The Annals of Applied Probability
1992, Vol. 2, No. 1, 142-170

PARAMETER ESTIMATION FOR GIBBS DISTRIBUTIONS
FROM PARTIALLY OBSERVED DATA

By Francis CoMETS! anND BasiLis Gipas?

Brown University

We study parameter estimation for Markov random fields (MRF's) over
Z%, d > 1, from incomplete (degraded) data. The MRFs are parameterized
by points in a set ® € R™, m > 1. The interactions are translation invari-
ant but not necessarily of finite range, and the single-pixel random vari-
ables take values in a compact space. The observed (degraded) process y
takes values in a Polish space, and it is related to the unobserved MRF x
via a conditional probability P?'*. Under natural assumptions on P?¥, we
show that the ML estimations are strongly consistent irrespective of phase
transitions, ergodicity or stationarity, provided that ©® is compact. The
same result holds for noncompact ® under an extra assumption on the
pressure of the MRF's.

1. Introduction. The statistical inference for Gibbs distributions—
equivalently, Markov random fields (MRFs)—has recently attracted a great
deal of interest because of its importance in applications to image processing
and computer vision tasks [17, 16, 5, 22, 19], neural modeling and perceptual
inference [1, 25] and speech recognition [30, 3]. The inference problem has led
[18, 23, 8] to an interesting interplay between statistics and the phenomena of
phase transitions in statistical mechanics, and it generalizes the inference
problem in time series analysis. Its fundamental difficulty lies in the presence
of long-range dependence for the underlying random variables. In contrast to
the situation in time series where short-range dependence is the rule and only
special models are needed to exhibit long-range dependence, in MRF long-range
dependence is typical, and it gives rise to the phenomena of phase transitions
and the nonanalytic behavior of various thermodynamic quantities [36].

In some applications, the parameters of the Gibbs distributions need to be
estimated from fully observed data, while in others from incomplete (noisy,
degraded) data. Various methods have been devised for the case of fully
observed data: (1) maximum likelihood (ML) estimation [15, 31, 38, 25]; (2)
maximum pseudo-likelihood (MPL) estimation [4, 18, 21]; (8) the ‘“coding”
method [4]; (4) a logistic-like method [10, 35]; and (5) a ‘“variational” method
[2]. The main estimation procedures for the case of partially observed data are
the ML method via the EM algorithm [9, 19] and the method of moments [19,
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14]. A simple (EM-like) procedure for solving certain moment equations has
recently been introduced in [2].

Consistency and the asymptotic behavior of estimators in the case of fully
observed data have recently been studied in detail: Geman and Graffigne [18]
provided the first proof of consistency for MPL estimators (see [21] for an
alternative proof; see also [24]). In [23], it was shown that ML estimators are
(strongly) consistent irrespective of phrase transitions, ergodicity or stationar-
ity (some consistency results for the Ising model have been obtained in [33]). It
was also shown in [23] that, under appropriate conditions, ML estimators are
asymptotically normal and efficient. A statistical analysis of the Gaussian
Markovian case is given in [27]. In [8], we established a superefficiency phe-
nomenon for the Curie-Weiss model. A similar phenomenon is expected to
hold for the Ising and other models.

In this paper we prove (strong) consistency of ML estimators for the case of
incomplete (noisy) data. Our results hold irrespective of phase transitions,
ergodicity or stationarity. The proof of consistency for incomplete data is much
subtler than the proof [23] of consistency for fully observed data. An important
step toward establishing consistency is the proof of a new variational principle
for the conditional pressure (Section 3)—a result of independent interest. The
proof of consistency also involves certain large deviations estimates [13, 32, 7]
for the empirical field of the degraded data. After the completion of the present
paper, we learned that a weaker consistency result, under stronger assump-
tions, and by difference methods, was obtained in [39, 40].

Our precise framework and consistency result are given in Section 2 (and
proofs in Sections 3 and 4). Here we provide a brief outline only: The Gibbs
distributions are parametrized by points in a parameter space ® which is a
subset of a finite-dimensional Euclidean space R™, m > 1. The interactions are
translation invariant but not necessarlly of finite range, and the single-pixel
random variables (“spins”) x;, i € Z¢, take values in a finite or compact state
space (), ,. The state space for the MRF's over Z is Q, = (Q, )%’ The points
(configurations) in Q. will be denoted by x = {x,: i € Z%). The process x is
observed indirectly through an observable process y = {y;: i € Z9}, where each
y, is assumed to take values in some Polish (i.e., complete separable metrlc)
space (), ,. The state space of the observed process y is 1, = (Q, y)Z The
unobserved and the observed processes are related through a known (indepen-
dent of 6 € ®) conditional probability P?*. Our general model (see Section 2)
for P?* covers degradations due to linear blurring, nonlinearities, noise, and
so forth. For simplicity, we assume here that P”* has the form

(1.1) P = () °

where u}*, i € Z¢, is a (known) single-pixel conditional probability for y;
. given x; (this model covers, for example, the case when y, is obtained from x;
by an addltlve or multiplicative noise n; which is stochastically 1ndependent of
x;, e.g., y; = f(x;) + m;, where f is a nonlinear transformation). If =, = 7§ is
a Gibbs distribution for the unobserved process, then P?* ® 7} is the joint
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distribution of (x,y). The marginal of the observed process y € Q, will be
denoted by P, = P3.

We are interested in estimating the vector-parameter 6 of the Gibbs distri-
butions from a single observation y(A) ={y,: i € A} in a finite window
(““‘volume”) A c Z%, and then studying consistency as A — Z%. In Section 2,
we will consider various log-likelihood functions. Here we consider a log-likeli-
hood function based on “finite-volume” Gibbs distributions with ‘‘free bound-
ary conditions” (see Section 2): Let u, , be a probability measure on Q, ,. The
finite-volume Gibbs distribution with free boundary conditions in the finite
window A C Z¢ has the form

20 Un(x(A)

(1.2) ma,0(dx(A)) = I T o, .(dx,),

" Z\(0) ica
where x(A) = {x;: i € A}, Uy(x(A)) are the energies (see Section 2) in the
window A and Z,(0) is a normalizing constant, called the partition function.
Under woldx;, dy;) = u(dy;lx)u, (dx,), the marginal of y; will be denoted by
(dy,), and the conditional probability of x; given y; will be denoted by
(y Iy,) The law of y(A) = {y;: i € A} has a density P, ,(y(A)) with respect
to IT; c Ao, ,(dy,), and the log-likelihood function is taken to be

1
Li(3(A),0) = ~ 7 0B Py o(3(A))

=pA(8) — pa(¥(A),0),

where p,(0) = (1/|A])log Z,(6) is the finite-volume pressure and p,(y(A); 8) =
(1/|ADlog Z,(y(A), 6) is the finite-volume “conditional” pressure [see (2.12)].

