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MODELLING HETEROGENEITY IN SURVIVAL ANALYSIS
BY THE COMPOUND POISSON DISTRIBUTION

By Opp O. AALEN
University of Oslo

When making probabilistic models for survival times, one should con-
sider the fact that individuals are heterogeneous. The observed changes in
population intensities (or hazard rates) over time are a mixed result of two
influences: on the one hand, the actual changes in the individual hazards,
and, on the other hand, the selection due to high-risk individuals leaving
the risk group early. I will consider the common multiplicative model for
heterogeneity, but with the new feature that the random proportionality
factor has a compound Poisson distribution. This distribution is studied in
some detail. It is pointed out how its application to the survival situation
extends a model of Hougaard, inheriting several nice properties. One
important feature of the model is that it yields a subgroup of zero suscepti-
bility, which “survives forever.” This is a relevant model in medicine and
demography. Two examples are given where the model is fitted to data
concerning marriage rates and fertility.

1. Introduction. In order to properly interpret results of survival analy-
sis, one has to consider the fact that individual risks differ in, possibly,
unknown ways. This heterogeneity may be difficult to assess, but is neverthe-
less of great importance. It may distort observed survival curves and intensi-
ties (hazard rates). This has been discussed by a number of authors, for
instance, Manton, Stallard and Vaupel (1981), Vaupel and Yashin (1985),
Hougaard (1984, 1986a, b), Aalen (1988) and Vaupel (1990).

When intensities are estimated, for instance by incidence rates, one may be
interested in how they change as a function of time. Quite often they are seen
to be rising at the start, reaching a maximum and then declining. Hence the
intensity has a unimodal shape with a finite mode (which should be clearly
distinguished from the distribution as such being unimodal). This, for in-
stance, is typical of death rates for cancer patients, meaning that the longer
the patient lives, beyond a certain time, the more improved are his or her
chances. It is also a well-known phenomenon of divorce rates when the time
scale is the duration of marriage. The maximal rate of divorce which occurs
after a few years is often (falsely) interpreted to mean that (most) marriages
are going through a crisis and then improving [Aaberge, Kravdal and
Wennemo (1989)]. In the examples analyzed in the present paper, concerning
marriage and fertility rates, the same unimodal intensity is observed; see
Figures 7 and 8 below.
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It is likely that unimodal intensities are often a result of selection and do
not reflect an underlying development on the individual level. The population
intensity starts to decline simply because the high-risk individuals have al-
ready died or been divorced, and so forth. The intensity of a given individual
might well continue to rise.

An additional feature which is often seen is that the total integral under the
intensity appears to be finite; that is, the distribution is defective. In practical
terms this means that some individuals have zero susceptibility; they will
“survive forever.” For instance, some patients survive their cancer, some
people never marry, some marriages are not prone to be dissolved, and so on.
In medicine there are several examples of diseases primarily attacking people
with a particular susceptibility, for instance of a genetic kind, other people
having virtually zero susceptibility of getting the disease. Another example is
fertility. Some couples are unable to conceive children, so that the distribution
of times to first child birth for a population of couples will be defective.
Analyzing unemployment, one is also faced with the fact that some people may
be completely unable to get a job.

The aim of the present paper is to study a simple probabilistic model for
heterogeneity which incorporates a nonsusceptible group in a natural fashion.
The model is an extension of one studied by Hougaard (1986a, b). The
compound Poisson distribution plays a prominent role in this extension, being
used here as a mixing distribution. The extension was first suggested by the
present author [Aalen (1988)] but was only briefly discussed there. Hence the
object of the present paper is to study further the choice of the compound
Poisson distribution as a mixing distribution in survival models. Incidentally,
the use of the terminology ‘‘compound Poisson distribution’ follows Feller
(1971), who gives some results on this class of distributions. [It should be
noted that the term ‘“compound” is used somewhat differently by different
authors; see, for instance, Cox and Oakes (1984) for another use.]

The starting point will be the following simple and much applied model for
heterogeneity: One considers the time to occurrence of a particular event. The
intensity (hazard rate) of an individual is given as the product of an individual
specific quantity Z and a basic intensity A(¢):

(1) Individual intensity = ZA(¢).

Clearly, Z may be considered as a random variable over the population of
individuals. It will be called a mixing variable and it is the distribution of Z
which is termed the mixing distribution. What may be observed in a popula-
tion is not the individual intensity, but the net result for a number of
individuals with differing values of Z.

