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CONVEX DUALITY IN CONSTRAINED PORTFOLIO
OPTIMIZATION!

By JakS$a CviTanié aND IoanNis Karatzas?

Columbia University

We study the stochastic control problem of maximizing expected utility
from terminal wealth and/or consumption, when the portfolio is con-
strained to take values in a given closed, convex subset of %2¢. The setting
is that of a continuous-time, It6 process model for the underlying asset
prices. General existence results are established for optimal portfolio/con-
sumption strategies, by suitably embedding the constrained problem in an
appropriate family of unconstrained ones, and finding a member of this
family for which the corresponding optimal policy obeys the constraints.
Equivalent conditions for optimality are obtained, and explicit solutions
leading to feedback formulae are derived for special utility functions and
for deterministic coefficients. Results on incomplete markets, on short-sell-
ing constraints and on different interest rates for borrowing and lending
are covered as special cases. The mathematical tools are those of continu-
ous-time martingales, convex analysis and duality theory.

1. Introduction and summary. This paper develops a theory for the
classical consumption /investment problem of mathematical economics, when
the portfolio is constrained to take values in a given closed, convex, nonempty
subset K of #? We adopt a continuous-time, Itd process model for the
financial market with one bond and d stocks [which goes back to Merton
(1969) in the case of constant coefficients], and study in its framework the
stochastic control problem of maximizing expected utility from terminal wealth
and /or consumption, under the above-mentioned constraint.

The unconstrained version of this problem is, by now, well known and
understood; compare with Karatzas, Lehoczky and Shreve (1987)—hereafter
abbreviated KLS (1987)—as well as Karatzas (1989) and Cox, Huang (1989)
and Pliska (1986). In very general terms, our approach for the constrained
problem consists in ‘“embedding’ it into a suitable family of unconstrained
problems, with the same objective but different random environments; one
then tries to single out a member of this family, for which the optimal portfolio
actually obeys the constraint (i.e., takes values in K), and thereby solves the
original problem as well.
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768 J. CVITANIC AND I. KARATZAS

Such an approach was used by Karatzas, Lehoczky, Shreve and Xu (KLSX)
(1991) in the context of the so-called incomplete markets—a special case, as it
turns out, of the theory developed here. In KL.SX (1991), the above-mentioned
embedding arises naturally in the form of ‘“fictitious completion” of the
incomplete financial market. It was far from obvious to us, at the outset of this
work, that such an embedding should exist, and should prove fruitful, in this
general context as well.

One distinctive aspect of this approach is that it relates the original, or
“primal”’, stochastic control problem to a certain ‘“dual” one, in the sense that
a solution to the primal problem induces a solution for the dual (and vice
versa). This duality goes back to Bismut (1973), and was introduced in
problems of this sort by Xu (1990), who treated in his doctoral dissertation the
special case K = [0,»)?. It was also exploited by KLSX (1991) and He and
Pearson (1991) in the context of incomplete markets. It is of great importance
here as well because, as it turns out, it is far easier to prove existence of
optimal policies in the dual, rather than in the primal, problem.

The paper is organized as follows: the ingredients of the model are laid out
in Sections 2-5, and Section 6 poses the unconstrained and constrained
(primal) stochastic control problems. In Section 7 we review the solution to the
former, and introduce the family of auxiliary unconstrained problems in
Section 8. We tackle in Section 9 the controllability question of describing a
class of random variables which can be obtained as terminal wealth levels by
means of portfolios that take values in the set K. Section 10 lays out four
equivalent conditions that a member of this family of auxiliary unconstrained
problems has to satisfy, in order for its solution to coincide with that of the
original constrained problem. The equivalence of these conditions is estab-
lished in Theorem 10.1, which may be regarded as the focal point of the paper.
In terms of these conditions one can solve straightaway, and very explicitly, for
the optimal portfolio and consumption rules in the important special case of
logarithmic utility functions (Section 11).

One of the equivalent conditions in Theorem 10.1 leads naturally to a dual
stochastic control problem; this is formulated, and is related to the primal
problem, in Section 12, whereas Section 13 settles the existence question of
optimal processes for both the dual and the primal problem. This analysis
culminates in Theorem 13.1, which is the second most important result in the
paper. Examples and special cases are discussed in Sections 14 and 15. We
present in Section 16 some extensions of the theory. A technical and lengthy
argument in the proof of Theorem 10.1 is carried out in Appendix A. Finally,
Appendix B applies the convex duality methodology developed in this paper to
the important consumption/investment problem with a higher interest rate
for borrowing.

The mathematical tools employed throughout are those of continuous-time
thartingales, duality theory, and convex analysis. In particular, the support
function 8(x) £ sup, . x(—7*x) of the convex set —K, and its effective do-
main K (the barrier cone of —K), play a crucial role in the selection of the
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appropriate family of auxiliary unconstrained problems, in the formulation of
duality and in the nature of the solution to the original, constrained problem.

2. The model. We consider a financial market .# which consists of one
bond and several (d) stocks. The prices Py(¢), {P(t)};_; .4 of these assets
evolve according to the equations

(2.1) dPy(t) = Po(t)r(t) dt,  Py(0) =1,
d
dP(t) = P,(t)|b;(¢) dt + ) a;;(t) dW,(t)|,
(2.2) Jj=1
P(0)=1,i=1,...,d.
Here W = (W,,...,W,)* is a standard Brownian motion in %9, defined on a

complete probability space (), &, P), and we shall denote by {#} the P-aug-
mentation of the filtration %% = o(W(s); 0 < s < t) generated by W. The
coefficients of .#, that is, the processes r(¢) (scalar interest rate), b(¢) =
(by(2),...,by(t)* (vector of appreciation rates) and o(¢) = {0;;(t)};.; ;4
(volatility matrix), are assumed to be progressively measurable with respect to
{Z,} and to satisfy

(2.3) r(tyz-n, VO0<t<T,
(2.4) Eo(t)o*(t)E = ellél®, VY (¢,€) €[0,T] x #¢
almost surely, for given real constants ¢ > 0 and 7 > 0, as well as

(2.5) E['r(s)ds <.
0

All processes encountered throughout the paper will be defined on the fixed,
finite horizon [0, T'].
We shall assume throughout that the ‘“relative risk’ process

(2.6) 6(t) 2 o~ (H)[b(¢) — r(£)1],
where 1 = (1,..., 1)*, satisfies the finite-energy condition
(2.7) E["6(t)|* dt < .

0

The exponential local martingale
t t
(2.8) 2u(t) & exp - ['0%(5) aW(s) = 4 (o) 1" s,
0 0
. the discount process

(2.9) yo(t) 2 exp{—j;)tr(s) ds}
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and their product
(2.10) Hy(t) & Yo(£)Zo(2)

will be employed quite frequently.

2.1 ReMARk. It is a straightforward consequence of the strong nondegen-
eracy condition (2.4), that the matrices o(¢), o*(¢) are invertible, and that the
norms of (o(¢))™',(c*(¢))"! are bounded above and below by & and 1/8,
respectively, for some 8 € (1, ©); compare with Karatzas and Shreve (1988),
page 372.

3. Portfolio and consumption processes. Consider an economic agent
whose actions cannot affect market prices, and who can decide, at any time
t €[0,T], () what proportion m,(¢) of his wealth X(¢) to invest in the ith
stock (1 <i <d), and (ii) at what rate c(t) >0 to withdraw money for
consumption. Of course these decisions can only be based on the current
information %,, without anticipation of the future. With =(¢) =
(@), ..., my(t))* chosen, the amount X(#)[1 — Z¢_,7,(¢)] is invested in the
bond. Thus, in accordance with the model set forth in (2.1) and (2.2), the
wealth process X(¢) satisfies the linear stochastic equation

dx (1) im(t)X(t){bi(t) dt+ Y 0y (t) dW (1)
i=1

i=1 Jj

(3.1) + {1 —~ fj wi(t)}X(t)r(t) dt — c(t) dt

i=1

[F(£)X(2) — c(t)] dt + X(¢)m*(¢)o(2) dW,(2),
X(0)=x>0,

where we have set
(3.2) Wo(t) 2 W(t) + [‘0(s) ds.
0
We formalize the preceding considerations as follows.

3.1 DEFINITION. (i) An #%valued, {%}-progressively measurable process
7= {m(®),0 <t <T} with [Tllm(OI?dt < =, as., will be called a portfolio
process.

(i) A nonnegative, {%}-progressively measurable process c¢ = {c(2),

0 <t < T} with [fe(#) dt < o, as., will be called a consumption process.

(iii) Given a pair (1, ¢) as previously, the solution X = X*™° of the equa-
tion (3.1) will be called the wealth process corresponding to the portfolio/con-
sumption pair (, ¢) and initial capital x € (0, «).
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3.2 DEFINITION. A portfolio /consumption process pair (i, ¢) is called ad-
missible for the initial capital x € (0, »), if

(3.3) X*me(t) =0, VO0<t<T,
holds almost surely. The set of admissible pairs (m,c¢) will be denoted by
y(x).
In the notation of (2.8)-(2.10), the equation (3.1) leads to
t ¢
(3.4) vyo()X(2) + /O'yo(s)c(s) ds =x + j;yo(s)X(s)w*(s)a(s) dWy(s),

as well as

Hy(£)X(2) + [‘Hy(s)e(s) ds
(3.5) 0
t *
= x + ['Hy(s) X(s)[o*(s)m(s) - 0(5)]* dW(s5)
0
(from It6’s rule, applied to the product of y,X and Z;). In particular, the
process on the left-hand side of (3.5) is seen to be a continuous local martin-

gale; if (m, ¢) € &/ (x), this local martingale is also nonnegative, thus a super-
martingale. Consequently,

(3.6) E[HO(T)XMC(T)+fOTHO(t)c(t)dt]Sx, V (7, c) € Zy(x).