Both p,(6) and p,(y;#) are convex in 8, but [,(y, 8) is not convex in 6. This
is in contrast to the situation in the case of fully observed data [23]. Many of
the difficulties and subtleties in the proof of consistency lie in the behavior of
pu(y,0) as A - Z%. If 8, is the true parameter, and if the true distribution
P,(dy) is translation invariant, then p,(y,8) has an as. limit p(-,0) as
A — Z? [Theorem 3.1()]. If P, (dy) is ergodic, then p(-, §) is a constant which
satisfies a variational pr1n01ple [Theorem 3.1(ii)]. This variational principle is a
key step toward proving consistency; it is related to the asymptotics of Gibbs
distributions under conditioning by P, , but the strategy used in [7] does not
work here, because of the complex structure of P,.If P, (dy) is not transla-
tion invariant, then p,(y, 8) need not converge as A- Zd However, using
large deviations estimates for the empirical field

(1.3)

14 8,

. Ry = i B

. where 7! is the shift on Z¢, we show that the limit points of p,(y, #) lie in a
certaun region determined by the ergodic distributions associated with 6. This
result together with the above-mentioned variational principle are the major
ingredients for establishing consistency when the parameter space ® is com-
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pact (Theorem 2.1). When O is noncompact, the nonconvexity in 6 of the
log-likelihood function ,(y; 8) creates subtle difficulties in showing that the
minimizer of (1.3) exists for large A, and eventually stays in a compact subset
of @. Our result of consistency in the noncompact case (Theorem 2.2) is the
same as in the compact case, but it holds under a condition [assumption (2.21)]
on the behavior of the pressure for large |6|. This condition is proven in the
Appendix in a special case (which covers the Ising model without an external
field), and it holds in general whenever p,(6) has an asymptote uniformly in
the volume A. We believe that consistency in the noncompact case does not
hold in complete generality without any extra assumption such as (2.21). In
the Appendix, we argue that this problem and its difficulty are related to the
fact that the set of ground random fields [20] (i.e., the set of MRFs with
|6] = +) is in general [20] larger than the set of the attainable ground
random fields (i.e., the set of limit points of MRF's as 8] - + »). We note that
consistency for noncompact ® (and incomplete data) does not seem to have
been treated in the literature even for i.i.d. random variables (see [37] for a
study of the i.i.d. case with compact ©).

Our assumption that the single-pixel state space (, , (and hence Q,) is
compact is not necessary. Our result holds for an arbitrary Polish space (1, ,,
provided that the summability condition (2.3) holds. However, this condition
excludes the natural framework of unbounded spin systems [28]. Our tech-
niques apply to noncompact (), ,, but they require certain technical modifica-
tions.

The organization of the paper is as follows: In Section 2, we set up our
precise framework and state our consistency result. Section 3 contains some
technical propositions, the variational principle for the conditional pressure
and the proof of consistency for compact ®. The proof of consistency for
noncompact O is given in Section 4. Finally, the Appendix contains a proof of
assumption (2.21) in a special case, and some miscellaneous remarks pertain-
ing to the consistency for noncompact @.

2. Notation and main results. In this section, we set up our notation,
summarize some properties of the Gibbs distributions and state our main
result. Proofs are given in Section 3.

2.1. Gibbs distributions. We follow the notation of [36, 23]. Let Q, , be
the single-pixel state space, assumed to be a finite set or a compact space. With
each pixel i € Z¢, we assoaate a random variable (“‘spin’’) x; taking values in
Q.- We set Q, = (Q, )%, and Qy, = (Q, ) for any subset V C Z°.

Gibbs dlstrlbutlons are defined in terms of interactions. An interaction ® is
a real continuous map

d: U Q.—R,

! vz finite
and ®(x(V)) describes the interaction inside the subset V. Let A be a finite
subset of Z¢, A° = Z¢ \ A, and z a fixed configuration in Q,. The energy in A
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with boundary conditions (b.c.) z is —U, ,(x(A)), where
21 Ui.(x(A) = T o(=(V)) + L @(x(V) va(V)),

VcA vezd
where the sum ¥’ extends over finite V. < Z¢ suchthat VN A = &,V N A° # &,
and the configuration x(A) Vv z(V) is defined by

x;, ifieAnV,

13

(2.2) (x(V) v 2(V)); = {z,., ifieAnV.

Free b.c. correspond to (2.1) without the second term.
In this paper the interactions are assumed to be translation invariant, that
is, ®(x(i + V) = ®(x(V)), and to satisfy

(2.3) o= X sup|®(x(V))l < +eo.
0evcz? finite *(V)

If ®(x(V)) = 0 whenever the diameter of V is larger than R, then we say
that @ is a finite-range interaction of interaction radius R,. The set of
translation-invariant interactions that satisfy (2.3) form a separable Banach
space #. The set ¥, of finite-range interactions is dense in & [36].

In this paper, we fix m > 1 interactions ®%, a=1,...,m, in & (with
corresponding energy functions U,\(f‘g, a = 1,..., m) and parametrize the Gibbs
distributions by 6 = (60,09, ...,0™) € @, where the parameter space is
taken to be an arbitrary subset of R™. We will use the norm

(2.4) 1Tl =% o).

a=1
Note that the energies can be written as follows:
e(x(V) va(V))
(a) =

i€A jeVcZ? finite

Later we will use the functions (x € Q,),

P (x(V
(2.50) Apo(x)= L D
0eVcZz? finite
(2.5b) Ay = {Age(2))i-s-
Let p, , be a probability measure on (), , and set
(2.6) K5 (dx(A)) = g\#o,x(dxi)-

The finite-volume Gibbs distribution in the finite window A c Z¢ with b.c. z
is defined by
! 20 Un,o(x(A)

(2.7) Tp,6,.(dx(A)) = —Z;—(;)—#%’fl(dx(l\))-
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An infinite-volume Gibbs distribution, or simply a Gibbs distribution associ-
ated with the (fixed) interactions ®®, a =1,..., m, and parametrized by
6 € 0, is a probability measure 7, on (, whose conditional probability that
xlg, , = x(A) when it is known that x|, . = x(A°) is given by

(2.8) mo(dx (A (A)) = Ty, g, xarf(2(A)) 15 (dx (A))

for every finite A c Z%. The set of Gibbs distributions corresponding to the
parameter-vector 6 (and fixed ®*, a = 1,..., m) will be denoted by G(9). It is
well known [36] that G(6) is a convex, compact and Choquet simplex. If G(8)
is not a singleton, we say that a phase transition occurs for the parameter
value 0. G(9) always contains translation-invariant measures, but it may also
contain [12] nontranslation-invariant distributions.

2.2. The observed process. The process x = {x;: i € Z% is observed indi-
rectly through an observable process y = {y,: i € Z%}, where each y, takes
values in a Polish (i.e., complete separable metric) space (1, ,. The state space
for y={y: i€Z%is Q,=(Q,, )2°. The unobserved process x and the
observed process y are related through a known (and independent of 6)
conditional probability P”™*. If 7, € G(6), then the joint distribution of (x, y)
is P?* ® 7,. The marginal distribution of y will be denoted by Py or simply
by P,. The set of Gibbs distributions G(6) gives rise to a set K(8) of
probability distributions for the observed process y. Clearly, K(8) is also
convex and compact.

