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POISSON APPROXIMATIONS FOR r-SCAN PROCESSES

By AMIrR DEMBO AND SAMUEL KARLIN'

Stanford University

Let X; be positive i.i.d. random variables (or more generally a uni-
formly mixing positive-valued ergodic stationary process). The r-scan pro-
cess induced by {X,} is R, = Li*77'X,, i=1,2,...,n — r + 1. Limiting
distributions for the extremal order statistics among {R;} suitably normal-
ized (and appropriate threshold values a = @, and b = b,)) are derived as a
consequence of Poisson approximations to the Bernoulli sums N7 (a) =

241w (a) and N*(b) = L2-7W (), where W, (a) [W(b)] = 1 or
0 according as R; < a (R; > b) occurs or not. Applications include limit
theorems for r-spacings based on i.i.d. uniform [0, 1] r.v.’s, for extremal
r-spacings based on i.i.d. samples from a general density and for the r-scan
process with a variable time horizon.

1. Introduction. The motivation of the paper stems from studies on
inhomogeneities in long DNA sequences. The issues are relevant to the
objectives of the human sequencing initiative (a multinational endeavor of
much recent celebrity). Particular markers (in the language of DNA, e.g.,
restriction sites) are distributed along the length. It is of interest to evaluate
the extent as distinguished from ‘“‘chance” of extant segments along the length
entailing excessive clumping, sparseness or regularity (very even spacings). A
typical question might concern a long DNA sequence, say 66 million nu-
cleotides long, containing n = 1000 markers and a mean distance between
markers of about 66,000 nucleotides. A researcher looking through the whole
sequence might observe r = 5 markers all falling within the same 19,800
nucleotides. Assuming that the positions of the 1000 markers are completely
random, how likely is it that at least one such cluster would occur? Similar
questions pertain to the sparseness of markers and other distributional prop-
erties. These questions can be approached in the following setting.

Consider a long length and a sequence of positive valued r.v.’s:

(1.0) X, X,,..., X,

corresponding to the successive distances between markers (X is the distance
to the first marker, X, between the first and second marker, etc.). In the
simplest model X, are i.i.d. but we shall also consider X; generated in a
Markov dependent fashion and even more generally as a strong ergodic
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330 A. DEMBO AND S. KARLIN

stationary process. The sums

i+r—1
(1.1) R,=R"= Y X;,, i=1,...,n-r+1,
Jj=i

will be referred to as the r-scan process. In most applications r is fixed but for
mathematical completeness, limit results are also developed with r 7 at an
appropriately slower rate than n.

Consider the associated order statistics of {R,}""7*' denoted by

Rf <Ry < -+ <R} ..,
such that
1.2) m® =R*=min{R{’} and M =R}_, ., = max{R{"}.
1 i i n 1 i i

More generally, the r-scan kth minimum and maximum are, respectively,
(1.3) m{) = R}, M =R%_ _,.q, k=1,2,3,....

Asymptotic distributions for these extremal r.v.’s (n — ) are of primary
interest.

We need the following notation and terminology. The total variational
distance between two random variables U and V with common state space is
defined by

(1.4a) d(U,V) = sup[Pr{U € A} — Pr{V € A}],
A
and when U, V are nonnegative integer valued,
1 o
(1.4b) a(Uu,v) = 3 Y IPr{U =j} — Pr{V =j}I.
j=0

The ascertainment of the limit distributions of the extremal variables of the
r-scan process will ensue from analysis of the distributional properties of the
count r.v.’s:

n—r+1
N7(b) =N, (b) = Z_:l Wi (d),
(1.5) -

n—-r+1

N7(a) =Ni(a)= ¥ Wi(e),

where

i 1, ifRisa oo [1 #R>b
(1.6) Wi(a)=1{g iR >q 2 W =}g irp <p
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Obviously, when N~ (a) = 0 all r-scans exceed the level a and for N*(4) = 0
no r-scans exceed the level b.
Poisson approximations to N* and N~ are as follows.

THEOREM 1. Let X,, X,,..., X, be i.i.d. with distribution function F(x)
and denote by F,(x) the distribution function of L ,X;, the m-fold convolu-
tion of F(x). Let Z, be a Poisson r.v. with parameter A.

Define
(1.7) A=(n—-r+1)F.(a).
Then
(18) d(N-,Z,) <(1-e™|(2r - 1)F.(a) + 2;2:11Fm(a)

=(1-e*)é(r,a),
where 8(r, a) denotes the quantity in brackets.
The proof is given in Section 3.
Thus, for F(x) continuous at x = 0 and r fixed with A held fixed, obviously,
(1.9) d(N7,Z,) » 0 asn — «with available rates of convergence.

Because {X,} are positive random variables, F.(a) < F,(a) for r > s and
therefore the right-hand side of (1.8) is bounded by

&Y F(a) < 4M(a),
m=1

where M(a) = £,_,F,(a) is the renewal function of the partial sum process
generated by S,, = 7", X;, m = 1,2,... . Thus the conclusion of (1.9) applies
as long as M(a) — 0 with n, a, r and A related by (1.7). We discuss examples
of this general formulation in Section 3.

With respect to N*(b), we have the following theorem.

THEOREM 2. Under the conditions of Theorem 1, that is, {X;} are i.i.d.
positive, define
(1.10) : w=(n—-r+1)[1-F.(b)].
Then

d(N*,Z,) < (1 - e™*)|(2r — 1)(1 - F.(b))

1.11 r-1
(1-11) +2 ), Pr{R,., > bR, > b}

m=1

= (1 — e ")e(r, b).
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For X; bounded above by C, this quantity goes to 0 as & increases to C
provided F(-) is continuous at C, the corresponding situation to Theorem 1.

It is not true that for all unbounded r.v.’s with continuous F(x) the
right-hand side in (1.11) goes to 0 as b 7. Distributions with heavy tails
provide counterexamples; see Section 4. The fact that d(N™, Z,) — 0 is sensi-
tive to the tail behavior of F(x). However, the following theorem applies.

THEOREM 3. If for each fixed constant K > 0,

1.12 L-FO-K) o asb

then the right-hand side in (1.11) goes to 0 for any fixed r.

See Section 4 for an analysis of distribution models implying (1.12). The
condition (1.12) is satisfied for the exponential density with any scale parame-
ter and for any convolution of these but fails for F(x) = x /(1 + x).

The dual variables of the extremal statistics (1.2) are of interest. Suppose an
infinite sequence X;, X,,... is generated; see (1.0). Define, for fixed %,

(1.13) T, =inf{n; N, (a) > k}

and

(1.14) T; = inf{n; N;} (b) > k}.

From their definitions the identity of the following events are immediate:
(1.15a) {Ty>n} ={N;(a) <k} ={R} > a},

(1.15b) (Ty> n) = (N} (b) <k} = (R}, 4., <)

and limit relations for T, and 7T} ensue readily from those of N~ and N™;
see Sections 3 and 4.