4. Convex sets and their support functions. We shall fix throughout
a nonempty, closed, convex set K in #¢, and denote by

(4.1) 8(x) = 8(xK) & sup (—7*x): B¢ —> RU {+}
TeK
the support function of the convex set —K. This is a closed, positively

homogeneous, proper convex function on %#? [Rockafellar (1970), page 114],
finite on its effective domain

K2 (x € 2% 6(xIK) < }
={xep*3pecRst. —m*x <B,VmeK}

which is a convex cone (called the barrier cone of —K). It will be assumed
throughout this paper that

(4.2)

(4.3) the function 8(-|K) is continuous on K
and bounded below on #¢: ‘
(4.4) 8(xIK) =8,, VxeR forsomes, < X

‘4.1 REMARK. Clearly, (4.4) holds (with §, = 0) if K contains the origin. On
the other hand, Theorem 10.2 in Rockafellar [(1970), page 84] guarantees that
(4.3) is satisfied, in particular, if K is locally simplicial.
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4.2 REMARK. Condition (4.4) is a technical one, needed in the duality and
existence proofs of Sections 12 and 13. In certain cases, such existence results
can be established directly, even in situations when (4.4) does not hold (cf.
Remark 14.10). This condition is not used in proving the equivalence of the
various statements in Theorem 10.1.

We shall have occasion to use the subadditivity property
(4.5) 8(x+y)<d8(x)+8(y), VxeRiyeR?

of the support function 6(-) in (4.1).

5. Utility functions. A function U: (0,%) - &% will be called a utility
function if it is strictly increasing, strictly concave, of class C! and satisfies

(5.1) U'(0+) £ liné U'(x) =, U'(x) £ lim U’'(x) = 0.
x| X — 00
We shall denote by I the (continuous, strictly decreasing) inverse of the

function U’; this function maps (0, ) onto itself, and satisfies I(0+) = oo,
I(x) = 0. We also introduce the Legendre-Fenchel transform

(52) U(y) = max [U(x) —xy] = U(I(y)) =51(y), 0<y<e,

of —U(—x); this function U is strictly decreasing and strictly convex, and
satisfies

(6.3) U(y)=-I(y), 0<y<w,
(5.4) U(x) = fvn>i¥)1[(7(y) +ay| = U(U'(x)) +2U’(x), 0<x<o,

The useful inequalities
(5.5) U(I(y)) = U(x) +y[I(y) —«],
(5.6) U(U'(x)) +x[U'(x) —y] < U(y),

valid for all x > 0, y > 0, are direct consequences of (5.2) and (5.4). It is also
easy to check that

(5.7) U(e) =U0+), U(0+) =U(x)
hold; compare with KL.SX (1991), Lemma 4.2.
5.1 REMARK. We shall have occasion, in the sequel, to impose the following
conditions on our utility functions:
(5.8) ¢ = cU’(c¢) is nondecreasing on (0, ®),

for some « € (0,1), y € (1, ») we have

(5.9) aU'(x) = U'(yx), Vxe&(0,0).
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5.2 REMaRK. Condition (5.8) is equivalent to
(5.8) y = yI(y) is nonincreasing on (0, )
and implies that
(5.8") x — U(e*) is convex on .

[If U is of class C?, then condition (5.8) amounts to the statement that
—cU"(¢)/U’(c), the so-called Arrow-Pratt measure of relative risk-aversion,
does not exceed 1.]

Similarly, condition (5.9) is equivalent to having

(5.9 I(ay) <vI(y), V y € (0,») for some a« € (0,1),y > 1.

Iterating (5.9'), we obtain the apparently stronger statement

(56.9") Vae(0,1),3ye (1,0) suchthat I(ay) <vyI(y), Vy € (0,o).
6. The constrained and unconstrained optimization problems. We

shall consider throughout a continuous function U;: [0, T'] X (0, %) - % such

that, for any given ¢ € [0, T'], the function U(t, - ) has all the properties of a

utility function as in Section 5. We shall denote by Uj(¢, - ) the derivative of

Uyt, ), by I(¢, ) the inverse of U|(¢, - ) and by Ui(t, - ) the function of (5.2).

We shall also consider throughout a utility function U, as in Section 5.

Corresponding to any given pair (7, ¢) in the class 27 (x) of Definition 3.2,
we have the total expected utility

(6.1) J(xim,e) 2 B[ U(t,e(0)) dt + EU(X*™(T)),
0
provided that the two expectations are well defined.

6.1 DEFINITION. The unconstrained optimization problem is to maximize
the expression of (6.1) over the class ©7j(x) of pairs (w, ¢) € & (x) that satisfy

(6.2) E["Ur (t,e(1)) dt + BU; (X*™4(T)) < .
0
[Here and in the sequel, x~ denotes the negative part of the real number x:
x~= max(—x, 0).] The value function of this problem will be denoted by
(6.3) Vo(x) £ sup J(x;m,c), x € (0,0).
(m,c)eLy(x)

6.2 AssuMPTION. V(x) <o, V x € (0, ).

6.3 DerFINITION. The constrained optimization problem is to maximize the
expression of (6.1) over the class
(6.4) «'(x) 2 {(w,¢c) € Zj(x);m(¢t,0) €K for /® P-ace. (t,0)},

where K is the closed, convex set of Section 4 and ¢ denotes Lebesgue
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measure. The value function of this problem will be denoted by

(6.5) V(x) £  sup J(x;m,c), x€(0,0).
(mr,c)ed'(x)

Quite obviously,

(6.6) V(x) < Vy(x) <, Vzxe(0,0),

from Assumption 6.2. It is also fairly straightforward that both functions V,(-)
and V(-) are increasing and concave on (0, «).

6.4 REMARK. It can be checked that the Assumption 6.2 is satisfied, if the
processes r(-) and 6(-) of (2.6) are bounded [uniformly in (¢, w)] and if the
functions U,, U, are nonnegative and satisfy the growth condition
(6.7 0<Uyt,x),Uy(x) <k(1+x%), V(t,x)e[0,T]x(0,),

for some constants k € (0,x) and « € (0, 1): compare with Xu (1990) or KLSX
(1991) for details.

7. Solution of the unconstrained problem. The unconstrained prob-
lem of Definition 6.1 is by now well known and understood; compare with
Karatzas, Lehoczky and Shreve (1987), Karatzas and Shreve (1988), Section
5.8.C and Cox and Huang (1989). For easy later reference and usage, we repeat
here the nature of the solution.

7.1 AssuMmPTION. Suppose that the expectation
(1) @) & B| ["H(O Lt 5Hy() db + Hy(T) L (GH(T)
is finite, for every y € (0, «).
Under this assumption, the function 27: (0,%) — (0, ®) is continuous and

strictly decreasing, with 2(0+) = © and Z(») = 0; we let 2;, denote its
inverse and introduce the random variables

(7.2) £0 £ I(2o(x) Hy(T)),
(7.3) co(t) 2 I(t, Z(x) Ho(t)), 0=<t<T.
7.2 LEmMA. The quantities of (7.2) and (7.3) satisfy
(7.4) B| ["Hy()eo() dt + Hy(T)es| =,
0
(7.5) E/OTU;(t, co(t)) dt + EUz (£,) < o

"and'

(7.6) J(x;m,c) < E’[[OTUl(t, co(t)) dt + U2(§0)], V (7, c) € o(x).
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Proor. From (5.5) we have U\(t, co(2)) > Uyt, 1) + Z(x)Hy(t)co(t) — 1]
and Uy(¢,) = Uy(1) + 2((x)H(T)£&, — 1], whence

E U7 (8, eolt)) dt + EU5 (£) <[U(D)| + [11U,(8, )] ds

+ %(x)[EHO(T) + [OTEHO(t) dt]

<

because EH,(¢) < e [from the supermartingale property of Z, and the
condition (2.3)]. This establishes (7.5), whereas (7.4) is obvious from the
definitions (7.1)—(7.3).

Now consider an arbitrary pair (, ¢) € &7;(x): Using (5.5) again, we obtain

Uy(t, co(2)) = Uy(t, c(2)) + 24(x) Ho(t)[co(t) — c(2)],
Ua(éo) 2 Uy(X™™(T)) + Z(x) Ho(T)[ &, — X*™(T)],

almost surely, and therefore

E[[()Tvl(t’ Co(t)) dt + U2(§0)]

>dJ(x;m,c) + %(x){x —~ E[]OTHO(t)c(t) dt + HO(T)XMC(T)]}

>J(x;m,c¢),
thanks to (7.4) and (3.6). O

7.3 PROPOSITION. Let c(:) be a consumption process and B a positive,
Fr-measurable random variable with

x = E[[OTHO(t)c(t) dt + HO(T)B] < o,

There exists a portfolio process w, such that (w,c) € &Z(x) and X*»™(T) = B
a.s.