Throughout the paper we will use the notation O = Q, X Q,, Q, = Q, 5
Q,, ” and for any subset VCZ? Q,=0§=Q,, X QVy, Qy . = Qo o
QV y = 0 ¥

Most of our results go through by assuming only that P?”* is chosen so that
the pair (x,y) is a Markov random field, although our variational principle
[Theorem 3.1(ii)] does not need this property. However, we will assume, for
simplicity, that P?'* has the following form: Let W be a fixed neighborhood of
0 € Z°. Then
(2.9a) PYe(dylx) = T] P (dylx(i + W)).

iezd
We will also assume that P?*(dy;|x(i + W)) has the following structure: Let
ro(:| +) be a transition probability kernel from Q, , to Q, ,; the marginal of
y; under wq(dx;,dy,) = uo(dylx)u, (dx;) will be denoted by u, (dy;)—a
probability measure on (,,. We will assume that PY(dy,lx(i + W) <
#'O(dy llx ) and

(2.9b) PY(dy,lx(i + W)) = e¥sC+Whooy (dy ;)
with ¥, some real, continuous, bounded map on Qf , X Q, ,. We now define a
, new interaction function ¥: Uy cz2Qy = R by
' Wo(x(i + W),y,), if V=i + W for some i € Z¢,
V(x(V),5(V)) = { YoFE W) .
0, otherwise,
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and for finite A c Z¢,
(2.10a)  ¥y(x(A),y(A)) = X ¥(x(V),5(V)),

VcA
(2.10b) ¥, (2(A),y(A) = ¥ ¥(x(V),5(V)) = L Yo(*way ¥:)>
VcWw(A) ieA

where W(A) + A + W, and xy,, = x(A) V z. Then
(2.11)  P**(dy(A)lx) = exp{‘l'A,x(AC)(x(A),y(/\))}ig\#o(dy,-lxi)-
The marginal distribution of
¥(A) ={y;:i € A} under P*¥(dy(A)lx(A) V 2) - m, 4 .(dx(A))
is given by ,
(2.12a) Py 4,.(dy(A)) = Py o, (y(A))us,,(dy(A)),

where ug, = u3’, and

Py ,.(3(N) = [ exp(6 - U, ,(x(A)) + ¥ .(2(A), y(A))}

(2.12b) Za.0)
X I;I[:\#O(dxilyi)
Zy,(¥(A),0)
(2.12¢) = —m—’

where Z, ,(y(A), ) is the conditional partition function given by
ZA,z(y(A)7 0) = fexp{o ' UA,z(x) + \PA,z(x’y)} l—.!:\“O(dxtlyl)

For the function ¥ we will have the analog of (2.3), that is,

(2.13) |®| = Y sup|¥(x(V),y(V))l = ¥l < +co.
0eVcZz? finite %Y
As in (2.5) we define

Y(x(V),y(V)) 1 :
A = I“W_,l”igw\l'o(x(l + W), )

A\P(x’y) = Z

0eVcZz? finite

REMARKS.

1. One can easily verify that under the model (2.11), the pair (x,y) is a

. Markov random field with inferaction 6 - ® + V. Thus, if ® has finite
range with interaction radius R, then 6 - ® + ¥ also has finite range with
interaction radius max(R,,, diam W), where diam W denotes the diameter of
the neighborhood W.
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2. Although x and (x, y) are MRFs, y is not an MRF.

3. Model (2.11) covers incomplete data situations and general degradation
mechanisms such as blurring, nonlinear deformations and noise. In particu-
lar, it covers degradations of the form y; = f((Hx),,n,), i € Z%, where H is
a blurring matrix of spread W, n is a white noise (independent of x) and f
is a nonlinear function such that the distribution of y; given x is of the
form exp{¥,(x(W), y,)} dv,(y,) with some continuous bounded ¥, and
some probability measure Vo- The product structure in (2.11) does not cover
the case of Markovian noise n = {n,: i € Z%}, but our procedure can be
modified to cover such cases.

4. Condition (2.13) is restrictive, but it can be relaxed. It does cover models of
the form y; = f(x;) ® m, for a large class of additive white noise 7; (includ-
ing Gaussian noise) and some multiplicative noise models, but it does not
cover models of the form y;, = (Hx); + m; with 7;, say, in R. Our techniques
can be extended to treat such models by considering the setup of super-
stable interactions [27].

5. Our degradation model may be slightly modified to cover the case when the
parameters of the noise 1 are unknown: Replace the process x in (2.8) by

(x, m).

2.3. Log-likelihood functions. For each boundary condition z, we define a
log-likelihood function in terms of (2.12), that is,

1
(2.14) 15, (9(A);0) = — 7 log Py g o(¥(A)) = Pa,=(6) = Py, .(7(A), 6),

where p, ,(0) and p, .(y(A),6) are the pressure and the conditional pressure
defined by

pA z(o) I IOg ZA z(o)

We define a second log-hkehhood function as follows: For a distribution
P, € K(9), we denote by P{" its restriction to Q, ,, and by fA(y(A) 0) the
Radon—leodym derlvatlve of P{™ with respect to ug(dy(A) Gt is easily
seen that f, exists). The second log-llkehhood function reads

(2.15) INy(A);6) = log fa(y(A);0).

From the computational point of view, (2.14) is more tractable than (2.15), but
from the mathematical point of view (2.15) is a natural log-likelihood function.
Our consistency theorems hold for both log-likelihood functions.

The sequence (net) of observations y(A) in an expanding sequence (net) of
windows A C Z¢ may arise in two ways: (1) There is an underlying infinite
sample y = {y;: i € Z%}, and we observe larger and larger pieces y(A) =
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{y,:i € A} of it. (2) The net {y(A)} is a net of samples, possibly independent,
from the net {P, , ,} (with the same 6, but not necessarily the same boundary
conditions). In the former case we will write, for example, A, (9, 0) instead of

I, (y(A), 0).

2.4. Main results. In proving consistency of ML estimators, we will as-
sume identifiability in the following sense:
2.16 We say that 6, € O is identifiable if 6 + 0, implies
(2.16) k(o) nK(6,) - @

Condition (2.16) clearly implies that if 6 #+ 6,, then G(8) N G(8,) = &
(which is the identifiability condition for fully observed data [23]). The con-
verse is not true. For example, for the standard binary Ising model without
external field, if the observed data y are such that y; = x;m;, where 7, is a fair
Bernoulli process, that is, P(n;) = 16,,,_1 + 8,, +1, then the distribution of
y(A) ={y;: i€ A}is P(y(A)) = 1,/2A "independent of the parameters of the
Ising model. Clearly, in this case the parameter of the Ising model (i.e., the
temperature) cannot be estimated from the observed data y = {y;: i € Zd}

The following theorem is our consistency theorem for the case of compact
parameter space @ € R™.

THEOREM 2.1. Let 6, € © be the true parameter vector, and let P, be any
distribution in K (00) Assume that © is compact and 0, identifiable. *Let OA -
be a measurable minimizer of 1, (y(A),8). Then independently of the b.c. z,
we have

Or.— 05, Pya.s,asA—Z%
Furthermore, for all ¢ > 0, we have
P,fl6, . — 0ol > &} < cle=

for sufficiently large A, where c,c’ > 0 are independent of A.

REMARKS.

1. Since L, z(y(A) 0) is continuous and @ is compact, there always exists at
least one minimizer OA ,- A measurable choice of OA , can be obtained by

standard procedures.
2. Theorem 2.1 holds if I, ,(y(A), 6) is replaced by the log-likelihood function

(2.15) (see Section 3).
3. The limit A - Z¢ in Theorem 2.1 and throughout the paper is taken in the
sense of van Hove, that is, in the sense

|Al = +oo,

) [((A+12)/Al
' [Al

Roughly speaking, this means that the “boundary” of A divided by |A| goes

— 0 forevery i€ Z?.
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to 0 as |A| - +. For simplicity, the reader may assume that A is a
hypercube of side N, so that A - Z¢ means N — +x,

4. As we mentioned in Section 1, a consistency result under stronger assump-
tions (Q,, finite, Py stationary, pointwise degradation) has been established
in [39] by a different method. In particular, the method of [39] does not give
the existence of an exponential rate c.