The example of r-spacings sampled from a uniform distribution is of
practical interest. Consider (n — 1) i.i.d. samples from a uniform distribution
on [0,1] and form the consecutive spacings U;,U,,...,U, so that U, > 0,
Y7 U, =1. It is well known [e.g., Karlin and Taylor (1981), Chapter 13,
exercise 10, page 127] that the joint distributions

(1.16) (SU,, SU,,...,8U}, (X, X,,...,X,}

are equivalent, where X, are i.i.d. exponentially distributed and S indepen-
dent of U, is distributed as a gamma random variable («, B) with @ = n and
unit scale parameter, B = 1. Obviously, the distributional properties of the
r-spacings (U, + -+ +U,,,_J"-7*! can be reduced to those of the r-scan
process based on {X;}, where X, are ii.d. exponentially distributed. Using
Berry-Esseen estimates of the normal approximation to a gamma(n, 1) distri-
bution and the results of Theorem 1 and 2, we deduce the following theorem.
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THEOREM 4. Let W™ (a) be the count of r-spacings not exceeding a from a
sample of n — 1 i.i.d. random variables uniform [0, 1] and define

(1.17) )t=(n—r+1){1—e_""r_1 (a.r:)’}‘
o i
Then
dUVXaLZQs4mN1—e”)+O( hin}

A corresponding formula obtains for d(W*(b), Z,); see Section 5.

Throughout the paper all log terms are natural logarithms.

Consider the question stated at the start. In this example, r = 5, n = 1000
leading to @ = 3 X 1074, A = 0.02 and d(W~(a), Z,) < 0.025 + 0(0.05). Then
P(W=(a) > 1) < 0.1 [this estimate can be improved by sharpening the error
term O(ylog n/n ).

In concrete terms as a consequence of Theorem 4, we have for the kth
minimal and maximal extremal r-spacings of uniform i.i.d. r.v.’s:

: (r) x e % r/r! x L 1
(1.18) '}1_1‘20 Pr{mk = W} = Z 1 l'
and
1
lim Pr{M(’) < —~[lnn +(r—1)Inlnn + x]}
n—oo
(1.19)

—e™ = e’” ‘1

exp{(r_ 1),}( )» ((r_ 1)‘) )

Without error estimates, the result (1.18) for £ = 1 is due to Cressie (1977)
and (1.19) for & =1 is due to Holst (1980). The above limit relations are
generalized as follows. Consider n — 1 independent samples from a continuous
density function f(x) on [0,1]. Let U, U,,..., U, be the corresponding spac-
ings induced from the sample, and the sums
r+i—1

R =Y U, i=1,....,n—r+1,
be the r-spacings process. Generalizing with 7 = min, R{", we get

(1.20) lim Pr{rh(') > _’;ﬂ_xlﬁ} = exp{— i—!fol[f(g)]’“dg}.

n—o
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The limiting maximum M depends only on the neighborhoods of minimum
points of the density f(x); see Section 8.

The Poisson approximation laws of this paper rely on the powerful Chen—
Stein method which also provides rates of convergence. We use the elegant
version set forth in Arratia, Goldstein and Gordon (1989). Alternative formula-
tions exploiting coupling arguments and other applications are presented in a
series of papers by Barbour, Holst, Janson and Hall among others [see Barbour
and Holst (1989) and references therein]. All these methods are beneficial in
supplementary ways. For further applications pertinent to biomolecular se-
quences, see Arratia, Goldstein and Gordon (1990), Karlin and Leung (1991)
and Karlin and Macken (1991).

The organization of the paper is as follows: Section 2 reviews preliminaries
on the variational distance for sets of distributions. Section 3 presents the
proof of Theorem 1 with a number of examples. Theorem 2 is proved in
Section 4. Several ancillary results of independent interest comparing tail
behavior of distributions and convolutions are set forth. Limit theorems for
extremal r-spacings based on i.i.d. samples from a uniform distribution on
[0, 1] with rates of convergence are proved in Section 5. The corresponding
r-spacings based on ii.d. observations following a general density are pre-
sented in Section 8. Corresponding r-scan limit theorems in continuous time
are considered in Section 6. Extremal statistics of single spacings (r = 1) based
on samples from a general density are elaborated in Deheuvels (1986); see also
Deheuvels and Devroye (1987) for some limit laws of iterated logarithm type.

Asymptotic statistics like our scan processes have led Godbole (1990) in the
context of standard i.i.d. binomial events (N, p) to determine the limit distri-
bution (Poisson A) of the number of runs of length % (% fixed) where N — o,
p — 0 maintaining A = Np* constant. This result is a direct corollary of
Theorem 1. Godbole also considers the case of Markov dependence between
successive trials. This also follows as an example of our general treatment of
Section 7.

A different class of scan statistics was investigated extensively by many
authors including Naus, Glaz, Wallenstein and Neff [see the bibliographic
compilation on this subject, Naus (1979)]. Let Y,,Y,,...,Y, beii.d. observa-
tions from a uniform distribution on the unit interval. The scan statistic
generally refers to the maximal number of events within a fixed size window
(t,t + w), t traversing 0 to 1 — w. The scan statistic has also been formulated
for i.i.d. Bernoulli variables and Poisson processes. Dual variables are based on
the first time until %2 events happen. These considerations relate to our
minimal k-scan statistics. Multiple coverage of the line, studied, for example,
in Glaz and Naus (1979), corresponds to the distribution of M{”; see (1.19).
Some studies have also been done in higher dimensions, for example, Melzak
(1979) and Janson (1987).

Motivations of the scan statistics relate to characterizations of clusters of
disease in time, generalized birthday proximities and the kth nearest-neighbor
problems. Early work on the scan statistics is mostly based on the Karlin—
McGregor theorems [Karlin and McGregor (1959)] of coincidence probabilities
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in Markov processes [generalizations in Karlin (1988)]. Recent work tends to
focus more on finding computationally tractable bounds and approximations,
for example, Glaz (1989), Naus (1982) and Wallenstein and Neff (1987).

2. Preliminaries. The Chen-Stein method. The Chen-Stein method
provides error estimates for the Poisson approximation of a sum of (depen-
dent) Bernoulli random variables. These estimates typically involve only the
first two moments of the sum in question. Here we adopt the Arratia,
Goldstein and Gordon (1989) formulation of the Chen-Stein method [for other
versions, see Chen (1975), Barbour and Hall (1984), Barbour and Holst (1989)
and Holst and Janson (1990)].