Proor. We introduce the continuous, positive process X via

(1.7)  X(t) 2

E[/THO(s)c(s) ds + Hy(T)B

9’], 0<t<T.
Hy(2) ‘

This process satisfies X(0) = x, X(T') = B a.s. On the other hand, the martin-
gale

My(t) 2 E[[OTHO(s)c(s) ds + Ho(;l’)B F ]

(7.8)
: = Hy(t) X(¢) + ]O‘HO(s)c(s) ds

can be represented as a stochastic integral: M () = x + [{y*(s) dW(s) for a
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suitable {.%}-progressively measurable, %#%-valued process ¢ that satisfies
JENY(s)NI? ds < o a.s. Comparing (7.8) with (3.5), we conclude that X is the
wealth process corresponding to the pair (1, ¢), where the portfolio 7 is given
by

(7.9) m(t) = (a*(£)) " %-+ 8(t)|. O

Putting these two results together, we obtain the solution of the uncon-
strained problem (6.3).

7.4 THEOREM. With &),c, given as in (7.2) and (7.3), there exists a
portfolio process w, such that (mg,c,) € &Z(x), X*™(T) = ¢, a.s. and
Vo(x) = J(x; g, cg).

8. Auxiliary unconstrained optimization problems. Our purpose in
this section is to introduce a family of auxiliary, unconstrained optimization
problems [cf. (8.3), (8.4) and (8.12)] and to embed in this family the constrained
problem of Definition 6.3 (Proposition 8.3).

Let # denote the space of {Z,}-progressively measurable processes v = {v(¢),
0 < ¢t < T} with values in %% and

1P 2 B[ v(e) [ dt < .
0
# is a Hilbert space when endowed with the inner product
(v1,v3) £ B[ vi(t)wy(2) dt.

0
We introduce also the class of processes
(8.1) g4 {,, € H#; EfTé(v(t)) dt < oo},

0

where 8(-) is the support function in (4.1), and observe that » € 2 implies
(8.2) v(t,w) €K for /® P-a.e. (t,0) €[0,T] X Q.

Here K is the barrier cone of (4.2).
Corresponding to any given v € 9, we introduce a new financial market #,

with one bond and d stocks:
(8.3) dP§(t) = P&(t)[r(¢) + 6(v(t))] dt,

dP{(t) = P(t)[(bi(t) + v,(2) + 8(v(2))) dt

(84) .

+ X o) dWi(t)|, 1<i<d,
j=1



CONVEX DUALITY 777

by analogy with (2.1) and (2.2). In this new market .#,, the analogues of (2.6),
(2.8)-(2.10) and (3.2) become
6,(¢) 2 o= (2)[b(2) + (1) + 8(v(1))1 ~ (r(2) +8(»(1)))1]

=0(t) + o 1(t)v(2),

x| - [1r() + 2(()) as|,

(8.5)

(86) ()

6.1 2.0 2 exp| - [90(5) W)~ 4 [Tl
(88) H(0) 2 )20, |
(89) W.(t) 2W(t) + [0,(s)ds,

and the analogues of (2.3), (2.5) and (2.7) are satisfied.
The wealth process X*™°¢, corresponding to a given portfolio /consumption
process pair (, ¢) in .#,, satisfies

dx=me(t) = [(r(2) + 8(v(£)) Xp™e(2) — o(¥)] dt + X3 (t)m* (8o (t) dW,(2)
= [r(®)Xpme(t) — c(t)] dt

+Xpme(t)[8(v(2)) +mH(2)v(2)] di

+ Xpme(t)ym* (D)o (t) dWo(t),  XPm(0)=x,

or equivalently

(8.10)

H,(8)X7™(t) + ftH,,(s)c(s)ds
(8.11) t 0
=x + j;)Hv(s)Xi’ﬂ’c(S)(O'*(s)*n'(s) _ 0,,(8))* dW(s)

by analogy with (3.1) and (3.5). We denote by 2Z(x) the class of pairs (, c) for
which
(8.12) X»™e(¢) =0, VO<t<T,

holds almost surely, and define
o (x) 2 () € (2)s B[ Vi (6 e(6)) e+ Uz (X7(T)) < =}
0

(by analogy with Definitions 3.2 and 6.1). The unconstrained optimization
problem in #, consists of maximizing J(x;, ¢) over (m, ¢) € ) (x); its value
function will be denoted by :

(8.13) V(x)& sup J(x;mc), x€(0,%).
' (r, c) e /(%)

8.1 Remark. For an arbitrary (m,c) € &/'(x), denote by X = X*™°¢ the
wealth process corresponding to (m,¢) and initial capital x in the original
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market .#; cf. (3.1). A comparison of (3.1) with (8.10) shows
Xpme(t) = X>m(¢) =0, VO<t<T,

a.s. [recall (3.3); the fact that &6(w(#)) + #*()v(¢) > 0 because =(¢) € K,
/® P-ae.; and the explicit formulae for the solution of linear stochastic
differential equations of Karatzas and Shreve (1988), page 361]. Therefore,
(m,¢) € &)(x) and

EU,(X*™(T)) < EUy(X>™(T)).
We deduce
(8.14) &' (x) C ) (x), V(x) <V/(x), Vved

8.2 DEFINITION. By analogy with (7.1), we introduce the function

(8.15) Z,(y) = E[fOTHV(t)Il(t,yHy(t)) dt + H(T)L(yH,(2))],

0<y<o,
and consider the subclass of 9 given by
(8.16) 2 £ {ve 7, Z,(y) <»,Vye(0,0)}
For every v € &', the function Z.(-) of (8.15) is continuous and strictly
decreasing, with 2,(0+) = » and Z,() = 0; we denote its inverse by %/(-).
According to Section 7, the optimal consumption, level of terminal wealth,

and corresponding optimal wealth process, for the problem of (8.13), are given
as »

(8.17) c,(t) =ci(¢) & Il(t, %(x)Hv(t)),
(8.18) £, = & 2 I(%(x)H(T))

and

(8.19) X, () 4

H(t) " [ftTHAs)cV(s) ds + H,(T)&,| 5 ]

respectively, for any » in the class 9’ of (8.16). The process X, of (8.19)
satisfies then the equation (8.10), with ¢ = ¢, and an appropriate portfolio
process m = 1,

dx,(t) = [r(£)X,(¢) - ¢, ()] dt
. (8.20) +X,(O[8(n(1)) + mH(t)u(8)] dt
| + X (O)mH (8)o(£) AW(),  X,(0)-x.
The pair (m,, ¢,) belongs to &7/(x), and is optimal for the problem of (8.13).
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8.3 PROPOSITION. Suppose that, for some A € D' and with the notation
established above, the following hold for £¢® P-a.e. (¢, »):

(8.21) m(t, ) €K,
(8.22) 3(A(t, w)) + (L, w)A(¢, @) = 0.

Then the pair (1, c,) belongs to &/'(x) of (6.4), is optimal for the constrained
optimization problem of (6.5) in the original market .#, and satisfies

(8.23) E[[OTUl(t, ex(t))dt + Uy(£)| < Vi(x), Vvea.

Proor. Thanks to (8.21) and (8.22), the equation (8.20) with » = A be-
comes

dX\(t) = [r(£) X\(t) — ex(t)] dt + X,(£) () (t) dWo(t),
X,(0) =x, X(T) =¢,.

Comparing (8.24) with (3.1), we see that X, is also the wealth process
corresponding to (1,, ¢,) in the original market .#; furthermore, from this and
(8.21) we conclude that (m,, c,) € &'(x) and

(8.24)

V(o) = B|[[Ut e o)t + U] < V).

But we have the opposite inequality from (8.14), whence the optimality of
(m,, c,) for the problem of (6.5).

On the other hand, let us fix an arbitrary v € 9, and let X} = X*™+ be
the wealth process corresponding to the pair (m,, ¢,) in the market .#,. The
equation (8.10) becomes

dX}(t) = [r() X2(8) = ex(t)] dt + X2 [8(v(2)) + 7} (t)v()] dt
+ XN TE()o(t) dWo(t),  XN0)=x.
A comparison with (8.24) leads, just as in Remark 8.1, to
XMNt) = X,(t) >0, Vte[o0,T],
almost surely. Thus (c,, m,) € &/(x) and V(x) < V,(x); but this is (8.23). O

8.4 REMARK. Suppose that

8.95 both U,(-) and U (%, - ) satisfy condition (5.9) with the same
(8.25) constants a and vy, for all ¢ € [0, T] :

It is then easy to see, using (5.9”), that Z,(y) < « for some y € (0, ») implies
ve 9.
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8.5 REMARK. In the market .#, of (8.3) and (8.4), the discounted stock
price and wealth processes y, P’ and vy, X»™¢ satisfy the equations

d
d(v () P(t)) = v () P(t) Loy () dW,;(2),  i=1,....d,
j=1

d(v,(8) Xp™e(2)) = =y, (t)e(2) dt + (v,(£) X7 °(¢))m* (2)o(2) AW, (2),
respectively. In particular, none of these two processes depends on the support
function 8(-) of (4.1).