Next, we turn to the consistency for noncompact ©. The following simple
example, with ii.d. random variables, demonstrates that the identifiability
condition (2.16) does not suffice for proving consistency in the case of noncom-
pact ©. Let x;, i € Z, be independent random variables with common density

(217) (6—29 +e 0+ 2)_leemin(x,0)

with respect to the counting measure on {—2, —1,1,2}. Suppose that the
observed process is y; = |x,| [ie., P(ylx) =4, ,]. This is easily seen to be a
Bernoulli process on {1, 2} with density such that

e % +1
Py(y=1) = P T Y =g(9).

The function g(0) achieves its maximum g = g(0) at 6 = log(1 + v2) and is
strictly decreasing from g to 1 as 0 ranges over [0, +x). Take ©® = {0} U
[8, +%) and note that g(0) = g(«) = ;. This model is identifiable in the sense
of (2.16), but it is easily seen that
Py( lim d, = +e) = 3
n—o
and hence consistency fails.

The above example demonstrates that we need an appropriate identifiability
at . Our identifiability condition at  involves a relative entropy and is
defined as follows: Let K,(0) be the set of translation invariant elements in
K(6). In Corollary 3.1, we show that for any P, € K (6,), the entropy of P,
relative to a P, € K ,(0) defined by

1 dP{®
(2.18) h(P,; Py) = Alin;d{— AT —Ep, log dP(A)}
exists and is independent of P, € K (8) (it depends only on 6 € ®). Further-
more, in Lemma 3.2, we show that the identifiability condition (2.16) implies
that supp, k00 (Pa; Py) < 0 for 6 # 6,. We will say that 6, € 0 is identi-
fiable at » if

(2.19) jlm sup sup h(Py; P,,) <0.
7% 0<0:6l24 Py <K, (60

’ Wé' note that this condition falls for the above example of (2.17). Condition
(2.19) is natural: Intuitively, it says that the limit points of P, for large 6 are
separated from P, in the sense of relative entropy.
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As we mentioned in Section 1, consistency for noncompact ® will be proven
under an assumption on the pressure p, .(6). For a unit vector 6 in R™ (i.e.,
0 € ™ 1), we define

(2.20) m, ,(0) = max{() . |~A1—|—UA,Z(x(A)): x(A) € QA’x}.

AssumpTiON. Let A > 0,0 € R™ — {0}, 0 = 6//0| and
uA,z(e) =pA,z(0) —pA,z(Ao) - IB —AolmA,Z(o)
We will assume that

(2.21) lim limsup sup |u, ,(0)l = 0.
A= A ,zd 9€0:101>A

We emphasize that condition (2.21) refers only to the MRF parametrized by
0, and it does not involve the observed process y. We also observe that u, ()
is nonpositive, and hence condition (2.21) amounts to a lower bound only.
Our consistency theorem for noncompact @ is as follows.

THEOREM 2.2. Let 0, and P, be as in Theorem 2.1, and let ® C R™ be
noncompact. Assume that 0, is identifiable, identifiable at », and that condi-
tion (2.21) holds (for a given family of b.c. z). Let éA,z be a measurable
minimizer of I, ,(y(A), 8) over ©. Then the conclusions of Theorem 2.1 hold.

REMARKS.

1. The proof of Theorem 2.2 shows that the theorem is also true for the
log-likelihood function (2.15), provided that (2.21) holds when |u, ()| is
replaced by sup,|u, ,(6)I.

2. In the ii.d. case (i.e., when P, is a product measure for all 6), condition
(2.19) is implied by the condition

(2.22) {n[ U K(@]Cl}n&wo)w,

A>0]|6€0:1601=A

where [ ]9 denotes the closure in the set of probability measures. We do not
know whether the simpler condition (2.22) implies (2.19) in general. Condi-
tion (2.22) fails (as it should!) for the example of (2.17).

3. In the Appendix, we show that condition (2.21) holds if the asymptote of the
finite-volume pressure p, (‘) converges, as A increases to Z ¢ to the
asymptote of the infinite-volume pressure p(-). Furthermore, we show that
this is the case when @ = R, () , is finite, ® is of finite range and z is the
free boundary condition.

4. In addition to Theorem 2.2; we have an alternative result (to appear

‘ elsewhere) on the consistency for noncompact ® under the assumption that

the ground states of the Hamiltonian are periodic with respect to a sub-
group of Z¢ of finite index. This assumption holds [26] for the ferromag-
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netic (but not the antiferromagnetic) Ising model. The assumption appears
to be, in general, appropriate for models that satisfy the Peierls condition
[34, 26].

3. A variational principle for the conditional pressure and proof of
Theorem 2.1. In this section we will use the following notation: If .@ is a
set of probability measures on a measurable space # of the form .#= .loz , &
will denote the translation-invariant measures in & and & will denote the
ergodic measures in <. The set of probability measures on / will be denoted
by P(#). If A is a subset of Z%, and R € H(#), then R™ will denote
the restriction of R to .#, = .#2. If u, is a probability measure on .#,, then
we define u{M = u$? for A c Z%. If R € #(#), then the entropy h(R) of R
(relative to ) is defined by

h(R) = lim h,(R),
A—Z¢
where

1 ) N
— —Egp|log —F |, if R® < u{,
ha(R) = { " IAl ( B ) Ho

— oo, otherwise.

It is well known [36] that A(-) is affine, upper semicontinuous in the topology
of weak convergence and has compact level sets {R € Z(.#): h(R) > —a} for
all @ > 0. If R € P(Q) (recall that @ = Q, X Q, = nZ”’ QZ°, x QZ°), then
the marginal of y will be denoted by R” and the margmal of x will be denoted
by R*.

The proof of Theorem 2.1 will be based on Theorems 3.1 and 3.2 below. The
first theorem gives a variational principle for the conditional pressure—a
result of independent interest.

THEOREM 3.1. Assume model (2.11) for P*"*. Then:
(i) For any @ € #(Q,),

(3.1) pa.(3:0) = p(y;0), Qa.s.,asA—Z°
The limit p(-;0) is independent of the b.c. z.
Gi) IfQ @(Q ), then p(-,0) is Q-a.s. a constant, p(Q, 0), which satisfies
the following varzatzonal principle provided that h(Q) > —co.
(3.2) p(Q,0) = ~h(Q) + sup {6-Ex(Ay) + Er(Ay) + h(R)},

ReZ((Q)
R'-Q

where Ay, is defined in (2.5) and Ay, is defined below (2.13).

REMARKS.

1. In addition to (3.2), we can show that p(-;6) satisfies an a.s. variational
principle under @ € £,({,); this result is not needed in this paper, and we
do not provide its proof here.
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2. A particular case of (3.2) has been proven in [29], and for i.i.d. fields @ in

[7].
3. If @ is not in Z(Q,), then p, ,(y,60) does in general have a limit as
A - Z¢ The follow1ng theorem controls the limit points of Pa, (y, 0) under

P, € K(6,).

THEOREM 3.2. Assume model (2.1) for P**. Let 6, € © and P, € K(6,).
Then for any € > 0 we have

lim sup —

1
1p o log Poo{pA 29,8) = P4, (¥, 60)
(3.3) A°Z

A
> sup [P(Q0) - p(@60)] +¢ <0,

QeK, (6,)
where K (0,) denotes the ergodic measures in K(6,).

To control the behavior of I, ,(y,8) as A - Z?, we need some properties of
Py, (0). They are given by the following well-known [36] proposition.

ProrosiTiON 3.1.