LEMMA 2.1 [Arratia, Goldstein and Gordon (1989)]. Let W, be Bernoulli
(p,) random variables and W = ¥, ;W,, where I is a finite or countable index
set. Let d(W, Z,) denote the total varzatwn distance between the distribution of
Wand Z,:

d(U,V) = sup(Pr{U € A} — Pr{V € A})
A

(2.1) 1 =
5 Z |Pr{U =k} — Pr{V = E}|.
Then
_ oA ' ,/§
(2.2) d(W,Z,) < (b, + b2)( + by min|1, il
where
A’ = Z pa,
acl
bl = Z Z papﬂ’
a€l BEB,
(23) b= T ¥ E[WW,],
a€l BEB,
B+a

bs

7$Ba] ’

IE[IE(W ) — P« {Wy}

a

and {B,} is any family of subsets indexed by I.

In our applications the sets B, are usually specified such that W, is
independent of (W)}, ., and therefore bs = 0. Thus when B, is sparse
relative to I and E[WBIW 1]lg « « are small enough entailing both b, and b,
small, then the distribution of W is approximately Poisson.
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We summarize below several elementary properties of the total variation
distance which are referenced in the sequel. For any three r.v.’s U,V, W,

(2.4) d(U,W) <d(U,V) +d(V,W).
From the definition (2.1), obviously,

(2.5) |Pr{U < k} — Pr{V <k} <d(U,V).
Coupling U and V in the same probability space, we have
(2.6) d(U,V) <Pr{U=+V} <1

In particular, for two Poisson r.v.’s Z, and Z, of parameters A and u,
respectively, since for A > u, Z, =Z, + Z,_,, Z, and Z, _, independent, then
(2.6) yields

(2.7 d(Z,,2,)<Pr{Z,#2,}=Pr{Z,_,#0}=1-e " ¥ <A —upul
It is elementary that
(2.8) d(U,V) < Ex[d((UIX), (VIX))]

for any three r.v.’s X, U, V. By induction on m, if {U,;}[*, are independent and
{V,) | are independent (straightforward form = 2), then

(2.9) d( YU, ¥ V,~) < ¥ d(U, V).
i-1

i=1 i=1

3. Extremal values of minimal r-scans of i.i.d. positive r.v.’s. The
formulation is given in Section 1. We use the notation of Theorem 1 and
especially (1.5). Henceforth, in this section, we suppress the superscript on
W (a) and write W,.

ProorF oF THEOREM 1. We merely define B, for the case at hand and
calculate the constants b,, b, and b, as required in Lemma 2.1. For each index
a, let B, = {B, IB — al < r}. Certainly,

(3.1) b3=0 since R{ is plainly independent of R{” for y & B,.

Clearly,
(3.2) A= n_ZHlE[Wa'(a)] =(rn—-r+1)F.(a)
a=1

as prescribed in (1.7). Now, by stationarity,

n—r+1

(3.3) b, = El 1B I[F.(a)]® < [F.(a)]*(2r — 1)(n —r + 1)

(2r — 1)AF,(a).
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Observe that E[W,W,] = F.(a)Pr{R; < a|R, < a}. Therefore, by stationarity
(i.i.d),

n—r+1 r
b= Y. X E[WaWﬁ] <(n-r+1)F.(a)2), Pr{R, <alR, <a}
a=1 B+a k=2
(3.4) BEB,
=21 ), Pr{R, <alR, <a},
k=2

where the inequality is due to end effects.
The conjunction of (3.1), (3.3) and (3.4) into (2.2) of Lemma 2.1 produces
the estimate

d(N, (a), Z,)
(3.5) <(1- e')‘)[(Zr —1)F.(a) + 2 Zr Pr{R, <alR, < a}].
k=2

But since { X} are positive r.v.’s,

r+k—1
Pr{RkSaIRlsa}sPr{ Yy XiSa},

i=r+1

we can bound the right-hand side of (3.5) by
(3.6) (1 -e™é(r,a),
8(r, a) defined in (1.8). The proof of Theorem 1 is complete. O
ReMARK. The r-scans of {X;}} can be placed on a circle, treating therefore

R, =X X a=1,...,n (a + r — 1 reduced modulo ), and Theorem 1
manifestly applies with A = nF,(a) provided n > 2r.

For the dual variable T, [see (1.13) and (1.15a)], the following corollary
ensues.

COROLLARY 3.1. Under the conditions of Theorem 1,

(3.7 [Pr{R% > a} — Pr{Z, <k}l < (1 —e*)é(r,a)
and equivalently
(3.8) Pr{T, > n} —Pr{Z, <k}l < (1 —e*)§(r,a).

Because {X} are positive i.i.d. r.v.’s, manifestly F,(a) < F,(a) for all £ >
and all @ > 0. Consequently,

r—1

8(r,a) = (2r —1)F.(a) + 2 . F,(a)
(3.9) . m=1
<4 ) F,(a) <4rFy(a).
m=1
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For r fixed and F(x) continuous at 0,
(3.10) 8(r,a) <4rFy(a) -0 asa— 0,

and the Poisson approximation holds with rate of convergence faster than
4rF(a). Observe

(3.11) 5(ra) <4 Y F.(a) <4M(a),

m=1

where M(a) is the renewal function of the sum process {L ", X;}. When F(x)
is continuous at 0, M(a) |0 as a |0 [see, e.g., Karlin and Taylor (1975), page
181].

COROLLARY 3.2. If A as determined in (1.7), increases to © as a — 0, then
(N~(a) — M)/ YA tends to an asymptotically standard normal distribution.

This follows from the bound (3.11) coupled to the fact that Z, is asymptoti-
cally normal.

In the foregoing N (a) ascertains the aggregate counts among all r-scans
obeying R; < a. It is of interest (see the example at the close of this section) to
confine the count to nonoverlapping r-scans at i = 2 and proceeding sequen-
tially to n —r + 1, such that W (a) [see (1.6)] is changed to 0 when
L721W,_,(a) > 0 where W, (a) = 0 for & < 0. Let Wy(a) be the corresponding
counts and define N~(a) = £7-7*'W.(a). The Chen-Stein method is not
directly applicable to N~ (a) because of the long-range dependence among the
W, (a). However, with A defined in (1.7) we apply Theorem 1, (2.4) and (2.6) to
deduce

d(N~,2Z,) <d(N~,Z,) +d(N,N") < (1-e*)8(r,a) + Pr{N"# N7},

Invoking the union of events bound and the inherent stationarity yields

Pr{N # N7} < n_f:“ Pr{W; (a) # W(a)}
i=1

<2(n-r+1)) Pr{R,<a,R;<a}
j=2

r—1
<21 ) Fi(a) <2\AM(a).
j=1

We can summarize the foregoing analysis as follows.

COROLLARY 3.3. For large n, the (nonoverlapping) count of r-scans N~ (a)
defined above is distributed Poisson (parameter A) with variational error

d(N-,2,) < [4(1 —e™) + 2)] M(a).
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Some concrete examples. If the density f(x) of F(x) is positive and contin-
uous for an interval including the origin [say f(0) = 1], then F,(a) behaves
like a”/r! for a small. The identity (1.7) yields asymptotically the equation

(3.12) a~ (r!)l/"(%)w.