The use of the compound Poisson distribution for'Z is not only mathemati-
cally convenient, but might also be seen as natural in a more substantial sense.
The distribution arises as a sum of a random number of independent gamma
variables, where the number of terms in the sum is Poisson distributed. This
might be viewed as a kind of shock model, where the vulnerability of the
subject has been shaped by a random number of shocks, each of random size.
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[A related point of view is presented by Becker and Rittgen (1990).] This is not
unreasonable as a formal model, but one should obviously not interpret it too
literally in any given practical case. After all, the statistical model fitting
presented in the examples below is a quite superficial undertaking.

It should be mentioned that there is a certain connection with the so-called
“mover-stayer’”’ models [see, e.g., Sampson (1990)]. The model of the present
paper may perhaps also be termed a mover-stayer model (the stayers being
those with Z = 0), but the mathematical form is more natural and leads to a
simpler form of the population intensity than previous mover—stayer models.
These have mainly assumed that one part of the population has zero suscepti-
bility, while the other part has a fixed positive susceptibility.

Below, the extension of Hougaard’s model will be described and some
properties of the compound Poisson distribution will be studied and illustrated
graphically. Several aspects of model (1) with this mixing distribution will be
studied. Finally, two practical examples will be analyzed, one concerning
marriage incidence and the other concerning fertility.

2. Extending Hougaard’s model.

2.1. The Laplace transform of the mixing variable. For model (1) the
population survival function is given as follows:

S(t) = E{e” %"},

where A(¢) = [{Mu)du. Let L(s) denote the Laplace transform of Z. The
above formula may be rewritten as

(2) S(¢) = L(A(2)).

This connection with the Laplace transform was pointed out by Philip
Hougaard and has been very efficiently exploited by him in the papers men-
tioned above. It follows that, when seeking distributions for the mixing
variable Z, it is natural to try those which have explicit Laplace transforms. I
will here consider the following extension of a parametric family of Laplace
transforms suggested by Hougaard (1986a):

a Py y l1-a
(3) L(s)=exp—1—(1+—s , a,6=0,vy>0.
(1-a)d a

For certain values of the parameters, the analytic expression above is not
immediately well defined, but should be defined by continuity. If a or § equals
0, the distribution of Z is degenerate at y. These cases correspond to no
heterogeneity being present. The remaining case to be defined by continuity is
the following important one:

v

1 1/6
L(s) {1+3ys} when «a ,

which is the Laplace transform of a gamma distribution.
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The parameters of the mixing distribution defined by (3) are interpreted as
follows: First, y is the expectation of Z and is seen to be a simple scale
parameter. Next, § is the squared coefficient of variation, this being a natural
parameter since the spread of the distribution of Z is important in determin-
ing the degree of heterogeneity. Finally, « is a parameter dividing the class of
distributions in two major subcategories: For a < 1 the family of distributions
is the one discussed in detail by Hougaard (1986a), who derived it from the
stable distributions. Note that a different parameterization is used here, in the
belief that these parameters have a more natural interpretation in the context
of survival analysis. The extension to a > 1 was suggested by Aalen (1988) and
shown to yield compound Poisson distributions (generated by gamma vari-
ables). The two subcategories are separated by the family of gamma distribu-
tions (@ = 1). The general class of distributions considered here has also been
studied by Bar-Lev and Enis (1986) and Jgrgensen (1987), although in an
entirely different context.

2.2. Compound Poisson mixing distribution. In this section it will be
explained how the subfamily & > 1 of (3) arises as a class of compound Poisson
distributions generated by gamma variables. Such a distribution may be
written as follows [Feller (1971)]:

(4) 7 X, + X, + - + Xy, %fN>O,
0, if N=0,
where N is Poisson distributed with expectation p, while X, X,,... are

independent and gamma distributed with scale parameter v and shape param-
eter 1. The Laplace transforms of the gamma and Poisson distributions are
given by Ly(s) = {vr/(v + s)}" and Ly(s) = exp(—p + pe~*), respectively. The
following standard derivation can now be applied:

L(S) — E{e—sZ} — E{e—s(X1+ +XN)}
= E{Lx(5)"} = Ly(~In(Lx(s))).

Inserting the previous expressions gives the following Laplace transform of Z:

(5)

v+s

(6) L(s) = exp{ = + o[ o) |

This is the same Laplace transform as (3), but with a different parameteriza-

tion. The connection between the two parameter sets is derived as follows. By

differentiation of (6) one finds the first and second moments. Recalling that y

is the expectation, one writes y = EZ = pn/v. Further, 8 is the squared

coefficient of variation; hence 6§ = Var Z/EZ? = (n + 1)/(np). Finally, one
. sees that @ = 7 + 1. Solving the equations gives

a a

- -—, —a-1.
P sa-1 " & "°°
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Inserting this into the Laplace transform (6) brings it into the form (3), which
will be used in the rest of the paper.