9. Contingent claims attainable by constrained portfolios. Con-
sider a portfolio /consumption process pair (m, ¢) in the class &/(x) of Defini-
tion 3.2, with

(9.1) m(t,0) €K, for /® P-a.e.(t,0),

and recall the wealth process X* ™ °(-) corresponding to (m, ¢) in .# [(3.1)]. On
the other hand, for an arbitrary v € 2, the process H,(+) of (8.8) satisfies the
equation

(9.2) dH,(t) = —H,(t)[(r() + 8(x(2))) dt + 05 (£) dW(1)],  H,(0) = 1.

An application of the product rule to H, X*™¢ leads then to the analogue of
(3.5); namely, that

H,(t)X™™(t)
(9.3) +f0tHv(s)c(s)ds + fOtHv(s)X"’”(s)[a(v(s)) + ¥ (s)v(s)] ds

—x+ [[H(s)X*™(s)[0*(s)m(s) — 6,(s)]" dW(s), 0<t<T,
0

is a continuous, nonnegative local martingale, hence a supermartingale. In
particular,

(9.4) E[HV(T)X"””(T) + fOTHV(s)c(s)ds] <x, Vvea.

Based on these preliminary considerations, our next result provides an exten-
sion of Proposition 7.3 for the ‘‘hedging” of contingent claims by “con-
strained” portfolios of the form (9.1).

9.1 THEOREM. Let ¢ be a consumption process, B a positive F-measurable
random variable, and suppose there exists a process A € 2 such that

E[H,,(T)B + fOTH,,(s)c(s)ds]
'(9.5)
SE[HA(T)B+LTHA(s)c(s)ds] = x < oo, Vve 9.
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Then there exists a portfolio process 1, such that the pair (1, c) belongs to the
class &7'(x) of (6.4) and X*™<(T) = B a.s.

Proor. By analogy with Proposition 7.3, there exists a portfolio process m

such that the wealth process X = X ™¢, corresponding to (7, c) in .#,, is
given by

Hy(t)X(¢) + ['Hy(s)c(s) ds
0

(9.6) = M,(¢) éE[HA(T)B +fTH)‘(s)c(s)ds.9‘;]
0

=x + [(:H)‘(S)X(S)[o-*(s)ﬂ'(s) — 0,\(8)]* dW(s)

and satisfies
dX(t) = [r(¢)X(¢t) — c(t)] dt
(97) + X(D[{8(M2)) + m*(D)A(8)) de + 7*(£)o (£) AWo()],
X(0) =x, X(T) =B.

To conclude, we have to show that = satisfies both (9.1) and
(9.8) S(A(t,w)) + T*(t, w)A(t,w) = 0, /® P-ae. (t,w).

Step 1. Take an arbitrary but fixed v € 9, consider a suitable sequence
{r,),_, of stopping times that increase a.s. to T [cf. (9.13) for the precise

definition] and, for every fixed ¢ € (0,1), n € N, introduce a new process
An =X, €9 by

(9.9 AP (8) 2 A(E) + e[v(t) = M) 1<, )

Consider also the notation

(9.10) x(v) 2 E[H,,(T)B + /OTH,,(s)c(s) ds],

L(t) = L¥(¢) & f()tg(”)(A(s)) ds,

(9.11) S | =
ooy 8 [ OO, ifv=0,
where 5“(A(s)) £ {5(,,(3) —A(s)), otherwise,

4

(9.12) N(2) = N©(2) 2 [(07}(s)(v(s) = A(5))") dWi(s)
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and define the stopping times {7,}, < as follows:

T, 2T A inf{t e[0,T]; |LY(¢)| = n,or | N“(t)| = n,or
[Ao @) (x(s) = M) [ ds = n, or

(9.13) fotlle(s) + o Y(s)A(s) [P ds = n,
or [X(s)73()le 7 (5)(v(5) = A(5))

+(L, + N,)o*(s)m(s)|" ds > n} neN.

Below, we shall take v = A + p (for arbitrary fixed p € 2) and v = 0. For both
these choices, the preceding sequence satisfies lim, _,, 1 7, = T almost surely.

STeP 2. As we shall see below, for both choices v = A + p (p € 2) and
v = 0, and every n € N, we have

x(A) — x(A‘;)n

lim sup
el0 2

(9.14)
< E[HA(T)B(L(;’) + N®) + fTHA(t)c(t)(L(,”}T +NR.) dt}
n n 0 n n

(9.15) = Ef(:nH,\(t)X(t)[ﬂ*(t)(v(t) - A(t)) dt + dL®(¢)].

By assumption, the left-hand side of (9.14) is nonnegative, and thus so is the
expression of (9.15).

SteP 3. In particular, with v = A + p (p € ), this observation leads to
(9.16) E/T"X(t)HA(t)[qr*(t)p(t) +8(p(t))] dt =0, VneN,
0

and thence to
(9.17) o(t;p) £ 7*(t)p(t) +8(p(t)) =0, /® P-a.e.

[Indeed, suppose that for some p € 2 the inequality (9.17) fails on a set
A c [0, T] X% Q of positive product measure. Notice that ¢(¢; np) = n¢(¢; p) for
every n > 0; replacing p by np on the set A and choosing n > 0 large enough,
we can then violate (9.16) with p replaced by g = plye + npl,.]

In particular, (9.17) implies that, for every r € K,

—-7*(t,w)r <8(rlK), V(t,w) €A,
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where A, c[0,T] X Q is a set of full product measure. But then so is A £
N ,_zA,, and from the assumption (4.3):

rEQd
(9.18) - 7*(t,0)r <8(rlK), V(t,0) €A, rek.
Now fix (¢, w) € A; from (9.18), the fact that K is closed, and Theorem 13.1 in

Rockafellar [(1970), page 112], we obtain (9.1).
On the other hand, for v = 0, the nonnegativity of (9.15) leads to

E["H(t) X(8)[7*(1)M(¢) + 3(A(1))] dt <0, VneN.
0
In light of (9.16) (which is valid, in particular, with p = A), this implies (9.8).

StEP 4. Proof of (9.14). For either v = A + p or v = 0, we have
8(A(s) + e(v(s) — A(8))) — 8(A(s)) < e8™(A(s)).

[Indeed, (4.5) and the positive homogeneity properties of 8(-), give 8(A(s) +
e(w(s) — A(s)) — 8(A(s)) < £6(v(s) — A(s)) for v = A + p, whereas with v = 0,
5((1 — &)A(8)) — 8(A(s)) = —eb8(A(s)).] In either case,

Hl\ tAT,
"H:ff?;‘) - exp[‘/o "(B(A(s) + e(v(s) = A(5))) = 3(A(s))} ds

(9.19) oMo, = S [l ) (0(5) = Ao))] dsl

> exp[—s(LW,, A A L OICORON | ds]

> e—3sn,
from the construction of the stopping times 7, in (9.13). On the other hand,
we have

2(A) = x(Ae,n)

= EQ,,
B H, (T)
(9.20) Q; = HA(T);{l - _HA(T)}
re®) [ H, ()
+j(;H,\(t) - {1 10 }dt.

The family {Q:}, -, <, is dominated by the random variable
Q, 2 Kn[BH,\(T) + [Te(t) Hy(t) dt],
‘ 0

l_e—3£n
K & sup ——,

n
0<e<1 €
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with expectation EQ, = K, x(A) < ». Therefore, by Fatou’s lemma
x(A) —x(A,,)

lim sup
el0 €
< E(lim sup Q,i)
|0

— E[H.(T)B li il_w
- [ AT) mglsglps{ H,\(T)}

"H limsup - {1 - —ee | g
+/0 W(B)e(t) 1r£1ls(;1p; H() t

< E[HA(T)B(L” +N, )+ fOTH,\(t)c(t)(LMTn +N,,,)dt|.

StEP 5.  Proof of (9.15). By analogy with (3.4), we have
t
R(t) £ () X(2) + [[7i(s)e(s) ds
(9.21)
t
=x+ me(S)X(S)W*(S)U(S) dW,(s).
According to the Girsanov and Novikov theorems [cf. Karatzas and Shreve
(1988), Section 3.5], the process {W(t A 7,), 0 <¢ < T} is Brownian motion
under the probability measure P, (A) = E[Z\(7,)1,].