If r - o, then (r)'/" ~ re~!. Consider A < e for some constant c. In this
event '/ is bounded. Under these assumptions the order growth is

r
@ = 077
Now for
Inn
(3.13) r= 0( lnlnn)

then r/n'/" ~1/Inlnn - 0 and a — 0. To summarize: If A < e and r <
Klnn/Ilnlnn and a determined as in (3.12), then

d(N (a),Z,) = O(lnlnn)

and if A 1o, then
N7 (a) — A
VA

(standard normal distribution).

For A bounded N~ (a) has a limiting Poisson (1) distribution. Along these
lines it is interesting that for r = K log n and A bounded the limiting distribu-
tion N~ (a) is not pure Poisson but compound Poisson [see Karlin and Ost
(1987)]; actually for a success run example the maximal extremal r-scan is a
Poisson random variable compounded with a geometric distribution.

For r bounded, the limit law d(N~(a), Z,) — 0 prevails as long as A /n — 0.
For bounded r and A, the rate of convergence is always F,(a). In general, the
rate of convergence is O(M(a)).

—)law N(O’ 1)

Count of Bernoulli success runs of fixed length r. Consider X;, X,,..., X,
iid. Bernoulli (1 — p) with A = np” fixed as n > », p > 0. Let a = 1/2.
Then N~ (a) counts the number of (overlapping) success runs of length r (here
X; = 0 indicates a success while X; = 1 reflects a failure). For this model the
number of nonoverlapping success runs N (a) was considered by Godbole

(1990) whose main result is simply a special case of Corollary 3.3.

4. Significant maximal valued r-scans. In this section we describe
cases for the Poisson approximation to N¥(b) = L2_7*'W*(b) defined in
(1.5). In the i.i.d. model the proof of Theorem 2 (see Section 1) paraphrases the
analysis of Theorem 1, replacing F,(a) by 1 — F,.(b), mutatis mutandis. For
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ready reference we restate the bound:
w=(n-r+D)[1-E®).
Then [cf. (1.11)]

d(N*(b),Z,) <(1—-e*)|(2r — 1)(1 - F.(b))

(4.1) r-1
+2 ), Pr{R,.,>0blR, > b}

m=1

=(1-e*)e(r,b).
The analog of Corollary 3.1 is the following corollary.

COROLLARY 4.1.
(4.2a) [Pr{R%_,,,_, <b} —Pr(Z, <k)l < (1—-e*)e(r,b),
(4.2b) [Pr{Ty>n} —Pr{Z, <k}l <(1-e*)e(r,b).

REMARK 4.1. When the random variables X; are bounded by ¢ < » [i.e,
F(c) = 1], we define F (x)=1-F (mc — x), the convolution_distribution
correspondlng to the pa.rtlal sums of X, = ¢ — X;. Then with R,=rc-R,,
i=1,...,n—r+1, and setting a—rc—b u = A, where N+ N- and
e(r, b) = S(r a).

We investigate next conditions that ensure &(r,b) —» 0 with & - « in the
unbounded case, that is, F(c¢) < 1 for all ¢ > 0. Parenthetically, when Fy(x)
has heavy tails, a Poisson approximation to N*(b) does not hold, as described
below.

In estimating &(r, b) of (4.1) the following lemma is germane.

LeEmMA 4.1. Let X;, X,,... bei.i.d. Then
(4.3) Pr{X, ..+ +X,.,>blX; + - +X, > b}
<Pr{X,+  +X,, 1 >bIX; + - +X, > b}

That is, ¢, = Pr{X, + -+ +X,,,_, > blX; + -+ +X, > b} is decreasing (not
necessarily strictly) in k.

Proor. The inequality (4.3) is equivalent to
Pr{X,,,+ " +X,.,,>b, X+ +X,> b}

(4.4)
<Pr{X,+ - +X,.,_.>b, X+ - +X,>b}.
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The inequality (4.4) above, in more general form allowing a general nonnega-
tive function ¢, can be written in the form d, > d, . ,, where for k£ < r,

Ay = E[¢(X, + - +X,, 1)d( Xy + - +X,)]
=Ey, | X,[EXl ..... x5 (X + X, + - +Xr)]2

due to the i.i.d. character of {X,}. Applying the Schwarz inequality on the
variable X, gives

.....

2
(4.5) dy2Ex, - x| Ex,. . x$(Xi+  +X)| =dyy

and the lemma is proved noting when % > r, ¢, is the constant 1 — F.(b). O

The inequality (4.5) is reminescent of a hierarchy of conditional variance
inequalities developed in Karlin and Rinott (1982) in relation to jackknifing
statistical estimation.

By virtue of Lemma 4.1 we have

Pr{R, > bR, > b} <Pr{R,>blR, >b}, m=>2,
and the right-hand side of (4.1) is bounded above by
(4.6) d(N*(b),Z,) < 4r Pr{R, > bIR, > b}.
Conditioning on Y = X, + -+ +X,, we have

1—-F,_y(b) [o[1-F(b-¢)]*dF._y(¢)

(4.7) Pr{R;>bIR, > b} = —— F(b) 1-F.(b)
Suppose for each K,

1-F_(b-K
(4.8) lim - ) _

b—ow 1- F,.(b)

and r is fixed; then d(N*(b), Z,) — 0 as asserted in Theorem 3 (see Section
1). Indeed, choose K large enough so that 4r[1 — F(K)] < n (n arbitrarily
small). Then the right-hand side of (4.6) is estimated above by

1-F,_4(b) F,_(b) —F._y(b-K)
4r| ——m +1 —
"ToRe T TR
Under the force of (4.8) we have
(4.9) limsupd(N*(b),Z,) <,
b—o

and thereby Theorem 3 is proved under the condition (4.8). The full statement
of Theorem 3 follows by Lemma 4.2 proved below.
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Conditions for the validity of (4.8). We start with X, distributed exponen-
tial (1) for which

1-F,_(b—-K) r2ek
1 1-F(K)] + =0|re ¥+ .
(810 r|[1- F(EO] + =R e+ )
Thus, for r fixed, K 1 and b 1, such that eX/b — 0, d(N*, Z,) has the
error given by the right-hand side of (4.10). For any r determine y = eX > 0 to
minimize r/y + r2y/b, yielding y = y/b/r and error term O(r3/2/ Vb). Alter-
natively, for the exponential (scale parameter 1) by a direct computation

b .
i1+ (-1 + (me
Pr(R, > blR, > b) = =

(4.11) yr-ol b

i=0 _l—‘

<e b+ —.
<e 5
Thus any scan length r < o(Vb), b — », yields a Poisson approximation
with error of O(r2/b) in the exponential case. If bt» and ne %h "'/
(r = 1)! - o, a central limit theorem applies to the random variables N*(b),
b — .
By using estimates of large deviation theory, we can sharpen the error term
of (4.11) for the exponential example. We have for any K > 0 and for r > m
the estimate