From the definition (4) one may immediately deduce the following. The
distribution consists of two parts: a positive probability of being equal to 0 and
a continuous density on the positive real line. The discrete part is

(7) P(Z=0) = exp(—p) = exp - 5" .

which increases with « and 8. Conditioning with respect to N and using the
fact that the sum of the X’s is gamma distributed, the density of the
continuous part may be written immediately and put in the following form:

a

z 1
f(z;a,8,v) =exp{—g(; + P 1)}

8
( ) X}— i (a/s)ka(z/‘y)k(a-—l)
z2 , 21 kIT(k(a — 1)) (a - 1)*

The positive probability at z = 0 corresponds to an assumption of nonsuscepti-
bility for a part of the population.

It may be of interest to consider separately the continuous part of the
distribution. The expectation is given as

>0 - gz = |1 ool )

Similarly, the squared coefficient of variation for the continuous part may be
derived as

(8+1)P(Z>0) —1=(5+ 1)(1_exp{—g(—af_—1)—}) -t

As might be expected, this quantity is always smaller than 8, the squared
coefficient of variation for the whole distribution.

2.3. Connection between the classes of distributions. The subclass a < 1 of
(3) is the family suggested by Hougaard (1986a), which was proved by him to
consist of absolutely continuous nonnegative distributions with unimodal
densities. Hence the atom at z = 0 disappears when a goes below 1. Hougaard
gives an expression for the density valid for @ < 1 and an interesting question
. is how this is related to the density (8) of the absolutely continuous part of the
compound Poisson distributions. Considering (8) for @ < 1, one meets with the
difficulty that the argument of the gamma function becomes negative, To
circumvent this, one may use the following standard formula [see, e.g.,
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Abramowitz and Stegun (1972), page 256]:

IF(y)r(1-y) = sin(my)

(This can be considered formally true even at integer y’s where both sides

equal «.) Applying this yields

f(k—(;j_lﬁ - %F(l — k(e — 1))sin(7k(a — 1)).

Inserting this into (8) yields
f(z5a,8,7)

afz 1
=exp{_3 Yy T a- 1)}
1 i (a/8)*(2/9)** PI(1 - k(a — 1))sin(wk(a — 1))
TZ ), El(a — 1) ‘

By reparameterization this is the same as the density given by Hougaard
(1986a). Hougaard’s parameters, denoted with subscript H, are given as
follows:

o a
ag=1-a, 8y =v'"*(a/8)", O0g = —.

Hence the density given by (8) is valid for all « > 0 when the gamma function
is extended to negative arguments. Its integral over the positive half-line
equals 1 when a < 1, and the integral is less than 1 when a > 1 with the rest
of the probability, given by (7), being placed at 0.

2.4. Asymptotic limits. A number of asymptotic results exist for the pres-
ent distributions, and the most important ones will be mentioned briefly.

AsyMPTOTIC NORMALITY. Consider the standardized variable
Z —
y-—-,
Vo

which has expectation 0 and standard deviation 1. By taking the limit of the
Laplace transform, it is deduced that the distribution of Y converges to a
standard normal distribution when § | 0; see also Jgrgensen (1987).

. ASYMPTOTIC POISSON DISTRIBUTION. When a — o the distribution of Z /(8y)
converges to a Poisson distribution with expectation 1/8. This follows by
applying a limit argument to the Laplace transform.
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ASYMPTOTIC STABLE DISTRIBUTION. For a < 1 the class of stable distribu-
tions appears as a limit when 6 and y goes jointly to « in an appropriate
fashion; see Hougaard (1986a) for details.

3. Shape of the compound Poisson distributions. When using the
compound Poisson distribution, it is important to be acquainted with its
properties, for instance the shape of the density of the absolutely continuous
part. There does not appear to be much information on this in the literature,
and therefore some discussion and several illustrative figures are given here.