() py ,(0) is convex in 6.
(D) Ipy, () — py (0D < |0 — O'IIUIl.
Gii) [p (&) < 161 1U].
(iv) The following limit exists and is independent of z:

lim p, .(6) = p(0).
A-2Z°
(v) The limit p(9) satisfies the variational principle
(3.4) p(6) = sup {6 En(Ap) +h(R)).
ReZ(Q,)

Parts (iv) and (v) of the above proposition should be compared with parts (i)
and (ii) of Theorem 3.1. The following lemma gives some basic properties for
the conditional pressure, similar to properties (i)-(iii) of Proposition 3.1.

¢ LEMMA 3.1.
@) P, (y;0) is convex in 0 (for everyy € Q).
(ii) |pA Ly 01 < 101U + 1®ll, where ||¥| is deﬁned in (2.16).

(iii) IPA A3;0) — py ;00 < 6 — 61Ul
(v) Lef PA(y;0) be the conditional pressure with free b.c. Then for every

60,
Ipa,.(750) — PA(¥,0)l > 0 as A - Z¢,
.uniformly in y and z. :

PROOF. The proofs of parts (i) and (ii) are straightforward. To prove parts
(iii) and (iv), we use the following inequality: For any probability measure v
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and real functions f, g € L (dv), we have

(3.5)

logfefdv - logfegdv

<If - gll.

Part (iii) is obtained by using (8.5) and
16Uy (x(A)) — 6 - U, (x(A))l=0—-01U, (M)l <16 —0IAlIUII
To prove part (iv), we will show that
Uy (5(A)) = Up(x(A))] < C(4),
1%, .(£(A), 3(A)) - ¥y(x(A), 5(A))] < C(A)
with a constant C(A) satisfying
C(A)
CIAL
This together with (3.5) easily yields part (iv). By (2.1),

Ug.(x(A)) — UR(x(A) = X @(x(V) Vv 2(V))

(3.6a)

(3.6b) >0 asA - Z%

vcze
~ O(x(V) v 2(V))
- igA ieg:czd VN Al ’

where L’ denotes summation as in (2.1). Since the set %, of finite-range
interactions is dense in %, we can approximate ®®, a = 1,..., m, by finite-
range interactions & of interaction radius R,. Given ¢ > 0, we can choose
R, so that

Y suplo@(x(V)) - d(x(V))l <e
ievVcz? finite *(V)

for all i € Z¢ (by translation invariance). Hence
U, (x(A)) — Up(2(A))] < elAl + 2A1IU,

where |dA| is the number of pixels which have distance from the boundary of A
no greater than R,. Since |0A|/|A| - 0 as A > Z¢ and ¢ is arbitrary, we
deduce (3.6). The proof for ¥ is simpler, since ¥ has finite range. O

REMARK. Part (iv) of Lemma 3.1 and part (iv) of Proposition 3.1 show that
it suffices to study the conditional pressure and the log-likelihood function
with free boundary conditions only. In the rest of the paper, we consider only
free boundary conditions.

Proor oF THEOREM 3.1(i). Approximating the interactions ®® by finite-
range interactions as in the proof of Lemma 3.1, it suffices to prove the
theorem for finite-range interactions only. Thus we assume that ® and ¥
have interaction radius r. Let n <N, Ay=[-N,N]I¥cZ? and A, =
[-n,n]® c Z% For each iy € [—n,n + r]? c Z¢, we consider the collection
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j@n +r)+i,+ A, j€Z? of disjoint windows separated by corridors of
width r. Each one of these disjoint windows has volume (2n)%. Let i = j(2n +
r) +i, and let Iy , ; be the collection of such i’s so that i + A, C Ay. Then

e P T] Zi+A,,(y’ 9) < ZAN(y’ 0) <ePvn . I1 Zi+A,,(y’ 9),

i€y n,iq 1€IN ,.;
0

where
N \¢
- - d d-1
Dy , (IOIIIUII+II‘I’II)[(n+r) +2%(n+r)N ]

Hence

ALl 1 n
pAN(y90) = |AN| Z pi+A,,(y’0) + 0(? + —ﬁ)‘

ieINm,i0
Now averaging over i, € [—n,n + r]¢ c Z¢, we obtain
1 ALl

Pay(y,0) = L L i)
Y (2n +1+ r)d |ANI io€l—n,n+rl? i€ly i, e
0( 1 n )
+0|l—= + =|.
n® N

Now, the double sum contains (2N + 1 — r)? terms uniformly bounded in A,
and y. Hence

)» Pira(9,0)

PA9,0) = ——
v (2N +1-r)? i€Ay:itA,CAy

3.7
o0 +0 ! + =y -
( n® N nN )
If @ is ergodic, then by the ergodic theorem,

1
(B8 2o(00) = Ea(p010)) + O[] + Run(yi0:00)
with
Ry .(y;0;0,) > 0, Q-as.,as N— +x.
From (3.8) we obtain for each n,
1
Py, (7;0) — Pay(3,0)l < IRy, + Ry | + 0( F)’

which implies that p, (y,0) is, @-a.s., a Cauchy sequence with some limit
. p(y;0). Taking the limit N - + and then n — + in (3.8), we obtain

(3.9) Jm pa(y,60) = lim Eo(py(y,6))-

Since p, is uniformly bounded in A, and y, the limit on the right-hand side
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of (3.9) can be taken inside the expectation, yielding that p(-;6) is Q-a.s., a
constant p(Q;6).

If @ is only translation invariant (but not ergodic), then the ergodic
theorem yields (1.8) with the expectation on the right-hand side of (3.8)
replaced by a conditional expectation over the o-field formed by the transla-
tion-invariant (measurable) subsets of (. The remaining steps in the proof go
through and yield a random limit p(:; §). This completes the proof of part (i) of
the theorem. O

ProoF oF THEOREM 3.1(ii). Let R € #(Q) with h(R) > —». Then RV is
absolutely continuous with respect to I'T; . , uo(dx;, dy;), and we have R-a.s.,

R™(dx(A)ly(A)) = R‘A)(x(A)Iy(A))ile_IAuo(dxiLn)-

Therefore

1 1 1
T Er(Uab(A)) + ER(‘I'AIy(A)) + ER[log RO(z(A)ly(A))ly(A)]
e@~UA(x(A))wA(x(A),y(A»

RPN (L) y(A)}
1
<0 logf 20 UN®)+¥)(x,5) l_[ wo(dx;ly;)

=pu(y,0).
Hence

N

1
—ER{log

= A ER{log R®(xly)@M(»)ly(A)}.