1 -F_,(b-K)
1 - F,(b)

(412) Pr{R,,,>blR,>b}<1-F,(K)+

We specify K = mt, b = rr with ¢ > 1 and 7 > 1. By Chernoff’s bound (1952),

1-F,(mt) = Pr{ Y X, > mt} <e m®
i-1

and I(¢) = sup,. ({0t — log E[e®®1]} = t — 1 — Int. It follows that

r @ 1

L [1-F(mt)] s L o™= i
We also have

k
Zr—m—l (b — K) m
el Ul S b w4
1-F(b) b =%
TiloTT
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Therefore, for 7 >t > 1, b = 7r and for e’ < 7,

1 1-F,_, . (rr—mt) = (et\" 1
< —| = ——.
m=1 1-F(r7) me1\ T Te i -1
Thus in the exponential case, we have found
4

(4.13) e(r,rr) < (e/et — 1) Treo1

Choose ¢ such that e?’ = ret, making the two terms on the right-hand side of
(4.13) equal. This produces the bound
Int

8(7‘,7‘1’):0(5‘:‘):0( ———), T=—,

T

provided b /r 1 .
Return now to the general distribution Fy(x) of a positive variable.

LeEmMA 4.2. If for each fixed constant K > 0,
1-F(b-K)

4.14 lim —————= =0,
( ) b—ow 1- Fz(b)
then
1-F_(b-K
(4.15) lim = ) _

b 1— F.(b)

Proor. We advance the induction from r to r + 1. For this objective the

fact F,(x) > F, . ((x) forall £ = 1,2, ... and x > 0 is relevant. Consider
1-F(b—-K) 1-F _(b—-K)+F,_(b-—K)-F(b-K)
1-F(b) 1-F,,y(b)
_1-F(b-K) 31 F(b-K-9)]dF, (¢)
= TTI-F(b) 1= F,.(b)

The first term goes to 0 owing to the induction hypothesis.
The second term is estimated above by

b-k-L1 —F(b—K-¢&)

fo 1— Fy(b - ¢) [1 - Fy(b - £)] dF,_4(¢)
(4.16) [ - Fib - O] dF(9)
1-F,_(b-K-L)
1-F.(b)

With K fixed, choose L and then b sufficiently large after L is fixed, such that
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forall ¢<b-K—-1L,
1-F(b-K-¢) 1-F(b-K)
< sup —————— <¢
1 - Fy(b-¢) por+L 1~ Fy(b)

It follows by the induction hypothesis that the quantity (4.16) is bounded by &
as b — o and ¢ is arbitrarily small. Clearly, the induction is established. O

The same kind of manipulations proves the following theorem.

THEOREM 4.1. If the condition (4.14) holds for the positive distributions
G(x) and H(x), then it also holds for the convolution of G and H, F = G * H.

COROLLARY 4.2. Condition (4.14) holds for any distribution function F(x)
which is a finite or infinite convolution of exponentials of any scale parameters.

Proor. We examine
(H+G)(b) — (H*G)(b-K)
1 - (Hy*Gy)(b)
R )G - §) - G(b - K - §)]dH(§) _
- 1 - (Hy*Gy)(b) -

Y1t Ye-
Clearly,
H(b) -H(b-1L)
=TI H()
because (H, * G,)(b) < Hy(b) and paralleling the analysis of (4.16), we have
G(c) - G(c—-K)
"= T T IS Gy(o)

Choose L large enough and fixed such that y, < ¢, then send b — « to assure
v2 — 0. The proof of

1 - H*G(b)
1 - H,*Gy(b)

paraphrases the proof above. Accordingly, Theorem 4.1 is proved. O

0

THEOREM 4.2. If the density f(x) is log concave, then the condition (4.14)
holds and the convergence is monotone.

Proor. The density f(x) is log concave means that f(x) = e *® and u(x)
is convex for x > 0. It is elementary [see Karlin (1968), Chapter 2] that
1 — F(x) = [7f(¢) d¢ is also log concave and decreasing. Therefore,

1—F(x) =e #%,
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@(x) convex increasing for x > 0 and ¢(0) = 0. Set ¢(x) = 0 for x < 0 so that
¢(x) is convex for the whole real line.

By the iterated theorem of log concave densities [Karlin (1968), Chapter 3],
we know that the convolution of the kernels K(x)=1— F(x), K,(x)=
[5[1 — F(x — £)]f(¢) d¢ satisfies the determinant inequality

Ky(y) Ky(x)

>0 fory>x,
Ki(y) Ki(x) ?

or equivalently

Ky(y) S Ky(x)
Ki(y) Ky(x) ’

that is,

Fi(y) — Fy(y) S Fi(x) — Fy(x)
1-Fy(y) 1-Fy(x) ~’

which implies
1-Fy) _, FO) -FG)  1-Fx)
1= Fy(y) 1-F(y) ~ 1-F(x)

Thus [1 — Fi(x)]/[1 — F,(x)] is decreasing in x.
We prove next that

To this end, we examine

/51— F(x — €)1 f(¢) dé¢ _
1-F(x)

and ¢'(¢) > 0 since ¢ is convex on (0, ») with an infinite range. But ¢(x) —

(&) — p(x — £) + ¢(0) > 0 by convexity. Thus A(x) > e *O[p(x) — ¢(0)]. But

@(x) necessarily 7o since f(x) is a positive density over the whole real line

and therefore A(x)1 o, entailing the result [1 — Fy(b)]/[1 — Fy(5)],0.
By similar arguments we can prove that

1 — Fy(b)
—_— 5 ®
1-F(b-K)
as b > o for K fixed. Indeed, forming the corresponding integral, we get
Fy(b) — Fy(b) _
1-F(b-K)

A(x) = fxe_¢(x_§)+¢(x)—¢(§)¢'(§) dé
0
(4.17)

b - - - - ’
/Oe pb=6)+e(b=K) o)y (£) d ¢

b-K
> e—«p(K)fK e~ #b=O+eb—K) @+ oK)y (£ g &
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and since ¢ is convex on (—,®), the right-hand side goes to « as before,
establishing the result of (4.17). O

5. Extremal r-spacings of independent uniform [0,1] variables.
Let V,,V,,...,V,_; be iid. uniform [0, 1]. We form their order statistics
Vl* < V2* < -+ <V*, and the associated spacings U;=V* -V*,, i=
1,...,n, where V§ = 0, V¥ = 1. The r-scans in this context consist of the
sums R; = Li"71U V,’i, — V*,, more aptly labeled here r-spacings.