Of the three parameters, y is merely a scale parameter, while the other two,
a and 8, determine the shape of the distribution. When « < 1 it has been
proven by Hougaard (1986a) that the distributions of Z are unimodal. For
a > 1 the positive probability at 0, combined with an absolutely continuous
density, implies that the distribution is not unimodal [see also Bar-Lev and

2

. F1c. 1. Densities of the continuous part of the compound Poisson distribution for @ = 1.5. By

varying the parameter & the family of densities is shown as a surface, where a particular density is
obtained by cutting the surface parallel to the axis marked z. In this case the densities appear
unimodal; but see the text for qualifications. [Technically, the figure shows f(z;1.5,8,1) for
0.01 <z < 2and 0.05 <& < 2 with grid size 0.069 X 0.067.]
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Enis (1986)]. One may, however, ask whether the density part f(z;«,§,y) is
unimodal. This would seem a desirable feature of the model, unless groups
with clearly distinct susceptibilities were involved. An impression of the shapes
of the distributions is most easily given in a graphical manner. Since
f(z;a, 8,7v), given by (8), is not defined at z = 0, I will first discuss the limit of
this expression, for « > 1, when z approaches 0.

The limit of the density part (8) when z approaches 0 depends on the value
of a. The first factor of f(z;a,§,v) (the exponential function) converges to a
finite positive limit, and so poses no problem. The rest of the right-hand side of
(8) can be written as follows:

o SR CL s
po1 RIT(k(a — 1)) (a — 1)* kD’

Depending on the value of «, the exponent of z in the above sum will be

positive from a certain & on. The sum of terms from this % will converge to 0

when z | 0. This follows from the Lebesgue convergence theorem due to the

2

FiG. 2. Densities of the continuous part of the compound Poisson distribution for a = 2; see
Figure 1 for details.
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fact that (9) converges for all positive z, and contains only nonnegative
summands each decreasing in z from % on. Three cases must be distinguished:

1. The case 1 < a < 2. The first few terms of (9) will have negative powers of
2z, with the dominant term being proportional to z*~2. Hence f(z;a, §,7y)
goes to « when z goes to 0.

2. The case a = 2. All terms of (9) go to 0, except the first which determines
the limit. Hence the limit of f(z;a,8,y) when z goes to 0 equals
(2/8)* exp(—2/8)/y.

3. The case a > 2. All terms of (9) contain positive powers of z and hence
f(z;a, 8,v) goes to 0 when z goes to 0.

A number of figures have been made to illustrate the possible shapes of the
density part. Without any loss of generality the expectation vy is put equal to 1.
For some values of a, three-dimensional plots of (8) are then presented with z
and § as independent variables; that is, f(z, ay, 8, 1) is plotted as a function in
two variables for specific values of «,. (The plots are made by the Mathematica
program [Wolfram (1988)].) The densities for various values of & will be the

F1G6. 3. Densities of the continuous part of the compound Poisson distribution for a = 4; see
Figure 1 for details.
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cuts through the resulting surface parallel to the z-axis. The advantage of this
way of plotting is that it gives a good impression of how the densities vary with
the parameter §. The three categories enumerated above will be discussed
separately.

For the case 1 < a < 2, I have chosen a, = 1.5 as a representative value.
The corresponding plot is presented in Figure 1. Considering cuts through the
surface parallel to the axis marked z, one sees that the densities appear to be
unimodal, decreasing monotonically from a mode at 0 when & is large, and
apparently having a mode larger than 0 when § is small. From considerations
above one knows that the value at z = 0 is in all cases ». Hence the impression
of unimodality cannot be correct for small values of 8. One-dimensional plots
with finer detail show that the densities are ‘“nearly”’ unimodal also for small
8, except that, when z approaches 0, the density curve reaches a minimum and
then goes off towards . This latter part, however, generally constitutes a very
small part of the density when considering its integral. Hence, for practical
purposes, the densities can be considered to be nearly unimodal even for small

FiG. 4. Densities of the continuous part of the compound Poisson distribution for a = 10; see
Figure 1 for details.
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F1G6. 5. Density of the continuous part of the compound Poisson distribution for « = 10, y =1
and two values of §.

values of 8. This seems to hold for most a between 1 and 2. In a sense the
divergence to «» when z approaches 0 can be viewed as a remainder of the atom
at 0.

The case a = 2 is illustrated in Figure 2. Apparently the densities are
unimodal, monotonically decreasing from a finite value at 0 when § is large,
but having a positive mode for small §.

The case a > 2 is more complicated. Three-dimensional plots are shown for
a, equals 4 and 10; see Figures 3 and 4. In the first case the distributions
appear to be unimodal with a positive mode. In the second case there is a
“valley” in the figure, implying cases with two modes. This is also illustrated
in Figure 5. Drawing plots for larger values of a reveals several modes arising.
This is not surprising since the distributions converge towards Poisson distri-
butions when « increases. Hence one would expect multiple modes to arise,
eventually converging into the discrete atoms of the Poisson distribution.