Let us apply the product rule to X(¢)y,(¢)(L, + N,) to obtain, in conjunction
with (9.21), (9.11) and (9.12),

d[ X()7(t) (L, + N)]
=d[(R(t) B [Otn(s)c(s)ds)(Lt +M>]

= X(t)y\(t)(dL, + dN,) + (dR(t) — v,(¢)c(¢) dt)(L, + N,) + d{R, N);
= X(t)y(t)(dL, + dN,) — v(t)e(¢)(L, + N,) dt + (L, + N,) dR(t)
+ X(8)y,(8)m* (2)(v(2) — A(t)) dt.
In particular,

() X(m) (Lo, + V) + [Tr()e() (L + N di
(9.22) = [ X0 O () - @)
4 : +(Lt + M)U*(t)#(t)]* dW\(t)

+/(:"n(t)X(t)[w*(t)(u(t) — A(¥)) dt + dL,].
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Now let us take expectations with respect to the probability measure dﬁn =
Z\(t,) dP; from the definition of the stopping time 7, in (9.13), the expectation
of the stochastic integral in (9.22) is equal to zero and thus

B|H(r) X(r)(L,, + N,) + [PH()e(0)(L, + Ny di
0
(9.23)
— E[TH () X(1)[7* ()(v(t) — A(2)) dt + dL,].
0
The right-hand side is the expression that appears in (9.15); thus, it remains to

show that the left-hand side is equal to the expression that appears in (9.14).
Indeed, (9.6) gives

n

Hy(r,)X(7,) = E[HA(T)B + ["H(t)e(t) dt 5{"] as.,

and so the left-hand side of (9.23) is equal to

E[(LT,, + NT,,){HA(T)B + [H(t)e(t) dt} +f "H,(t)c(t)(L, + N,) dt]
= E[HA(T)B(L” +N, )+ fOTH,\(t)c(t)(LM,n + N ar) dt]. O

10. Equivalent optimality conditions. For a fixed initial capital x > 0,
let (7, ¢) be a given portfolio/consumption process pair in the class o/"(x) of
(6.4), denote the corresponding wealth process in .# by X(-), and consider the
statement that this pair is optimal for the constrained optimization problem of
Definition 6.3:

(A) Optimality of (#,¢). We have

E[/OTul(t, c(t)) dt + UZ(X""”’T(T))]
(10.1)
< EUOTUl(t,é(t)) dt + UZ(X'(T))],

for every (m,c) € &7'(x), as well as

. (10.2) E[[oTé(t)U;(t,é(t)) dt + X’(T)UZ;(X(T))] < o,

We shall characterize (A) in terms of the following conditions (B)-(E), which
concern a given process A in the class 9’ of (8.16).
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(B) Financibility of (c,, £,). There exists a portfolio process 7, such that

(#,,¢c,) € &'(x) and

#(t,w) €K, S(A(t,w)) + 7F(t, w)A(t,w) =0,
(10.3) A, @) A(( )) + A3 (E @) A(E, w)
X5t w) = X,(t, w)

hold for /® P-a.e. (¢, w).
(C) Minimality of A. For every v € 9, we have

104 B[ [TU(t o) d+ Uie)| - s < Vo).

(D) Dual optimality of A. For every v € 9, we have

B[ [0t %4(x) H(0)) e + U4 ()|
(10.5)
< E[fOTU'l(t, 2i(x)H,(t)) dt + Uz(%(x)Hy(T))].

(E) Parsimony of A. For every v € 9, we have

(10.6) E[fTH,,(t)c,\(t) dt +H,,(T)§A] <x.
0
It should be observed that the expectations in (10.5) are well defined.
Indeed, (5.2) gives
Uy(t,e(1)) < Uy(t, yH,(t)) + yH,(£)e(?),
Uy(X*>™(T)) < Upy(yH,(T)) + yH,(T)X*™(T)

a.s. for every x > 0, y > 0, (m, ¢) € &Z/(x). In conjunction with (9.4), this leads
to

(10.7)

B[ (707 1, 8.(8)) de + U5 (oH.T))

< E[[TU;(t,c(t)) dt + Uz“(Xx’”’”(T))] +ay <o
0
for every y € (0,») and v € 9.

10.1 TuEorEM. Conditions (B)-(E) are equivalent, and imply (A) with
(#, &) = (#,, c,). Conversely, condition (A) implies the existence of A € 9’ that
satisfies (B)-(E) with #, = 1, provided that (5.8), (8.25) and (12.2) hold for
Uy(t, - ) and Uy(-). '

This can be regarded as the focal result of the paper. Its condition (D) leads
naturally to the introduction of a dual stochastic control problem in (12.1) of
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Section 12, whereas convex duality theory can then be used to relate the value
function and optimal process of this problem to those of the primal one (of
Definition 6.3); cf. Propositions 12.1, 12.2 and Theorem 12.4. Under suitable
conditions, one can also establish the existence of an optimal process for this
dual problem and, based on the above-mentioned primal-dual relationships
and on the implication (D) = (A) of Theorem 10.1, prove the existence of an
optimal pair (#, &) for the primal problem; cf. Theorem 13.1.

Proor oF THEOREM 10.1. The implication (B) = (E) is a consequence of
(9.4). The implications (B) = (A) and (B) = (C) follow from Proposition 8.3,
together with the observation

E| X,(T)U(X(T)) + [ el(t)Uj (1 e(t)) dt | = x2i(x) <o,

The implication (E) = (B) is a consequence of Theorem 9.1 with ¢ = ¢, and
B=¢,.

For the implication (E) = (D), write (5.6) with x — ¢,(¢), y = Z(x)H,(¢)
[respectively, x — £,, y = 2,(x)H,(T)] to obtain

Uy(t, Z4(x) H,(1)) = U () Hy(1)) + %(x) [ H(D)ex(t) — H(£)er(0)],
Un(24(x)H,(T)) = Uy(2(x) H(T))
+ 24(x)[H(T)e(T) — H(T)e(T)],
respectively. Now integrate and add, to get

B[ [70,(t, 4= H)) e + Ou(54() BT
= 8] [0 e, 2 (1)) i + (74 (0) (D))

+ %(x){x - E[fTHy(t)cA(t) dt + HV(T)gA]}.
0
This last expression, in braces, is nonnegative by (10.6), and (10.5) follows.
(D) = (B): Repeat the proof of Theorem 9.1 up to (9.14), with c(¢) replaced

by c\(¢) = I,(¢, Z(x)H|(t)), B replaced by ¢, = I,(%,(x)H(T)) and (9.5) by
(10.5). It all then boils down to showing the analogue

1 . .
limsup—[E(fTUl(t,yHA (1)) dt + Uy(yH, (T)))
€10 £ 0 &,n &,n

(108) B[ [0 oH(0) dt + U H (D)

syE[ [V H(#)(Lin,, + Nin,,) dt + EH(T)(L,, + an)]
0
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of (9.14), where we have set y = %,(x). The rest of the proof follows without
modification.
Now for any given y € (0, «), the family of random variables

ym A %[(LTUI("‘JHA,,”(’:)) dt + U’z(yHAm(T)))
(10.9)
— (fOTU'I(t,yHA(t)) dt + Uz(yHA(T)))], e € (0,1),

of the left-hand side of (10.8), is bounded from above by
T
ym £ yKn[fo H\(¢)I,(t,ye ®"H,\(t)) dt + HA(T)Iz(ye_?”‘HA(T))],

a random variable with expectation yK,Z;(ye 3") < « [here again, K, =
SUp, <, < (€™ — 1) /¢, and we have used (5.3), the fact that I,(-), I (¢, - ) are
decreasing, and (9.19)]. Therefore, from Fatou’s lemma,

(10.10) lim sup E(Y,™) < E(lim sup Ys(")).
el0 |0

On the other hand, the random variables of (10.9) admit also the a.s. upper
bound

Y™ < y[fTHA(t)Il(t,ye'3e"HA(t))A(e”)(t) di

0
(10.11)
+HA(T)Iz(ye‘35"HA(T))A<;‘)(T)] =V®,

where

€

1
A(¢t) & [1 - exp{—e(Lt,\,n + Nt,\fn)

t/\‘rnl

o= 1(s)(v(s) - A(s))ll"’ds}].

&2
2
Quite clearly, A?)(¢) -, o L; 5, + N,,, as. and

T
VO S y[ [ HO LS O) Lin, + N dt

(10.12)
. —+H,\(T)Iz(yHA(T))(LTn + an)]’ a.s.

Finally from (10.10)-(10.12), limsup, o E(Y") < E(lim, V™) = RHS of
(10.8).
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(C) = (D): For a fixed v € 9 and arbitrary (7, ¢) € &Z/(x), y € (0, ), we
have from (10.7):

E[[OTUl(t,c(t)) dt + UZ(XW’C(T))]

< E[ /0 "UL(t, yH, (1)) dt + U'z(yHV(T))]

(10.13)
+ yE[fOTHV(t)c(t) dt + HV(T)X’“"’C(T)]
<) & B| [0t H (1)) de + Do, (T)| + 2
whence
(10.14) V.(x) <f(y), Vye(0,»).

Therefore, from (10.4) we obtain

() 2 V() = E] [0t e(00) e + U6
- B[00 24 Hi() e + U@ ()|
+ %40 B| [TH(O L (0 (D)
() L(%() H(T))|

- E[foTﬁl(t, @ (x)H,(t))dt + Uz(z?/)\(x)H,\(T))] +x%(x),
whence
B[ [70(s, 940 Hy(o)) de + Oy(4(x) (D))
< F(4() - #(2)
- E[ [ Ut 2i(x) Ho (1)) e + Uz(%(x)Hv(T))]-

(A) = (B): Proved in Appendix A. (This implication is not used in any of the
results of the paper.) O

10.2 REMARK. The condition (10.2) of (A) becomes vacuous, if

[TU8,0+)dt > —,  Uy(0+) > —=,
0
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because then, from concavity,

E[foTa(t)U;(t, a(t)) dt +X(T)U2’(X(T))]
< E[[OTUl(t,é(t)) dt + UZ(X'(T))] - [fOTUl(t,O +) dt + Uy(0+)

- V(x) - [fOTUl(t,O +) dt + Uy(0 +)] < o,

The role of (10.2) is to allow us to consider utility functions which are not
bounded from below, such as logarithmic.