The order statistics of R, are denoted by
(5.1) Rf<Rj< - <R .,

as in (1.2). The study of the extremal values of the sequence (5.1) can be
effectively derived from the results of Theorems 1 and 2 by virtue of the
following familiar distributional equivalence:

(5.2) (S,Uy,...,8S,U,) has the same joint distribution as ( X;, X,, ..., X,,),

where X, are i.i.d. following an exponential (scale parameter 1) density and S,
isa gamma(n Drv. lndependent of {U} Therefore, S, R; has the same Jomt
distribution as R, = 4" 71X, i=1,...,n —r + 1, and the count N7 (a) of
the indices satlsfylng R, <a,i=1,...,n —r+ 1, has the same distribution
as the count of indices N, (a) satisfying S,R; <a. Thus

r—1
(6.3) d(N,(a),Z,) <(1-eM)|(2r—1)F(a) +2 ¥ F,(a)|,

m=1

where A =(n —r + 1)F.(a) [F,(-) is the r-fold convolution distribution of

F(x)=1-e7"]
Obviously,
n—r+1
(5.4) N, (a)= ¥ I,
i=1
where I, = 1if S, R, < a and 0 otherwise. Let
n—r+1
(5.5) Nog(a)= L J,
i=1

where J; = 1if nR; < a and 0 otherwise.
We prove the following theorem.

THEOREM 5.1. For A =(n —r + 1)F.(a) = n(a"/r!), then

(5.6) d(N,y(a),Z,) <d(N, (a),Z,) + O(V loin ),

which is of order O(n=1/") for r > 2.
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Proor. Consider two possibilities for S,, namely,

S, log n S
—-1|< and &
n n

&

Under the event &, we estimate by a union bound, so

n—r+1

Pr{N,y(a) #N,(a)} < X Pr{Ii # J; and S

i=1

+ Pr{

S, ‘
— =1>
n

—"—1‘>
n

n

|

n

log n

n

|-

logn

n

log n

n

347

But the outcome I, # J; signifies either S, R, < a but nR; > a or nR; <a

but S, R; > a. In conjunction with

logn
1| < g,

n

these conditions lead to the inequalities

log n
ey

)asRisa or a<R
n

whose probabilities are bounded by

a” [log n
O((r—l)! n )

Thus

n—r+1

Y Pr{Ii # J; and

i=1

a” log n
(5.7) snO((r_l)!V - )

logn
=)¢r0( g )

n
[logn
n

The foregoing inequality implies

d(N,y(a), N, (a)) <O

(5.8)

+ Pr{

S, ‘
— -1 <
n

_.1_1‘

n

logn }

log n

n

)
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The Berry-Esseen error estimate of the normal approximation to

(S, — n)/ Vn yields

S, log n 1 2 .
Pr{{— —1{> =0|— +—f e t/2d¢
n n n V2w J\fiogn
1 e—logn/z
5.9) —o| =] +o|ft="
( Vn Vlog n
o 1
= vl

From the results above plus (2.6) and (2.4) of Section 2 we obtain
d(N,y(a),Z,) <d(N, (a), Z,) + d(N,y(a), N, (a))

logn
<d(N;(a),Z,) + O(V - ),

as was to be proved in (5.6). O

An anonymous referee proposes that using by the coupling method the error
term O(y/log n/n ) can be deleted.

Focusing on the kth term of the Poisson approximation, we achieve the
limiting formula (1.18).

As elaborated in Section 3 we can allow r to increase to « at a sufficiently
slow rate and retain the Poisson limit. For example, consider r = (In n)' ¢,
a >0, and determine a satisfying (a"/r)n = A, 0 <A <», then a =
(In n)~* /e ™" and

[log n
(510) d(Nn‘Um(a),ZA) < O( T ) + O(a)

If In A goes to ® at a slower rate than r, then N, (a) possesses a central
limit theorem.

Maximum r-scan. The ascertainment of limit laws for N, parallels the
analysis of N_;;. We reduce the problem to the i.i.d. case with the exponential
density, yielding Poisson approximations. Explicitly,

d(Nn*(b), ZM) <e(r,b)

defined in (1.5), with u = n[1 — F(b)]. Consult Theorem 2 and Section 4.
In the case at hand we can achieve the error rate

Inb/r
s(r,b)=0(‘/ b ),

which goes to 0 provided b/r 1 or even the error rate O(b~!) when r is fixed.
The next step obtains the corresponding limit laws for N,7;(b) which has the




POISSON APPROXIMATIONS 349
same limit law as N, (b), where N;,(b) is the count of all nR; > b. The
equation

r—1pt
(5.11) p=(n-r+1)[1-F(b)]=(n-r+1)e?®Y A
i=o b
requires
(5.12) b=Inn+ (r—1)Inlnn —Inu(r — 1)!+ o(1).
The kth term of the Poisson approximation for the maximal r-scan uniform

variable spacing has the limit law given in (1.19).

6. The r-scan process with a variable time horizon. Let X, X,, ...
be a sequence of i.i.d. positive random variables with distribution function
F(x). Let S, be the partial sum process based on {X;}. For ¢ > 0 define n, as
the renewal count, that is, n, = & if and only if S, <¢ < S, ;. We form the

r-scan process { R, }7+~"*! for the random number of r.v.’s Xy, X5,..., X, and
let {R,} be the r-scan process for the deterministic number 7, = 1nteger part
of E’[n,]

We denote the correspondlng count variables of the r-scan {R Jre ! and
{R)7m*1 by N (@), N;*(b) and N; (a), N/ (b), respectively. The following
result holds.

THEOREM 6.1. Let A = (7, —r + DF.(a) and n = (7, — r + D[1 — F.(b)].
Then

(6.1a) d(I\A’[,Z,‘) <(1-e*é(r,a) + O(V lo—ft ),
(6.1b) d(N',Z,) < (1—e*)e(r,b) + 0(‘/? )

The proof adapts the methods of Section 5. A standard central limit
theorem holds for
t
n,— —
Moy
a

——Vt
u3/?

with an error O(1/Vt), where u, = E[X,] and o2 = Var X;. Comparing
N (a) with N;(a) under the two realizations |n, — 7, < ylogt/t and
|n, —7,l > ylogt/¢t and paraphrasing the analysis set forth in Section 5, the
results of (6.1) are confirmed. We omit the details.
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7. Extremal statistics for r-scans from stationary processes. Con-
sider a finite stationary ergodic process . taking values from a finite set
S ={1,2,...,s}. Conditioned on the realization A,, A,,..., A, from .~ let
Y,,...,Y, be independent positive r.v.’s and identically distributed for those
A; in the same state. For example, if ./ is a finite state stationary Markov
chain, then with each state, say v, there is a distribution function F*(x) and
iid. random variables following F®)(x). The {Y;} for the realization {A,}
accordingly consist of independent random variables, and the subsequence
{Y;")} from {Y;} corresponding to visits to state y are i.i.d. governed by the
distribution F®(x). We abbreviate the event A; =1;, A, =1,,...,A, =1,
byA,=Iln=Q,...,n), 1 =,...,1,)]

Denote by R;,i = 1,...,n — r + 1, the associated r-scan process of {Y;} [see
(1.1)], that is, R, = X4*77'Y,,i=1,...,n —r+ 1, and N (a) and N*(d) as
in (1.5) the count of those R; < a and R; > b, respectively. By stationarity,

A=E[N]=(n-r+1)) Pr{R, <alA, =1}Pr{A, =1}
1

(1.1)
=(n-r+1)Y,Pr(R,<a,A, =1,,...,A, =1}
1

Also
(7.2) p=E[N*]=(n-r+ 1)Y. Pr{R,>b, A, =1,...,A, =1,}.
1

The Poisson approximation to N™(N*) by Z(Z,) will be derived with error
terms next.