Here and below, we write Q®)(y) for the derivative of @ with respect to

n; S A:u’O y(dyz)
Assuming R? = @ and 1ntegrat1ng, we obtain

1
Al —Eg(6 - Uy + ¥,ly(A)) —

EQ(pA(y’ 0)) EQ(log Q(A))
(3.10) 1
|A| —EgR(0-Uy, +¥,) — ER(log R(A))

Since R is translation invariant, the rlght-hand s1de of (8.10) converges to

. Ep(6-Ay+Ay) + h(R).
By part (i) of the theorem, E4(p\(y, 6)) converges to p(Q, §). Hence we obtain
(3.11) p(Q,0) + h(Q) 2 8- Ex(Ay) + Ex(Ay) + h(R).
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In particular,
(3.12) p(Q,0) +h(Q) = sup {@- Er(Ay) + Egr(Ay) + h(R)}.
Rﬁy{’(él)

To prove that p(@,6) + h(Q) is actually equal to the supremum in (3.12),
we will use an explicit construction. Let

60 Up(x)+¥p(x,5)

_e Iy oW
dp(%,) 7. 0) I wo(dxly )@™(dy(A)).
Note that p, € P(Q5) and
Eq(pa(y,0)) - Eq(log QW)

(3.13) 1 1

= mEpA(O “Uy) + mEpA(‘I'A) - WE,,A(log PA)-
Assuming that A is a hypercube of side N, we construct a p, € #(Q) by
taking translates of p, in each hypercube A + jN, j € Z¢, and then defining
pa as the product of these translates. The probability measure p, is periodic

but not translation invariant. To obtain a translation-invariant distribution,
we average over A, that is, we define

p preT
= T S

Since 5, is an iid. field on (QA)Z", its entropy relative to u,,

h(py) = — hm WEpA(IOgP(A) ,

is well defined and equal to (1/ IAI)EpA(log p)- Furthermore,
h(pve ) = = B, (08 )
for all i € Z¢. By the linearity of the entropy, we have
h(6p) = h(Pn) = — %EpA(l‘)g Pr)-

Using the same procedure as in the proof of (3.6), one can easily show that

Z f(() AU"'AW)"T dp,

(0 - +
E (0 -Ay+Ay) = IAI z

and

[0 cP(x(V)) + ¥(x,y) dp

|AJ (0 l&'*“ﬁ) |A|§: 2: f |V|

ieAieVcA
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differ by £(|A|). Hence
1
li E ,0)) — — 1 (A
Ain;d{ o(Pa(y,0)) A Eq(log @ )}

- i (B0 Ay A0) + R(5)

that is,
(3.14)  p(Q,6) + h(Q) = Alin;d{EﬁA(B Ay + Ay) + h(5y))

This, together with (8.12), implies that
liminfh(p,) > —o.
A—Zd
Thus {§,} is a tight sequence in (). Also note that the marginal of y, (3,,

converges to @ as A — Z<. By (8.14) any limit point p of P, achieves equality
in (3.12). This completes the proof of the theorem. O

The following proposition will be used in the proof of Theorem 3.2. It is
based on a large deviation result for MRFs [6, 13, 32].

PROPOSITION 3.2. Assume model (2.11) for PY*. Let
Ray |—/t|_ i§A81iy
be the empirical field of the observed process in a finite window A € Z%. Let
F:2(Q,) >R
be a lower semicontinuous function on F(Q,). Then for any P, € K(8,) and
all € > 0, we have
1

3.15)  limsup — lo P{F’R < min F(Q) - }<o.
( ) A_,de|1\| g Py F(R, ) QoK () (@) — ¢

PROOF. Our assumptions on P?"* imply that the pair (x, y) is an MRF. Let

Ry e = Al .ZA Oricx, )
AS

be the empirical field of (x, y). Since (x, y) is an MRF, we have [6, 13, 32]

1 - -
(3.16) limsup Al log 7o, ® Py'{‘{F(RA,(x,y)) < min F(R) - a} <0
’ " AoZd ReG,(8y)

for any 7, € G(6,), and all ¢ > 0. Here F is a real-valued lower-semicontinu-
ous function on Z(Q), O = Q, X O, and G,(6,) is the set of stationary Gibbs
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distributions for the interaction 6 - ® + ¥. We claim that
G,(60) = G,(8,) ® P,

Indeed, G(9,) ® P* c G(OO) by the first remark below (2.13). On the other
hand, for any R € G(6,), using

f eV =W30y (dyolxy) = 1

and (2.8), we see that R(dx) itself satisfies (2.8) with interactions 6, - ® and
that R(dylx) = P?*. Hence R = R* ® p’* € G(6,) ® P?* and therefore
G(6,) = G(6,) ® P¥*, This yields the claim. O

Now, for a given F as above, we define an Fon & 7((2) so that F(R) = F(R).
Then F(R, W= F(R A,y)- Hence (3.16) becomes.

3.17 lim sup — log P, { F( R, min F(R?Y) —¢; <e.
2y
R—z9 IAI RGG(OO)

Now, it is easily seen that

min F(RY) = min F(Q).
ReGy(6,) QEK (8p)

This together with (3.17) yields (3.15). O

Proor oF THEOREM 3.2. Let Ay, A, be as in the proof of Theorem 3.1().
Let A Ny=[-N,N - rl¢ c Z¢ and con51der the empirical field

Ry, = = Yy 8.iy.
lANI ieAy
Then, using (3.7), we obtain
. , 1 1 1
(318)  Pa(5:0) = [Pa(¥',0) Rs (dy') + 0(? r N TN
and a similar expression for p, (y, 8,). For a fixed n we define
f(¥) = Pr(¥30) = Pr(¥,00)
and
F(R) = - [fdR

for any R € #,(Q,). The function f is a continuous function on (2, and by
part (i) of Lemma 3.1 it is bounded. Hence F is a bounded continuous
function on (). By (3.15), we have (since |Ayl/|Ayl > 1 as N > +o):

I s Poo{f [22(5,0) = Pa (5", 60)] Rx, (dy")
(3.19)
> [[pA(y 0) —pa (Y, 00)]dQ(y)+—}<0
QEK (00)
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Now from Theorem 3.1, we have for @ ergodic:
lim_Eo[py(,68) = Pa(7:00)] = P(Q,6) = p(Q, 60),

and hence
liminf max Ej|p, (y,6 ,0 su ,0) —(Q,0,)].
no+® QK ,(6,) Q[ w(¥50) —pa (¥ o)] QEKE()%)[P(Q ) — (Q,6,)]

This, together with (3.19) and (3.18), yields (3.3). O
Theorem 3.1 has the following corollary.

COROLLARY 3.1.
@) If P, € K (6,), then P, -a.s.,

I\(y,0) — In(y,00)
(3.20) - p(0) — sup [0 -Ep(Ay) +Eg(Ay) +h(R)] as A— Z°.
\\ RE%(Q)
RY=P,,

Gi) If P,, € K(0,), then the relative entropy h(P,; Py), given by (2.18),
exists and is the negative of the limit in (3.20) when P € K, (0,).

Proor. We have P, -as.,
Alimd(lA(y, 8) — Ix(¥,60))

=p(9) - P( 00,0) p[(00) p( 09 o)]
=p(6) — sup [6-Er(Ay) + Er(Ay) + h(R)]

ReZ ()
RY=P,

~[p(80) = P(Poy, 80) = h(PBy,)]-

Now
p(6y) — p( 0o’ 00) - h(Poo)
(3.21) =p(8,) — sup [6, Er(Ay) + Er(Ay) + R(R)].
RE}Z;)(Q)

90

Next note that the pressure p(6,) is also the pressure of the MRF (x, y) whose
energy function is 6, - U, + ¥,. Indeed, the pressure of (x,y) is p(6,) =
llm pA(Oo) Wlth

 Ba(80) = log [ exp{8, - Up(x(A)) + Ty(2(A), (M) u§(dx(A), dy(A))

IAI log/exp 0o - Up(x(A))}u A)(dx(A)) Pa(8o)-
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Thus by the variational formula (3.4) we have
(3.22) .p(8,) = sup [490 Er(Ay) + Ex(Ay) + R(R)].