11. The logarithmic case. If Ut x) = Uyx) = log x, for (¢,x) €
[0,T] x (0,), we have I(¢,y) = I(y) = 1/y, Ui(t,y) = Uy(y) = —(1 + log y)
and

T+1 T+1

(111 T = U =

x 1 x 1

x

(11.2) ¢ (t) = T+1HD) &= T+1H(T)’

for every v € 9. In particular 9’ = 9 in this case. Therefore,

B| [0,(6, %) H(1) dt + Uy(54() H()|

1+T
(11.3) = —(1+T)(1+log )
1 T
+E(log B (T +[O log 730 dt).
But
¢ 1 2
E(log 0 ) = Efo[r(s) +8(v(s)) + 5||a(s) + o Y(s)v(s)| ]ds,

and thus condition (D) amounts to a pointwise minimization of the convex
function 8(x) + 1[16(¢) + o~ X®)x||* over x € K, for every ¢ € [0, T']:

(11.4) A(t) = arg mir}[26(x) +lo(e) + o-l_l(t)x”z].
xeK

11.1 REMARK. Measurable selection theorems of the so-called Dubins-
Savage type [e.g., Schal (1974), (1975)] show that the process A defined by
(11.4) is indeed {#}-progressively measurable. On the other hand, (11.4) leads
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directly to
28 ["5(A(t)) dt + E ["6(2) + o~ () a() | de < B ["0() | dt < =,
0 0 0
whence A € 9.

Furthermore, (11.2) and (8.19) give

H,(t) X,(t) =x(1— ) 0<t<T,

T+1
and substituting this expression into (8.11), with » replaced by A, we obtain
o*(@)#(t) = 0,(¢), £® P-ae.

We conclude that the optimal portfolio is given by
(11.5) #(t) = (e(1)a* (1)) "'[M®) +b(2) — r(1)1]
in terms of the market coefficients and the process A of (11.4). Finally, from
(8.17), the optimal consumption process c,(-) is given by

x X,(?)
C)\(t) = = — ’
(T + 1)H,(t) 1+(T-1%)

It is doubtful that such explicit and general a result should exist for utility

functions other than logarithmic.

0<t<T.

(11.6)

12. A dual problem. In addition to our original constrained optimization
problem of Definition 6.3, we shall introduce here the so-called dual control
problem with value function

V() & int J(yiv),
(12.1) B T . B
J(yiv) & E[ [TUe,3H(0)) e + Uo(oH(T)],

for 0 <y < . This new value function maps (0, ») into itself, provided we
have

(12.2) Vy € (0,0),3 v € I suchthat J(y;v) <»

(cf. Remark 12.5). We shall also impose the assumption

(12.3) inf Uy(t,0+)> -0,  Uy(0+) > —oo.
0<t<T

The motivation for introducing this dual problem comes, of course, from
condition (D) of Theorem 10.1, which amounts to V(y) = J(y; A) for y = %}(x),
in the notation of (12.1).

For any given x > 0, y > 0 and (1, ¢) € &'(x), recall the a.s. inequalities of

'(10.7), and observe that they hold as equalities, if and only if

(124)  o(t) = L(t,yH,(1),  X*™(T) = L(yH,(T)).
Taking expectations, and the supermartingale property of the process in (9.3)
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into account, we obtain from (10.7):

J(x;m,¢c) = E[fOTUl(t, c(t)) dt + UZ(X"””(T))]

1 T
125 =@ +yE[fO H,(t)c(t) dt + H,(T)X*™ (T)]

<J(yiv) + 2y ~yE[ TH,(£) X2 e(2) [8(v(2)) + m* (t)v(t)] dt

< ef(y; v) + xy.
We have equality in (12.5) if and only if (12.4) and
(12.6) 8(v(t,w)) + m*(t, w)v(¢,w) =0, for /® P-a.e.(t,w),

(12.7) E[fTHv(t)c(t) dt + H(T)X>™(T)| = x
0

hold. In particular, (12.5) implies
(12.8) V(x) < V(y) +xy, VY (x,y) € (0,)°

12.1 PROPOSITION. Suppose that (12.2) and
(12.9) Vye(0,0),31, €D suchthat V(y) = J(y;A,)

hold. Then, for any given y € (0,) and with x = Z, (y) there exists a pair
(7,8) e o ’(x) which is optimal for the primal problem and we have

(12.10) V(y) = iug[V(ﬁ) -y¢], 0<y<e.

In particular, V() is convex.

Proor. With x = £ (y) the assumption J(y,Ay) <dly;v), ¥V ve D of
(12.9) amounts to (10.5) with A = A,. The implications (D) = (A) and (D) = (B)
of Theorem 10.1 show that there ex1sts then an optimal pair (#, é) € &'(x)
for the primal problem and

A1) €K, 8(A(1) + A (A1) =0,  c(t) = L(t, Z (x) H, (1)),
X=h(t) = X, (1)

hold ¢/® P-ae. In partlcular X=HYT) = £, as. We conclude from
(12 4)-(12.7) that J(x;#, &) = J(y; A, + xy holds whence

V(y) =d(y;:4,) =J(x;%,8) —xy = V(x) —ay < sup[V(f) - y€].

The inequality in the opposite direction follows from (12.8). O
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12.2 PROPOSITION. Assume that (12.2), (12.3), (12.9), (8.25) and
(12.11) Uy(x) = o0

hold. Then, for any given x € (0,), there exists a number y(x) € (0, %) that
achieves inf, . |[V(y) + xyl; furthermore, this number satisfies

(12.12) x = 2, (9(2)).

y(x)

Proor. From (2.3), (8.6)-(8.8) and the supermartingale property of Z,(-),
we have

(12.13) v,(¢) <eM, EH,(t)<eM, VO<t<T where M2 T(n +[5,).
This observation, coupled with the convexity and decreasing property of
U(t, - ) and U,(-), Jensen’s inequality, and (12.11) and (5.7), yields

J(y;v) > fOTU'I(t,yEHv(t))dt + Uy(yEH,(T))

T ~ -
> fo Uy(t, ye™) dt + Uy(ye™) ST

whence V(0+) = w. It follows that the convex function f,(y) 2 V(y) + xy,
y € (0, ), satisfies f,(0+) = f,() = «, and thus attains its infimum at some
y(x) € (0,»). Then Assumption (12.9) with y = y(x) gives

figg [fy(x)x + j(fy(x);)ty(x))]
(12.14) = yn>1£ [yx + j(y;)ty(x))] > yn;%[xy + V(y)]

= f(y(x)) = xy(x) + V(y(x)).
We shall see (Lemma 12.3) that the function

Gy(f) 2 j(yf;)‘y)
(12.15) E[fTﬁl(t’nyAy(t)) dt + Ijz(ngz\y(T))]’ 0<f<e
0

is well defined and finite, and continuously differentiable at ¢ = 1 with
(12.16) G(1) = —yZ,(¥),

for any given y € (0,%). Now (12.14) implies that the function D,(¢) £

Exy(x) + G,(£), 0 <¢ <o, achieves its infimum over (0,) at ¢=1;
thus its derivative must vanish there, that is, (d/d&)D()l:—1 = xy(x) —
y(x)%y(x)(y(x)) = 0 from (12.6), proving (12.12). O

.12.3 LEMMA. Under the assumptions of Proposition 12.2, the function
G,(*) of (12.15) is well defined and finite, continuously differentiable at ¢ = 1
and satisfies (12.16).



794 J. CVITANIC AND I. KARATZAS

PrRooOF. Same as in KLSX (1991), Lemma 11.7, using (8.25) and (12.2). O

We now can put together the various results of this section and arrive at the
following conclusion.

12.4 THEOREM. Under the assumptions of Proposition 12.2, for any given
x > 0 there exists an optimal pair (#,¢) € &'(x) for the constrained opti-
mization problem (6.5).

It remains to establish conditions, under which the assumption (12.9) will
be valid. This is the objective of the next section.

12.5 REMARK. Under the conditions of Remark 6.4, the requirement (12.2)
is satisfied. Indeed, the condition (6.7) leads to
0 < Ijl(thy)’ UZ(y) < k’(]‘ +y—p), V (t7y) € [O,T] X (0700)
for some & € (0,») and p = a/(1 — @). With v = 0 and arbitrary y € (0, «),
this inequality leads to 0 < J(y;0) < R[[J{1 + y PE(H(#) "} dt +
{1 +y PE(H(T) *}] < .

138. Existence. We establish here the fundamental existence result of this
paper.

13.1 THEOREM. Assume that (5.8), (8.25), (12.2), (12.3) and (12.11) are
satisfied. Then (12.9) holds; in particular, for any given x € (0,®), there
exists an optimal pair (#,¢) € &/'(x) for the problem of (6.5).

Let us begin by introducing the following subset of the Hilbert space -# (cf.
beginning of Section 8):
(13.1) Z2 (v e H#;v satisfies (8.2)}.
Quite obviously from (8.1), I c £ . For any given y € (0, ®), we defined
in (12.1) the functional J,(v) = J(y;») for all » in the class Z of (8.1). We now
extend this definition to the entirety of #, by setting

L) 2 [[(0(s) + 07X (s)v(5))" AW(s)

(13.2) t ,
+5 [ 16(s) + o7 (s)v(s)]" ds
0
and
E[TUI(t,yexp{—/t(r(s) + 6(v(s))) ds — {V(t)}) dt
0 0
(13.3) J,(v) 2 +EUy(y exp{— [ (r(s) + 8(v(s))) ds — {,(T)}),

vE L,
© ve H\L.

b
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_ 13.2 PropPosSITION. Under the assumptions of Theorem 13.1, the functional
J,(): H—> RV {+} of (13.3) is (i) convex; (ii) coercive: Himy,;_,, J,(v) = oo;
and (iii) lower-semicontinuous: for every v € # and {v,},en S # with
[v, — v] = 0 as n — », we have

(13.4) J,(v) < liminf J(v,).
Proor. (i) This follows easily from the convexity and decrease of Uft,e)
and Uy(e") [recall (5.8”)] and the convexity of 6(-) and {.(¢).