Associated with a given realization &/= {A,,..., A,}, we have the indepen-
dent r.v. sequence Y,(A)),...,Y,(A,) and for each specific state A; = A, =

- =A; =y, the corresponding Y;(A;) are iid governed by the distri-
bution function F®)(x). We form the r-scan process conditioned on 7
i+r—1
RZ(M)= Z Yk(Ak)’ i=1,...,n—7‘+1,
k=i
and parallel to (1.5) the associated counts

n—-r+1

_ _ _ _ 1, ifR;<a
(1) Ni@= L W(a), W(a)- {0, herin
Clearly,
(7.4) M) = E[N,; (a)l] = n_ZHlPr{Ri < ale7}.
i=1

Paraphrasing the analysis of Theorem 1, we deduce

(15)  d((N~(a)l#),(ZuJ)) < [by() + by )] /N(7),



POISSON APPROXIMATIONS 351

using the notation (Z,|.27) in place of the Poisson variable Z,,,,, where
(7.6) b (&) =(2r - 1ML )maxFY(a),
Y

where F)Y is the r-fold convolution F”1% F?2% -+« + F*" and y = (y,...,v,)
traverses the set of all configurations of r-states, y; € 7. The calculation of
by() paralleling (3.4) produces
n—-r+1 r—1
Y Y. Pr{R,,, <alR, <a,}Pr(R,; < al/}
(77) i=1 k=k;r0+1

< (2r - DAM) maxF{¥(a).

The combination (7.6)-(7.7) gives the bound (d is variational distance)
(7.8) d((N(a)l%),(Z,|%7)) < 4rG(a),
where G(a) = max [F{”(a)]. Averaging over %7, we get
E(d((N~(a)l%),(Z,|l/))) < 4rG(a).
Appealing to (2.8), we deduce
(7.9) d(N~(a),2,) < B, [d((N~(a)}), Z,),
with Z, defined in (7.1). Invoking the triangle inequality (2.4) yields
d(N~(a),2,) < Ey[d((N~(a)le), (Z,l2))]
(7.10) +E,[d((2,1), Z,)]
<4rG(a) + E[d(Z(¥), Z)].

The first term goes to 0 with G(a) — 0 which is the case if F{"(a) — 0 for
every state y. We stipulated only finitely many states for simplicity but this
could easily be generalized with appropriate technical requirements.

We will now prove that the ergodic nature of . compels the second term of
(7.10) to go to 0 where the error term can be calculated. We consider all
r-states of components from ./, y = (y4,...,7,) totalling s” possibilities. For
the process .~ let c,(v) be the expected number of consecutive r-states of type
v in the first n samples from the unconditional process . and let c(y; &) be
the number of y-states occurring in a particular realization &/= (4,,..., A,).
The basic ergodic theorem entails that

c(v, )

with probability 1 (for almost any realization) and of course c,(y)/n — m(y),
where m(y) is the unconditional probability of observing the r-state vy in any r
consecutive terms of . Let p.(a) be the probability that an r-scan induced
by v has value less than or equal to a, that is,

(7.12) py(a) = Pr(¥(y,) + - +¥(,) <a).
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The unconditional expected number of r-scan counts is

(7.13) A=Y c(v)p,(a).

Y

For each realization 7, the expected number of r-scan counts is

ML) = Y pa)e(y; ).
ye

We evaluate next, using the formulas for A, A(&7),

c(v, )
E = A(s)] 5 £ e,(1)p,(a) By 1= =5
(7.14) Y "
c(y, &
<imaxE_ |1 - —u .
Y cn(')')
Using the ergodic theorem the quantity above — 0 since
(v c(y, o
(7.15) f:) > m(y) andalso ﬂn———) S (y).

The convergence in (7.15) is geometrically fast for the Markov chain case. Let
g, be the error in the rate of convergence of (7.15), providing an error estimate
O(Ag,) of the second term of (7.10). By similar means to (7.10), we derive

(7.16) d(N*(b),u) <E,[d(N*(b)l2),(Z,17)] + E,Ju() — ul,

where

n—r+l1
p= X Pr{R;>blorPr{er} = ¥ e, (v)Pr{Y(yy) + -+ +Y(v,) > b}.

i=1 LY

The second term in (7.16) is bounded by O(ue,), by the corresponding analog
of (7.14). The first term is bounded by

S Yi() >b}

i=2 i=1

r+1
4r max Pr{ Y Yi(y,)>b
[see (4.6))].

8. Extremal r-spacings for a general distribution. In Section 5 we
ascertained the asymptotic distributions (n — «) of various extremal r-spac-
ings for n sampled i.i.d. uniform [0, 1] r.v.’s. We shall extend several of the
results on extremal r-spacings to the context of samples from a general
distribution. To this end, we concentrate first on a finite piecewise constant
density. Thus let V;,...,V,_; be(n — 1)i.i.d. samples drawn from the density

pj/dj’ Aij<Aj+dj=Aj+1,j=1,2,...,L,

0, otherwise,

(8.1) f(x) = {
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where Ej wp;=1 p;>0,and d;>0, j=1,2,...,L. Consider the order
statistics Vi* < V5 < -+ < V* {nduced from {V;} and associated spacings
U =V*- V"il, i =1,...,n, where Vo =A; and V) = A, ,; and the interval
[Al, A; , 1] subtends the support of the density f.

The r-scans R, =V% _,-V*, i=1,...,n—r+1, and their order
statistics R¥ are defined as in Section 5.