What is the practical implication of these multiple modes when the hetero-
geneity model is applied? Preliminary experience with statistical fitting of the
heterogeneity model have given values of a between 1 and 5, for which the
densities would be unimodal, or nearly so. So large values of «a are perhaps not
very common in practice. But if they do occur, then the resultant multiple
modes would mean that the population should consist of several subgroups
with quite distinct risk levels. This may occasionally be true, but it should be
documented by other information too, and not only by the fit of a model.

From all three-dimensional figures it is apparent how the normal distribu-
tion seems to arise for values of 8 very close to 0. This is in accordance with
the asymptotic theory mentioned earlier.
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4, Application to heterogeneity in survival analysis.

4.1. Population survival function and intensity. When used in conjunction
with model (1), the particular class of mixing distributions considered here
produces nice and useful formulas. Combining (2) and (8) gives the following
population syrvival function:

(10) S(¢) = exp{—-a-—c-v——-[l - (1 + S—ZA(t))l—a]} ifatl,a>0,
(1-a)d a :
1 1/8
(11) S(t) = {m} ifa =1,
with the corresponding population intensity
12)  ut) = - L n(s() - MO e
dt {1+ aT8yA(t)}

Note the limiting case a = 0, yielding u(#) = yA(¢), which should be expected
when no heterogeneity is present. One reason for being interested in the
particular class of mixing distributions considered here is the simple form of
(12).

It should be noted that wu(z) has a finite integral over (0,®) when « > 1.
This means that the survival distribution is defective, corresponding to the
fact that some individuals have zero intensity of ‘“dying.” These individuals
are, of course, precisely those with Z = 0, and it is the positive probability of
this event [see formula (7)] that produces the ““infinite” lifetimes. In fact, this
kind of situation has previously been modelled by means of the so-called
“mover—stayer’’ model [see, e.g., Sampson (1990)]. The present model is
mathematically more attractive, and has the advantage that it combines the
zero susceptibility for some individuals with a continuous variation in suscep-
tibility for other individuals.

Considering more generally the methodology of survival analysis, it is
interesting that (12) for & > 1 produces a large class of intensities correspond-
ing to defective survival distributions. The ordinary parametric models of
survival analysis do not have this property. Such defective distributions are of
relevance in many contexts; see Section 1 for some further discussion. The
finite integral of the population intensity for a« > 1 means that eventually the
population intensity u(#) must decline to 0 however much A(¢) increases. This
is reasonable since eventually the survivors will be dominated by those of zero
susceptibility. .

In order to inspect more closely what effect mixing may have on the
intensity, one may consider the case of an increasing Weibull basic intensity,
that is, A(¢) = at®* with 2 > 0. It is easily seen that the population intensity
u(¢) will eventually decrease towards 0 whenever a > k/(k + 1), continue to
increase indefinitely when « is less than this value and approach a finite limit
in the case of equality. In the first case the population intensity will increase
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Fic. 6. The effect of heterogeneity on the intensity. Population intensities, u(t), are shown for
8 = 10, y = 1 and various values of a, with basic intensity A(t) = t*. The case a = 0 corresponds
to no heterogeneity.

up to a maximal point before decreasing; hence this is a unimodal
intensity—see Section 1. An illustration of some population intensities for
various values of a and a Weibull basic intensity with 2 = 4 is given in Figure
6. In this figure the curve for a = 0 corresponds to no heterogeneity; in the
other curves it is apparent how heterogeneity ‘‘depresses” the intensity, with
a equal to 1 and 2 corresponding to unimodal shapes.

The occurrence of basic intensities of the Weibull type may sometimes be
justified from its property of being an extreme value distribution [Leadbetter,
Lindgren and Rootzen (1983)]. It is, for instance, well known how the extreme
value character of the Weibull distribution makes it reasonable as a model
for the basic intensity of cancer incidence. This is related to the so-called
Armitage-Doll model; see also Aalen (1988).

Another important particular case is that of a Gompertz basic intensity,
that is, A(¢) = ae®. It may be seen that w(¢) eventually decreases to 0
whenever a > 1, approaches a constant when a = 1 and increases indefinitely
when a < 1.