(ii) Similar reasoning gives, in the notation of (12.13) and with the help of
Jensen’s inequality,

Jy(v) 2 E [ U(t,y exp(M = £,(1))) dt + Uy exp(M ~ £,(T))
> [[U(t,y explM ~ EE,())) dt + Uy(y expM ~ EL,(T)))

- Tﬁl(t,yeMexp{—éE [loGs) + o (o) d}) dt

+ Uz(yeMexp{— 316 + o~ v]?}).

This last expression tends to infinity as [v] — o, from Remark 2.1.

(iii) Because v, — v in L2(0,T] X (), we also have this convergence ¢® P-
a.e. along a (relabelled) subsequence. Therefore, for any given ¢ € [0,T] we
get, from Fatou’s lemma, [/8(v(s, w))ds < liminf, _,, [{8(v,(s, w)) ds, for P-
ae. o €. On the other hand, we can show, as in Xu (1990), that
Z,(t,0) =, 10 Z,(t, 0), /® P-ae. (¢, 0) €[0,¢] X Q, as well as Z, (T, 0) =, ;o
Z,(T, w), P-ae. o € Q, again along a (relabelled) subsequence. Applying Fa-
tou’s lemma again, along with the lower boundedness and decreasing property
of Uy(¢, - ), Uy(+), we arrive at (13.4). O

13.3 REMARK. For every #\ 9, we have J;,(v) = «, Indeed, Jensen’s
inequality gives

jy(v) > LTUI(t,yexp{—Ef()tr(s) ds — EfoTé(v(s)) ds
—%EfOTII()(s) + o Y(s)w(s)I” ds}) dt
+ U'z(y exp{ —Ej(;Tr(s) ds — EfOTB(z;(s)) ds

—%Ef:”f)@) + a'_l(s)v(s)nzds}).

Obviously from U,(0+) = Uy(®) = » [recall condition (12.11)], this lower
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bound is equal to +w if E[J8(»(s)ds = [or, for that matter, if
E[lr(s)ds = =, whence the imposition of condition (2.5)].

Proor oF THEOREM 13.1. From Proposition OJ13.2 here, and Proposition
2.1.2 in Ekeland and Temam (1976), it follows that J,(A,) = inf, . 5 J,(¥) <
for some A, € . From Remark 13.3, we know that actually A, € 9. It
remains to show A, € 9’; but from Remark 8.5, it suffices to prove %y(y) < oo,

This is done exactly as in KLLSX (1991) (proof of Theorem 12.3 there). O

It can be checked easily that utility functions of the form
1 1
(13.5) Uy(t,c) =e PFl—c®, Uy(c) =ePT—c*, 0<t<T,0<c <o,
a a
with B8 €[0,%), a € (0, 1), satisfy all the conditions of Theorem 13.1.

14. Examples. We consider in this section a few examples of closed,
convex sets K that are of relevance in financial economics as expressing
reasonable constraints on portfolio choice, and for which the support function
8(-) of (4.1) can be calculated fairly explicitly. In all these examples, the
conditions (4.3) and (4.4) are satisfied rather trivially.

14.1 ExamPLE. Let K={re %%, 7, >0,V i=1,...,d}. Then

_f0, ifxeKkK, 5 _
8(x)—{°°’ fre K, and K =K.

This is the case considered by Xu (1990), in which short selling of stocks is
prohibited.

14.2 ExampLe. Let K={re #% 7,=0,V i=m + 1,...,d} for some
fixed m €{1,...,d — 1}. Then

0, x, = =x,=0,

8(x) = {oo, otherwise
K={xe®x,=0Vi=1,...,m}.

This is the incomplete market case of KLSX (1991), where investment is
restricted to the first m stocks only (or equivalently, where the number
of stocks is strictly smaller than the dimension of the driving Brownian
motion W).

14.3 ExampLE. With m as in Example 14.2, consider the set

K={re®%m20Vi=1,...,mandm =0,Vj=m+1,...,d}.
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Then

0, if(xy,...,%,) € [0,0)7,
o, otherwise

8(x) = {

and
I{'={xe@d;xiZO,Vi=1,...,m}.

This is the case discussed in He and Pearson (1991). It is a combination of
Examples 14.1 and 14.2, namely, an incomplete market without short-selling
of stocks.

14.4 EXaMPLE. More generally, let K be a closed convex cone in ¢
Then

0, =zx€Kk,

o(x) = .
(x) {oo, x ¢ K,

where K = {x € #%; m*x > 0,V 7 € K} is the polar cone of —K. This is the
case treated by Shreve (1991), in the case of constant coefficients (using
analytical methods).

14.5 ExampLE. In the (trivial) unconstrained case K = %9, we have

0, x=0, -
5(x) = {oo, otherwise, k= {0}

14.6 REMARK. In all the preceding examples, 5(-) = 0 on K. In particular
then, in the context of logarithmic utility functions (Section 11), the problem
of determining the process A € 9 of conditions (B)-(E) reduces to that of
minimizing (pointwise) a simple quadratic form, over K:

(14.1) A(t) = arg min|6(¢) + o1 (e)v|".
veK

In the most “extreme” case, that is, that of Example 14.5, we get A(¢) =0
from (14.1), and recover from (11.5) the unconstrained optimal portfolio [as in
Karatzas (1989)]:

(14.2)  #o(t) 2 (a*(2)) '0(2) = (a(t)a*(2)) " '[b(2) — r(£)1].
On the other hand, let us consider the case of Example 14.2, and take for
simplicity
2(t)
| p(t) ]
where 3(¢, w) is an (m X d) matrix of full (row) rank and p(¢, w) is an (n X d)

matrix with orthonormal rows that span the kernel of (¢, ), for every (¢, w).
In particular, p(¢)p*(¢) = I, and 3(¢)p*(¢) = 0. Here, n = d — m. Then with

G(t) = [
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B(t) 2 (by(t), ..., 0,0 a(t) = (b,,(t),...,bt)* and O@) £
SEENZ)Z*() [ B@) - r(H)1,,], we have 6(¢) = O(t) + p*()a(?) — r()1,],

and for any » € K [necessarily of the form v = (ON"‘) for some N € #™],

lot) + o= (t)vll* = ©(2) + p*(2)(a(t) — r(t)1, + N)|*

2
=10 +[lp*(t)(a(t) = r()1, + N)]
because the two random vectors 0(2), p*(¢Xa(?) — r(#)1, + N) are orthogonal.

Thus, the minimization of (14.1) is achieved by the random vector A(¢) = [ 1:)( ’;’) } ,

where A(¢) = r($)1,, — a(¢). Back into (11.5), this leads to the optimal portfolio

(1) = @umﬂnrgmn—anuq

n

of KLLSX (1991), for incomplete markets with logarithmic utility.

14.7 ExamPLE. Rectangular constraints. Consider the case K = X?_ K,
where K; = [a;, B;] for some fixed numbers —o < a; < 0 < B, < », with the
understanding that the interval K, is open to the right (left) if b, =
(respectively, if a; = —). Then

d d
8(x) = X Bixi— Y a;x]
i=1 i=1

and K = #¢ if all the a,, B, are real. In general,

K={xre®%x>0Vie/ andx;<0,Vje A/},

where

14.8 ExaMPLE. Rectangular constraints and logarithmic utility. Consider
the setting of Section 11, with the set K as in Example 14.7 and ./, = . = J.
With d = 1, K = [a, B], for fixed —o <a <0 <8 < », and §(x) = Bx~— ax™,
the process of (11.4) becomes

* a(t)[o(t)B - 6(1)], if o(t)B <6(2),
' At ={a®)[o(t)a —0(8)], if o(t)a > 6(2),
0, otherwise.



CONVEX DUALITY 799

Consequently, the optimal portfolio #(-) of (11.5) is given as
B, if o71(2)6(t) > B,
w(t) = { a, if o7 1()6(t) < @,

o 1(t)6(t), otherwise.

In other words, 7+(¢) agrees with the optimal unconstrained portfolio ,(¢) of
(14.2), as long as this latter is in the interval [, 8]; when this is not the case,
7(¢) selects the boundary point closest to ,(2).
The situation is more complicated in several dimensions. Let us study the
preceding problem with d = 2, a = (0,0)*, 8 = (1, 1)*, 6 = (1,2)* and
- = [ 1 —10]
-1 1]
In the unconstrained case, the optimal portfolio is given by (o*)716 =
(=1/3, —4/3)*. It does not suffice now to take the coordinates of the optimal
constrained portfolio 7 to be the closest ones to the unconstrained optimal
portfolio, such that # takes values in K. That would give the portfolio (0, 0)*.
However, the minimization of

f(x)=4lo + o x|? — a*xt+ BEx, x € R?,
leads to the optimal dual process A = (13.5,0)*, and the optimal portfolio # is
given by

#=(c*)"1(6 + o~ \) = (0,1/2)%;
that is, do not invest in the first stock and invest half of the wealth in the
second stock.