Let N (a) be the number of r-scans among R, = L4V U, i =
r+1, satlsfymg R; < a. We prove a Poisson approx1mat10n to N (a
with error estimates. For A defined in (8.3) below, we prove

(8.2) d(N, (a),Z)) <¢,

1,.
) = (a)

with an explicit error term ¢, - 0 as n — o,
The appropriate A for the Poisson approximation r-scan of N~ (a) is
specified to be

(8.3) A= XL: (npj —-r+ l)Fr(aT:pl),
j=1

J

where F,(x) is the r-fold convolution of Fy(x) = 1 — e™* (see Section 3) and a
is taken to be of order 0 <y, < an'*!" <y, < . Since F.(5) for § small
behaves as 6”/r! with a as prescribed, it follows straightforwardly that A is
bounded away from 0 and «. In particular, for an'*!/" = x,

a” an x" L er+1

x” r+1
T e A T

!¢
rt ;2

nL
‘A Le

Let n; — 1, n; > 1, denote the number of {V)r-! within I, = [A A; +p) for
Jj=1, 2, L [so that ZL (n; = 1) =n —1]. For every reahzatlon of the
random vector n=(n,,.. nL), let N7 (a), j =1,..., L, indicate the count of
r-scans not exceeding level a based on the n; — 1 values V; contained within I;
augmented with the two boundary points A;, A; ;. Accordingly, N; (a) is the
aggregate count of r-scans for n; — 1 uniform random variables on the
interval [A;, A}, ] Let

(8.4) /\j=(nj—r+1)Fr(%).

Theorem 5.1 applies to the {V;} within I; = [A}, A, ], entailing that

lognj)

n;j

_ anj
(8.5) d(Nj(a),2,) 4=+ 0

J

We may assume each n; — » since the probability for the contrary event tails
exponentially fast to 0 as n — «. Moreover, for a realization {n,,...,n} the
random variables {N; (a)}/=, juxtaposed with {Z ,‘j}j’;l constitute independent
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r.v.’s and (2.9) applies to give the variation distance estimate [take A* =
Mm) =Xt ]

Z n

=1 j

L L p.
d( Nj‘(a),Z,\*) s4a( Y EJ—) +0
=1

J Jj=1"J

L lognj)

Since ¥ 7_;N; (a) and the r-scan count N~ (a) differ by at most (L — Dr of
r-scans for those sums which involve contributions coming from adjacent
intervals I; and I;,;, we may conclude that

d(N_(a),Z,\*)

L
+d| Y

J

sd(N‘(a), f N7 (a)
1

j=1

Nj‘(a),Z,\*)

(86)c  max [Pr{a boundary r-scan between I; and I, < a}|r(L - 1)

j=1,...,L-1
L n, L logn ;

+4a(2—’)+02 8% 1.
j-14; j=1 nj

For n large and all n; — » we have the estimate (using the normal approxi-

mation; see Section 5)

Pr|

(8.7) Pr{ nax In; —p;nl > yn logn} < O(%)

<j<L

1

| e <of )

Therefore,

On the other hand, when |n; — p;n| < ynlog n for all j, we have [using the
fact F.(8) = 6" /r! for & small]

L L an L anp :
YA —A=|Y (n;—r+1)F, —h)—Z(npj—r+1)Fr( p’)
j=1 Jj=1 d; j=1 d;
L anp ; an ;
<O(Ynlognan) + ¥ (np; - r +1) F( dpj) ‘Fr(T)
(8.8) J=1 J J

— r
Inp; —n;l a

min, d; (r— 1!

r—1

L
<O(Vlogna'n™*/?) + 2 ¥ np;
j=-1

log n
=O(\/nlogn(an)r)=0(\/ i ),

~since r and L are finite, an'*'/" is bounded and d; is positive for all ;.
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Observe next that
(8.9)  d(N7(a),Z,) <EE,[d(N(a), Zym) + d(Zsw) Z))].

The inner expectation of the first term on the right-hand side of (8.9) by virtue
of (8.6) is bounded by

L log n; n
Y g J,n<>pj for all j

ic1 n; J 2

o(%) +O(na) +E

(8.10)

+ Pr{some n; < £J2—}

The last term of (8.9), due to the inequality (2.7), namely

L
d(Zx,Z) <| Y. A=Al
j=1
is bounded by
L
(8.11) E[ Y Aj—/\}.
j=1

Using the estimates of (8.8) and (8.10) the terms of (8.10) and (8.11) are (for
r > 2) of the order O(na) = O(1/n'/7), since the other terms are of the order
O(ylog n/n) or exponentially small in ~.

When f(v) is any continuous density with a bounded support, then by
approximating with a finite piecewise constant density we achieve in a stan-
dard way, as n — «, that N~ (a) is approximately Poisson (1) with

(8.12) = o) a

Maximal r-spacings. Let N;(b) be the number of r-spacings satisfying
R; > b, where V,,...,V, _, are n — 11iid. samples from the density (8.1). We
assume that L and r are fixed while n — « and that d p;>0,j=1,...,L.
Let f* = min(p;/d;) > 0 and assume for ease of expos1t10n that the mini-
mum is achieved unlquely Let p* be the probability that a sample V. is drawn
from the interval I«, j* € {1,..., L} with the minimal density level r*.

Fix 0 < p < oo (u is a free parameter) and determine

1 np*
(8.13) b= e (log( (= 1)!) + (r — 1)loglog n)

Then as n — » we have a Poisson (u) approximation for N (b) with error
term

(8.14) d(Z,, N*(b)) = (logn)'
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The key step in establishing (8.14) is to prove that for b given in (8.13),
(8.15) d(N*(b),Nt(b)) >0 asn >,
where N/(b) counts r-spacings exceeding the level b within I;x. Thus the
counts of maximal r-spacings are essentially contributed by samples from the
interval with smallest density value. By contrast [see (8.12)] the distribution of
N~(a) depends on the entire density f(£).

Apart from an event of probability O(1/ Vn ), we have

j=1,...,
and

(8.16) ~ max LIS"J —np;l < ynlogn,
J

.....

where 7 ; is the number of samples among {V}in I; and S,,j evaluates a sum

of n; exponential (1) random variables. As previously (see Section 5), we can
express the joint distribution of V;* — V* within the interval I; in terms of
the sums S, .

When conditions (8.16) hold, we estimate, invoking the union of events
bound, that

Pr{N, (b) # Nj(b)}

(P (log n)°"
1 - F,|{bnmin{—- 1+cl) —— |.
j#i*\ d; n

Since min; , +«(p;/d;) > f* and with b specified as in (8.13), the left-hand side
of (8.17) is of the order O(n™%) for @ = min;, ;+[p;/(d; f*) — 1], and so

lim Pr{N; (b) + Nji(b)} = 0,

(8.17)
<n

validating (8.15).

Since |n;« — np*| < ynlogn [apart from a rare event of probability
o1/ vn)] the error bound of (8.14) ensues as a consequence of (4.11) [Poisson
approximation with error O(1/b) is established for the maximal r-scans of
independent exponential (1) random variables].

Similar arguments apply when there are multiple intervals with the same
minimal density level. Since (8.15) holds as long as the minimal density
f* > 0 is obtained on the union of several finite intervals, (8.14) and (8.13) also
persist under these conditions. When p; = 0 for some j, say j,, such that the
support of the underlying density is not connected, then clearly N, (d;) > 1
a.s., and the extremal maximal r-scans possess a rather trivial behavior. The
case of a continuous sampling density f(£) with connected support is interest-
ing but not covered here.
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