4.2. Results for surviving individuals. Consider the individuals surviving
at a time ¢. Due to selection their mixing distribution will have changed
compared to what it was at timé 0, since the individuals with the smallest Z’s
will have had the greatest chances of surviving. An important advantage of
Hougaard’s family is that the mixing distribution of survivors will still belong
to the same class, but with new parameters. Since the class considered here is
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just a parametric extension of Hougaard’s family, the same might be expected
to hold for it. Let T be a random variable with distribution given by the
survival function S(¢#). The Laplace transform of the mixing distribution for
survivors at time ¢ is given by

L(s + A(t))
L(A(2))

[Hougaard (1984)]. Substituting (3) and rearranging yields the Laplace trans-
form L(s) anew, but with changed parameters. The new parameters are as
follows: '

L(s)=E(e*?IT>t) =

3y e 8y et

(13) a,=a, 'y,=y(1+ —a-A(t)) , 6,=6(1+ -a—A(t)) .
The fact that «, is independent of ¢ means that the mixing distributions stay
within the particular subclass defined by this parameter when ‘‘mortality’
selection acts. In particular, if the mixing distribution is compound Poisson at
the start, it remains so throughout. One may, furthermore, note that the
expectation vy, decreases with ¢, as should be expected. On the other hand, the
squared coefficient of variation decreases for Hougaard’s family (a < 1), is
constant for the gamma mixing distributions, but increases for the compound
Poisson mixing distributions. Finally, it may be deduced from (13) that
y; ~1/#8, is in all cases a constant independent of ¢.

For a > 1, the probability of zero susceptibility for the survivors at time ¢ is
given by :

B P 6‘)’ l-a
(14) P(Z=0IT >1t) —exp{—m(1+7A(t)) },

which, as expected, increases with .

An interesting limiting case may be mentioned: Let a > 1 and consider the
susceptible individuals (that is, Z > 0) only. It may be interesting to consider
the properties of those susceptible individuals who survive until a large time ¢.
In other words, one wants to find the limiting distribution of the mixing
variable Z for such individuals. The answer, which is easily derived from the
Laplace transform, may be formally given as follows: Let ¢ increase towards o
and assume that A(¢) then also goes to «. In that case the limiting distribution
of ZA(¢) among the susceptible survivors at time ¢ turns out to be a gamma
distribution with expectation and variance both equal to @ — 1. Hence, when
excluding those of zero risk, the eventual behaviour of the compound Poisson
model is the same as that of a gamma model.

4.3. Multivariate modelling. When individuals in a study belong to fami-
lies or other groups where there may be similarities in risk, then this associa-
tion can be modelled within the present framework. For simplicity, it will be
assumed that a group consists of only two individuals, A and B, and that
conditional on a group-specific quantity Z the lifetimes of the individuals are
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independent with intensities given as
ZA,(t) and ZAg(?),

respectively. Note that individuals from the same group have the same value of
the mixing variable. Let T, and Ty be the survival times of A and B,
respectively. The joint population survival function is given as

P(T, > ty, Ty >tg) = E[P(Ty > ts, Ty > t5lZ)]
= E[exp(—Z(Aa(24) + Ag(23)))].
Introducing the Laplace transform yields
P(Ty > ty, Tp > tg) = L(Aa(ta) + Ap(5)),

which is the counterpart of (2). Once again, this elegant expression for the
survival function is one of the main attractive aspects of the model.

This model has been studied by several authors, for instance, Clayton
(1978), Hougaard (1986b) and Oakes (1989), with various mixing distributions.
The object here is to point out that the compound Poisson mixing distribution
is another such candidate. Its use implies that if one member of a group is
nonsusceptible, then the other member is too.

5. More general compound Poisson distributions. So far it has been
supposed that the compound Poisson distribution is generated as a random
sum of gamma variables. Of course, the X-variables of (4) may also have other
nonnegative distributions. Applying (5) with a general Laplace transform
L x(s) gives

L(s) = exp(—p + pLx(s)).
Combining with (2) produces the population survival function
S(t) = exp(—p + pLx(A(2)))
and the corresponding population intensity
u(t) = —pA(2) Lx(A(2))-

There exist a number of nonnegative distributions with explicit Laplace trans-
forms that could be candidates for L y(s); see, for instance, Feller (1971),
Chapter 13. One example is the stable distributions with Laplace transform
exp(—s?) for B between 0 and 1. These distributions do not have finite
expectations, however, and this carries over to L(s). Another example from
Feller’s book (Section 13.3) is the Laplace transform

¥

[s+1;\/(s+1)2—1 '

valid for all » > 0. This corresponds to a probability density involving Bessel
functions.
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It seems that the case of gamma-distributed X-variables, as used in this
paper, would be the simplest one. Whether other possibilities may also be of
practical importance must be judged on the basis of further research.

6. Example: Modelling incidence of marriage. Marriage is an exam-
ple of an event that does not happen, eventually, to everybody. A certain
percentage never marry and models of marriage incidence must be able to
account for this. Borgan and Ramlau-Hansen (1985) presented rates of first
marriage for women born in Denmark in 1940, and I will use this as an
example.