ReZ (0
The supremum in (3.22) is achleved by the stationary MRF for (x, y), that is,
by m,, ® P*™* with 7, € G,(6,). Hence the supremum in (3.21) is also achieved
by the stationary MRF for (x, y), and therefore the right-hand side of (3.21) is
0, that is,
(3.23) p(Ps,,00) = p(6;) + h(P,,).

This yields part (i) of the corollary. Next we prove part (ii). Let P, € K,(,).
By part (i) and Lebesgue’s theorem, we have

A—>Z°e |AI dP(A)
—_ lldePOO{ A(y, 0) - lA(y, 00)}
A-Z

EPoo{Alilgd[lA(y’e) - lA(y,oo)]}-

Since P, € K(8,), we can find a stationary m, € G,(6,) such that (7, ®
PY*y = P, . Since 7, ® P’ is itself a stationary Gibbs measure, we can
decompose it into ergodic Gibbs measures. Taking the marginal on Q,, we
obtain

1 dP®
h(P,; Py) = — lim — {log —o_ }

P, = erK,_,(ao)Q“(dQ)

with some probability measure « on K,(6,). Proceeding as above, we obtain
the existence of

(3.24) h(Poi Py) = [ (@5 Py)a(dq).

e 0

This completes the proof of the corollary. O

The following lemma will be combined with Theorem 3.2 to prove Theorem
2.1.

LemmaA 3.2. Let
(3.25) A(6y,0) =p(8) — sup [6-Eg(Ay) + Er(Ay) +h(R)].
ReZ(Q)
RyGKe(oo)
Then:
() For all @ € K (6,), we have

p(e) - p(Qa 0) - [P(eo) - p(Q, 00)] 2 A(00, 0)'
(i) A(8,,0) > 0 with equality iff 0 = .
(iii) A(6,, 8) is continuous in 6.
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Proor. (i) By Corollary 3.1,
p(e) _p(Q70) _p(OO) +p(Q,00)

=p(8) — sup [6-ER(Ay) + Ep(Ay) + h(R)]
Rsﬁgl)

> A(6,,0).
(ii) Using the variational formula (3.22) for p(6), we obtain that A(8,, ) > 0.
Now suppose that A(8,, ) = 0. First note that
F(R) = 0 Er(Ay) + Eg(Ay) + h(R)
is upper semicontinuous, bounded from above, and the level sets { R; F(R) > a}
are compact and nonempty for small enough a. Hence the supremum
sup F(R)
ReZ(Q)
RYeK (6y)

is achieved. This together with the remarks below (3.22) [applied to p(6)] imply
that A(8,,0) = 0 iff there exists R* € G,(0) such that (R* ® p’*)’ € K,(8,).
Therefore, K(6) N K(8,) # 0. By our identifiability condition, this happens
only if 8 = 6,,.

(iii)) p(6) is continuous by Proposition 3.1. Also, from the definition of
A(6,, 8), we have that A(6,,0) is upper semicontinuous. It remains to prove
that it is lower semicontinuous. Now, for some R € Z(Q) with R” € K ,(6,),
we have

A(6o,0) —p(0) = —0 - Ep(Ay) — Er(Ay) — R(R).
Let 6, — 6. For some sequence R, € Z(Q) with R? € K (8,), we have
A(6,,0,) —p(6,) = =0, Eg (Ay) — Ex (Ay) — h(R,).
Since A(R,) is bounded, the sequence R, is relatively compact and
lim inf[A(0,0,) — p(6,)] = —Ep(0 - Ay) — En(Ay) — h(R)
n— +o
2 A(8y,0) — p(6)
for some limit point R of R,, since h(R) is lower semicontinuous and
RY € K (68,). This proves the lower semicontinuity of A(8,; - ). O
ProoOF OF THEOREM 2.1. We write
INy,0) = Ix(3,80) — Pa(8) — Pa(y, 0) — PA(00) + PA(Y,00)
=pa(8) — p(8) — [Pa(60) — P(60)]

. (3.26a) —[pa(7,8) —PA(3,00)] + sup [p(Q,6) —p(Q,6)]
i Q<eK,(6y)

+p(0) —p(6,) — sup [p(Q,0) —p(Q,0,)].
Q<K (6y)
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Let D be an open neighborhood of 6,. Since A(6,, 8) is continuous in 6 (by
Lemma 3.2), its minimum on the compact set ®/D is achieved, and by part (ii)
of Lemma 3.2, this minimum is strictly greater than 4¢ for some £ > 0.
Proposition 3.1 implies, by standard finite covering arguments, that p,(6) —
p(6) uniformly in 6, and hence

pa(0) —p(8) = —¢
for sufficiently large A and all § € ®/D. Also, for large A,
P(0o) — pa(0o) = —¢.

By Lemma 3.1(iii), the family {p,(y; 6)} is uniformly equicontinuous in ©/D.
This together with Theorem 3.2 imply (again by finite covering arguments)

Poo{ sup [pa(y,0) — pa(y,60)]
(3.26b) peo/p

— sup [p(Q,0) —p(Q,6,)] = 8} < cle-CI
QK ,(6)

for sufficiently large A and some C, ¢’ > 0. The last term in (3.26a) is bounded
below by A(8,,8) which is larger than 4¢ for § € ®/D. The above lower
bounds and (3.26a) yield

] - 1,—CIA
ao{eelgf/‘DlA(y’ 0) lA(y, 00) > £> < c'e " ClAl
or equivalently
{ inf I\(y,0) = inf [\(y,6) + }>1_c' —CIA|
% oe}g/p A(,9) o ANy, 0) +ep > e

But this is true for all neighborhoods D of 6,. Taking a countable family of
neighborhoods shrinking to 6, and applying the Borel-Cantelli lemma, we
easily deduce the theorem. O

The following lemma implies that Theorem 2.1 holds also for the log-likeli-
hood function (2.14).

LEMmMmA 3.3.
- C(A)
IlA(y’ 0) - lA(y, 0)' < 2—|—A|——

with a constant C(A) satisfying
C(A)

— 2 50 asA - Z%
|Al

(3.27)

PrOOF. Suppose that P, € K(8) corresponds to m, € G(0), that is, P, is
.the marginal of y under 7, ® P’ . Then

PM(dy(A)) = [ mi®(dx(A))P**(dy(A)/x(W(A))).

W(A), x
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Now the fact that 7, € G(6) implies that for all finite A C Z4, we have
m§M(dx(A)) = u(oA,’x(Glé'C(A))[Q . 7p, 0,500 %(A)) drg(x(A°)).
Hence

PM(dy(A) = [ pEP(dx(A))p”*(dy(A)e(W(A)))

W(A), x

X/ A, 6, swaCy( £ (A)) dw,,(x(W(A)C))

O'W(A)c,x

(3.28)

= u®)(dy(A)) /ﬂ [ o((dx;ly; ) e ¥axaCxFA), YA

A’xle

‘X_/‘ A, 0, 2w (£ (A)) d"To(x(W(A)C))'

O’W(A)C,x

The proof of (3.6) may be used to show that (see [23], Lemma 3.3)

e_zc(A)s wA,O,x(AC)(x(A)) < 2C(A)
7p,0(%(A))

with a constant C(A) satisfying (3.27). This, together with (3.28), yields the
lemma. O

4. Proof of Theorem 2.2. The proof of Theorem 2.2 uses the following
lemma.

Lemma 4.1.  If condition (2.21) holds, then

h'm h'm inf inf | l y, 0 - lN Y, 0[] '
Ao A zd <|0|2A ’ ( ) ’ ( )
(4.1)

