second line comes from (57) and (59)
and the remaining lines come from (56) and (58). It is easy to show 6-6,=
O(n 1) and 6 — 6, = O(n"!) as n — . This implies

0(0.8) = #(01,8) + (5= 0)u(61,8) + (5= 831, 8) +of 3 |

X exp| —

+zf(t,0))

(61)

xexp| k(¢ — w(6, 5)) -

(08)+ (F- i+ (5 5) -0 +o[ 2]

and hence the third line of (61) converges to 1. Writing f(¢,0) =
exp(8¢ — ¢(0)) f(¢) and canceling terms in the first line of (61), we get

P‘"‘)(X(t) - X(t - %) — kIS, = ny)

1 . - k
~ E(z exp(0t - 1/1(0,5)) f(t)) exp| —

2f(¢,0)
F(t,6) +e5(1 - F(t,9))

- (el 1) {0 )

as n — o, which completes the proof. O
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