It will be assumed that the basic intensity is of Weibull type, with A(z) =
a(t — 15)* for t > 15, where ¢ is age measured in years. The model implies
that all women have an increasing intensity of getting married from age 15 on.
The fact that the observed incidence peaks around age 23 and becomes rather
low after age 30 (see Figure 7) is therefore interpreted as a selection phe-
nomenon due to heterogeneity, meaning that those most prone to marriage
will marry quite early, and that those who remain will have less tendency to
marry. The aim is to describe this variation by means of model (1), with Z
having a compound Poisson distribution.

It is obvious that the model is a rather primitive one. It is not likely that the
individual intensity increases in the same manner for all women, and certainly
this increase should stop at a certain age. The latter feature could, of course,
be incorporated, but it is not done here, for the sake of simplicity, and,

0.32

0.24

incidence rate of marriage
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Fic. 7. Incidence rate of marriage per year. Solid squares are observed rates; open circles are
those estimated by the model.
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anyway, the results are only going to be used for ages up to 39 years. With all
the simplification, though, it will turn out that the model fits quite nicely to
the data, and so one has a parametric model that describes the situation well,
and which may be useful for practical purposes. One important feature of the
model is that it naturally incorporates the defective character of the distribu-
tion of time to marriage, due to those who never marry. I also believe the
procedure of including heterogeneity in the modelling process gives insight,
even though one should certainly not trust the model too much. Of course, a
good fit does not prove its validity; clearly a number of quite different models
would have fitted quite as well [Aalen (1988) and Heckman and Walker (1990)].

In spite of the above objections, the fact that a simple heterogeneity model
fits well to the data, as it will turn out to do, shows that heterogeneity is
certainly a phenomenon that must be taken seriously in the interpretation of
marriage rates. For instance, there is no reason to assume that the falling
rates after age 23 are mainly due to individual women meeting with greater
difficulties in finding a marriageable partner. Certainly, this will eventually be
true, but it is compounded with a, probably strong, heterogeneity effect.

One further practical purpose should be mentioned in discussing the model.
In demography a lot of attention is being paid to graduation of incidence rates
[Hoem (1976)]. The parametric models studied here should be quite useful for
analytic graduation, yielding simple, and often well-fitting formulas. These
may be of use, for instance, for comparing different populations.

Having discussed the model and its potential usefulness, I will now turn to
the estimation of the parameters for the mentioned population of Danish
women born in 1940. The aim is to fit our model to the occurrence /exposure
rates estimated by Borgan and Ramlau-Hansen (1985). The raw data are not
available in their paper, but I have been supplied with these from one of the
authors [Borgan (personal communication)]. The risk set at age 15 is 32,534
women.

From the data one can estimate, for each age i, the number R; at risk at
the beginning of the one-year age interval. This corresponds to the number of
unmarried ones adjusted for censoring due to death. One also knows the
number of marriages, N;, during the interval. The likelihood function is given
as follows:

=39

L(8,a,a,k) = TT {8G)/8(i = D} ™1 - (8G) /8¢ - n)™,

where S(¢) is given by (10), with

A(2) = flt5a(u —15)" du = (t —‘15)”“.

a

k+1

"It should be noted that the model is overparameterized; it is not possible to
identify y separately from a. Hence in the estimation y is put equal to 1, thus
centering the mixing distribution at 1. The maximum likelihood estimates for
the Danish women are presented in Table 1.
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TABLE 1
Maximum likelihood estimates for the marriage data

Parameters d « a k
Estimates 0.78 1.72 2.38 x 1073 2.79
s.e. 0.02 0.04 0.11x 1073 0.03

The fit of the model is judged by comparing the occurrence/exposure rates
(or observed incidence rates), as computed by Borgan and Ramlau-Hansen
(1985), with expected incidence rates based on the model. (Note that the term
“incidence rate’’ is used here in a somewhat different sense than by Borgan
and Ramlau-Hansen.) The observed rates are computed as N;/R;, while the
expected rates are computed as —In(S(i)/S(i — 1)), where S(¢) is defined as
above with estimates substituted for the parameters. The result is shown in
Figure 7; it is seen that the overall fit is good. Nevertheless, there is a clearly
significant deviation when measured by chi-square, this being not so surpris-
ing in view of the large number of individuals in the data set.