— inf ) ,0 -1 R ,0 =0.
Oeelﬂo|=A[A'Z(y ) A, (y 0)]}

Proor. By (2.14) we have
lA,z(y’ 0) - lA(y’ Ao) = pA,z(o) - pA,z( Ae) - [pA,z(y’ 0) - pA,z(y’ Ao)] N

Using the definition of the conditional pressure and of m, ,(8), one easily
obtains

. pA,z(y’ 0) - pA,’z(y’ AO) = I(B)I - AlmA,z(o)'

Hence
lA,z(y’ 0) = lA,z(y’ AO) + uA,z(o)‘
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Therefore,
inf 1 ,0) = inf l, (y,0
l6l=A 2,+(6) lol=a (2,0)
> inf I, ,(y,0) — suplu, (0)l,
lol=A 16l=A

which proves the lemma. O

ProoF oF THEOREM 2.2. By Lemma 3.2, the condition of identifiability at «
(2.19) gives

liminf inf A(8,0) = A(8g) > 0.
A-ox §€0:[6|]=A

Let & < 2A(8,) and A = A(S) such that
inf A(6,,0) = A(8,) — &
lol=A

and

inf [lA,z(y’ 0) - lA,z(y700)] > inf [lA,z(y’ 0) — lA,z(y700)] +6
[6l=A [ol=A

for large enough A. These together with (3.26b) yield
Poo{lilnf [24(,8) — In(¥,80)] < B(8,) — 33} < e
0|>A

for large A and some ¢, ¢’ > 0. Thus
P90{|§A’z| > A} < cemM,
This yields Theorem 2.2. O

APPENDIX

In this appendix, we elaborate on condition (2.21), prove it in a special case
and argue that consistency in the noncompact case is related to the notion of
ground random fields (see [20], page 454, and references cited therein).
Throughout this appendix we assume that (,, , is finite.

Let 0 be a unit vector in R™ (i.e., 8 € s™~1). A probability measure 4 in
P(Q,) is said to be a ground random field (GRF) relative to the interactions

®@, g =1,..., m (see Section 2), and with parameter vector 8 € S™~1, if for
every finite A € Z?, the density of the conditional probability distribution
mo(dx(A)l(A°))

is uniform on the (finite) set of configurations x(A) maximizing
0 - U, ,x(x(A)). Intuitively, this means that , satisfies (2.8) with 6 = (60
and |6] = +o. An attainable ground random field (AGRF) is a weak limit of a
sequence m, € G(6,0) as 16, > «. For a fixed set of interactions D@,
a=1,..., m, the set of GRFs associated with a 8 € S™~! will be denoted by
G(0), and the set of AGRF's will be denoted by G,(0).
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The set G(8) of GRF's contains [20] the set G,(8) of AGRF's, and there are
examples [20] for which G(0) is a strict subset of G(68). From the point of view
of estimation, a condition like (2.19) [or (2.22)] controls only the set of AGRFs
(and hence the corresponding distribution on (O, ); on the other hand, the ML
estimators OA , involve the entire set G(0) of GRFs This indicates that in
addition to the control implied by (2.19), we need, for large A, an estimate
which is uniform in 6 for 6 in the one-point compactification of R™. Condition
(2.21) provides such an estimate.

In the rest of this appendix, we will assume that the ®’s have finite
range. Also, for simplicity we will consider free boundary conditions and we
will drop the index z. For 8§ € R™ — {0}, we write 6 = |0]0. Let

(A1) &n(0) = gA(161,0) = p,(6) — [6lm \(0)
and

(A-2) g(0) = g(l61,8) = p(0) — |6lm(6),
where

m(0) = Alin;dmA(()).

This limit clearly exists, since the ®®’s have finite range.

Differentiating with respect to |6| and using the definition of m,(0), it is
easily seen that g,(/6,0), and hence g(|6],0) = lim, g,(|9l, 8), is nonincreasing
in |6]. Let

a = min X
Eﬂoxru’o x{ )

Since g,(/6],0) and g(|6],0) are bounded below by log a > —x, the following
limits exist:

(A.3) I(}liinmgA(lf)l ,0) =7a(8),
(A4) lim g(l61,0) = £(9).
We will prove the following lemma.

LEmMa A.1.

(85) lim £,(8) = £(0).

If ® =R, then 8 € {—1, +1}. In this case, we will show that (A.5) implies
the following uniform convergence.
LEMMmA A2, If O = R, then
(A.6) lim g,(6) = &(9),
A->Z4

uniformly in 0, for 0 in the compactified real line.
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Proor. It suffices to prove the lemma for @ = +1. That is, we will prove
that the convergence in (A.6) is uniform in 0 for 8 in the compactified half-line
[0, + ]. By Lemma A.1 and Proposition 3.1(iv), we have point-wise conver-
gence in the compact set [0, + «]. We also have that g(6) is continuous, and g,,
for each A, is monotone. These together with an easy extension of Dini’s
theorem [11], page 136, yield uniform convergence on the compactified half-line
[0, +]. O

Now, Lemma A.2 easily implies condition (2.21). Indeed, we have

lim sup lu,(0)l < suplg(0) — g(A0)]
(A7) A-Z% 012 lol=A
=g(A8) —f(0).

This and the continuity of g yield (2.21).

We do not know whether Lemma A.2 holds when © is not one-dimensional.
But if it holds, then (A.7), and hence (2.21), also hold. Intuitively, a uniform
convergence in (A.6) means that the finite-volume pressure p,(0) [or in general
Pa,(0)] have uniform asymptotes. It is for this reason that we feel that
condition (2.21) is reasonable.

ProoF oF LEMMA A.1. The monotonicity of g,(|6],0) in |6| yields

(A.8) liminff,(0) < limsup f,(8) < (8).
A—-Ze A—2Zd

By the variational principle, for any m, € G,(6) we have
f(8) < g(l6l,0) = 6IE, (6 - Ay — m(0)} + h(m,)

} + h(m,)

1
= |0|E Lim (0 —U, — m,(0
I | Tro{A—)Zd[ IAI A A( )
< h(my).

Let my € G,(0) and 7, € G,(8,) so that {m, } converges weakly to m,. Since
h(-) is upper semicontinuous, we obtain

f(0) < h(m,)
and therefore
(A.9) f(0) < inf{h(my): ms € G,(0), stationary}.

By the finite-volume variational principle, we also have
1 .
(A.10) gA(16],0) > IBIE,T.{G- WUA - mA(O)} + hy(m).

for any 7, € G(0). We will show that, for sufficiently large A, the expectation
in (A.10) is 0. Suppose not. Then we could find an x(A) with 74(x(A)) > 0 and
0 - (1/IADU(x(A)) < m,(6). Since the interactions ®* are of finite range,
there exists, for large enough A, a subset A, C A such that A, = A, where the
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closure A, is defined by
Aog={j€2%3AcCZ AnA+3,je<A,supl®(x(A)) #0}.

Then we would have my(x(A — Ay)) > 0 and m4(x(AyIx(A — Ay)) > 0. These
contradict the fact that mg(x(Ay)lx(A — Ay)) concentrates on the set of con-
figurations x(A,) maximizing 0 - U, .r-a,(%(Ao)) when z is the free bound-
ary condition. Therefore, we have

fa(8) = k()

and hence

v

lim ir(liffA(ﬂ) sup{h(m,): my € G(0), stationary}
A—2Z

sup{h(m,): my € G,(0), stationary}.

v

Combining this with (A.8) and (A.9), we obtain the lemma. O
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