The estimated value of « is 1.72 with a very small standard error. Hence
one is clearly within the compound Poisson domain of the model. The probabil-
ity of never marrying may be estimated from (7) by inserting estimates for the
parameters, the result being 4.7%. This may be compared to the probability of
not being married before age 39, which is the upper age limit of the data set.
Computing this either from the occurrence/exposure rates or from the esti-
mated model yields in both cases the same result, namely 5.7%.

One might consider the group composed of individuals who are unmarried
at their twenty-fifth birthday, say, and ask for their mixing distribution. From
the theory it follows that this is still a compound Poisson distribution with the
parameter o unchanged and with the other parameters given by (13). Insert-
ing estimates gives y,s = 0.17 and 8,5 = 1.62, showing that the expectation of
Z has decreased considerably from its original value of 1, while the squared
coefficient of variation has doubled. Furthermore, the conditional probability
of never marrying (that is, Z = 0) given that the woman has turned 25 is
estimated as 23.0%.

7. Example: Modelling fertility.

7.1. Calculations of fertility. It is well known that between 5% and 10% of
all couples are unable to conceive children. If couples have tried unsuccessfully
to conceive for, say, a year, they may start to get worried about whether they
are infertile, and it might be of interest to compute the conditional probability
. of their being able to conceive a-child in, say, one more year. The model of the
present paper, with a > 1 might be useful in this context, since it contains a
flexible range of mixing distributions. Of course, P(Z = 0) will be the probabil-
ity of infertility, and the variation of Z over the positive line expresses varying
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fecundabilities among the fertile ones (by fecundability is meant the ability to
conceive).

The formulas of Section 4.2 are of relevance here. Equation (14) gives the
probability of infertility for those who have not conceived up to a certain time.
The probability that they will not conceive in a further period of given length
follows from (10) with the new parameters of (13) inserted. To get parameter
estimates, one would need to have data on times required to conceive for
couples who have decided to have a child and who do not use any contracep-
tion. Needless to say, these kinds of data, which shall be valid for a given
modern society, may be hard to come by, although data for certain special
populations exist in the literature [Heckman and Walker, (1990) and Tietze
(1968)]. Due to the limited availability of such data, a data set from a
somewhat different context shall be used for illustration in the next section.

7.2. Analyzing fertility after stillbirth. After a stillbirth it appears that
most women will tend to conceive a new child as soon as possible. Hence
analyzing the time to next birth from a heterogeneity point of view might give
some information on the natural variation in fecundability. In this example I
will use data from the Norwegian medical birth registry. Of course, all the
women have proven to be fertile in the sense of having conceived a child,
although it was stillborn. Hence one cannot derive any estimate of the general
population infertility from these data. Also, the fecundabilities of women
having had a stillbirth may be different from those of other women. Neverthe-
less, it might be of some interest to fit the model of the present paper. I will
use the same model as in the marriage example of Section 6. Certainly, all the .
qualifications made in that example are valid here too.

The data set consists of all Norwegian women who had their first birth
during 1967 to 1971, who were at the time of this birth married and below 25
years of age, and for whom the child was stillborn. Here the time until birth of
a second child will be studied. There is a total of 451 women who have been
followed for a period varying from 10 to 15 years. In intervals varying from
one month at the beginning to two years at the end of the 15-year period, it
has been registered how many women give birth during the interval, and how
many are censored.

The data have first been analyzed by the actuarial method. The observed
incidence rates (occurrence/exposure rates) of a second birth are shown in
Figure 8, and clearly exhibit a strongly unimodal shape. The corresponding
actuarial survival curve is shown in Figure 9.

The model to be fitted is the same as in the marriage example, except that
the cumulative basic intensity is given by .

a
A) = (= 0.75)"*!

o+

for ¢t > 0.75, where ¢ denotes years since stillbirth. The latter equation implies
that the Weibull model is only valid from 0.75 years, that is 9 months,
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TABLE 2
Maximum likelihood estimates for the birth data

Parameters 5 «a a k
Estimates 1.55 1.31 0.43 1.15
s.e. 0.34 0.12 0.10 0.20

reflecting the basic fact the interval between births will in almost all cases
exceed 9 months. The maximum likelihood estimates are given in Table 2.

The estimated value of a is 1.31 which is within the domain of the
compound Poisson distribution. The probability of never conceiving a second
child may be estimated from (7) by inserting estimates for the parameters, the
result being 6.3%.

The survival curve S(¢) with estimates substituted for the parameters is
presented in Figure 9, where it may be compared to the actuarial survival
curve. Expected incidence rates based on the fitted model have been computed
as in Section 6 and are presented in Figure 8, where they may be compared to
the observed incidence rates. Apparently, the fit is quite good.
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