14.9 ExampLE. Constraints on borrowing. From the point of view of appli-
cations, an interesting example is the one in which the total proportion
v¢_,m(t) of wealth invested in stocks is bounded from above by some real
constant a > 0. For example, if we take a = 1, we exclude borrowing; with
a € (1,2), we allow borrowing up to a fraction a — 1 of wealth. If we take
a = 1/2, we have to invest at least half of the wealth in the riskless bond.

To illustrate what happens in this situation, let again Uy(x) = log x,
U(t,x) = 0 and, for the sake of simplicity, d = 2, ¢ = unit matrix and the
constraints on the portfolio be given by

K={x€R%x >0,2,20,x, +x, <a}

for some a € (0, 1]. (Obviously, we also exclude short-selling with this choice of
K)

We have here 8(x) = @ max{x], x;} and thus K = %2 By some elementary
calculus and/or by inspection, and omitting the dependence on ¢, we can see
that the optimal dual process A that minimizes 1[0 + v||? + 8(v), and the
optimal portfolio m = 6 + A, are given, respectively, by:

A=-0, 7=(0,0" if6,0,<0

(do not invest in stocks if the bond rate is larger than the stocks’ appreciation
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rates),
A=(0,-0)%, m=(6,0)" if6,>0,0,<0,a>9,
A=(a—06,,-0,)", w=(a,0)* if6,>0,0,<0,a<6,,
A=(-6,00%, 7=(0,0,)" if6,<0,6,>0,a>06,,

A=(—0,a—0,)%" w7=(0,a)" if6,<0,6,>0,a<86,
(do not invest in the stock whose rate is less than the bond rate; invest
X min{a, 6;} in the ith stock whose rate is larger than the bond rate),
A=(0,0, w=0 if6,,0,>0,0,+0,<a
(invest 6, X in the respective stocks—as in the unconstrained case—whenever
the optimal portfolio of the unconstrained case happens to take values in K),
A=(a—10,-6,)", =m=(a,0)" if6,,0,>0,a<6,—6,,
A=(-6,a—0,)", m=(0,a)" if6,,0,>0,a<086,—06
(with both 6, 6, > 0 and 6; + 6, > a do not invest in the stock whose rate is

smaller; invest aX in the other one if the absolute value of the difference of
the stock rates is larger than a),

a—6, -0, a+6,—0, a+6,—6,
Mthm T mm Ty My

if 6,, 6,>0, 6, +0,>a > |0; — 0, [if none of the previous conditions is
satisfied, invest the amount (a¢/2)X in the stocks, corrected by the difference
of their rates].

Note. Some regularity results on the value function of the problem with
d=1, K=1[0,1], constant coefficients and U, = 0, were obtained in the
doctoral dissertation of Zariphopoulou (1989) using mostly analytical tech-
niques.

14.10 REMARK. In the setting of Example 4.8, even with 0 & [a;, B;] for
some i €{1,...,d}, the function f(x;t, w) 2 28(x) + [|6(¢, w) + o~ (¢, w)x|®
appearing in (11.4) is bounded from below and satisfies lim, _, f(x;¢, @) = o,
for every (t, w). Thus an optimal dual process exists and is given by (11.4),
even if (4.4) does not hold.

15. Deterministic coefficients and feedback formulae. Let us now
consider briefly the case where the coefficients r(-), b(-), o(-) of the market
model are deterministic functions on [0, T'], which we shall take for simplicity
to be bounded and continuous. Then there is a formal Hamilton-Jacobi-
Bellman (HJB) equation associated with the dual optimization problem of
(12.1), namely,

Q+ inf[32Q,l0(t) + o~ (B)x]" - yQ8(x)]
- yQ,7(t) + Uy(t,y) = 0, in[0,T) x (0,),
(15.2) Q(T,y) =Uy(y), y€(0,%).

(15.1)
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If there exists a classical solution @ € C12([0, T') X (0,»)) of this equation,
which satisfies appropriate growth conditions, then standard verification theo-
rems in stochastic control [e.g., Fleming and Rishel (1975)] lead to the repre-
sentation
(15.3) V(7) =Q(0,5), 0<y<m,
for the dual value function of (12.1).

15.1 ExamMPLE. Suppose that § =0 on K (as in Examples 14.1-14.5).
Then

(15.4) A(t) = arg min[l6(¢) + o)«
x€K
is deterministic, the same for all ¥ € (0, ), and (15.1) becomes

(15.5) @, + 116,()[°¥%Q,, — r()yQ, + Uy(¢,y) =0, in[0,T) X (0,).

Standard theory [e.g., Friedman (1964)] guarantees then the existence and
uniqueness of a classical solution for this equation.

In the case of constant coefficients, this solution can even be computed
explicitly. Indeed, let us take Uy(t,x) = e Pu (x) and Uy(x) = e ATu(x),
where 8 > 0 and u,, u, are utility functions of class C3, such that

lim (_u’l(x_)) exists, lim M

—0f > 2, u,(0)=0,i = 1,2.
£10 u(x) ow Wi(x) orsomey > 2, u;(0) = 0,

These conditions are satisfied for utility functions of the form (13.5). Let
k = 116 + ¢ Al1%, denote by p, (p_) the positive (respectively, negative) root
of kp?> —(r— B —«k)p —r=0andlet J, £ («/,)7},
Jl( ) ’ P+ J( ) ’ -p_-
Jo(9) & [T (m) " dn, I (v) 2 [T () " dn,

a u1(J1(y)) _ yJ(y)

h(y) 3 .
1 yl-ho+ y1+p_
J - J_ ,
+K(p+—p_)[p+(1 +py) +(2) p_(1+p_) )

1 =,

d(2) & E[_me““ 2 du,
N Y

w(t,y,€) & W[log(g)ﬂﬁ—rik)t, y> 0,650,

(e PTOD(—p (T - t,y,¢))
u(t,y, &) 2 —ye "TOD(—p (T — t,,£)), 0<¢t<T,
(f —y)+7 t=T.
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Then the solution @ of the Cauchy problem (15.5), (15.2) is given by
(158) @t = e P|h) + [[(@6) - h(OY u(t,3,) de
refer to KLS (1987), Section 7, for details.

15.2 ExampLE. Consider the case U(t, x) = Uyx) = x*/a, (¢, x) €
[0,T] X (0, ) for some a € (0,1). Then U, y) = Uy(y) = (1/p)y ", 0<y <

o, with p 2 @/(1 — @), and the solution of the Cauchy problem (15.1), (15.2) is
of the form

1
Q(t,y) = ;y"’v(t), (t,y) €[0,T] x (0,).
Here v(-) is the solution of 0(¢) + A(t)v(¢) + 1 = 0, v(T) = 1, with

+r(t)p,

1+p 2
h(t) & p inf [—-—Ma(:) + o Y (t)x| + 8(x)
xeK 2

namely, v(¢) = exp([Th(s)ds)X1 + [T exp(— [ h(u) du) d8). Again, the pro-
cess A(+) is deterministic, namely,

(15.7)  A#) = arg min|[6(2) + o~ (D)x[ + 2(1 - @)8(x)],
xeK
and is the same for all y € (0, x).
We conclude with a computation of the optimal portfolio and consumption
processes in feedback form (in terms of current wealth), when the processes

r(-), b(+), o(+) and A(-) are deterministic. In such a setting, define the function
2, ) by

1
(15.8)  2(t,y) 2 ;E[ [t TY e L (s, Y00) ds + YEOL(YE)|,

where
dYen = =Y (r(s) + 8(A(s))) ds + (8(s) + o~ (s)A(s))" dW(s)],
t<s=<T,
Yt(t,y) =y.

Obviously Y = yH(s). For every ¢ € [0, T'], the function 27¢, - ) is contin-
uous and strictly decreasing on (0,), with 27(¢,0 + ) = ©» and 27(¢,©) = 0.
Denote its inverse by 2/(¢, ). Assume also that 27(¢, -) is continuously
differentiable and that

¥

a .
v (t,3) = B[ [0 (5, ¥0) ds + (V0 I,
t

where we denote by I;(¢, - ) the derivative of I,(¢, - ). A sufficient condition for
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this is that U; € C*2, U, € C? and that Uy, U/(t, - ) be nondecreasing func-
tions on (0, ©); compare with Proposition 4.4 in KLS (1987).

15.3 THEOREM. Suppose that r(-), b(-) and o(-) are deterministic, that
there exists a deterministic A(+) € 9, which achieves the infimum in (12.1) for
all y € (0,x), and that

I(t,y) + L(y) +|1Ii(t,9)| +|Ii(y) | < K(y* +y7F), 0<y<w,

holds for some real a > 0, B > 0 and K > 0. With the notation and assump-
tions of the previous paragraph, the optimal portfolio /consumption process
pair (m,,c,) € &'(x) for the problem of (6.5) is given by

(15.9) cl(t) = I(¢, Z(t, X\(2))),

2(1, X,(1))
X(O%(t X(1))’

in feedback form on the (optimal) current level of wealth X (¢).

(15.10) () = —(a(t)o*(£)) " '[b(t) — r(£)1 + A(t)]

The proof follows along the lines of Ocone and Karatzas (1991) and KLS
(1987) and is thus omitted. Notice that the assumption of deterministic
A(-) = A,(+) is satisfied for both Examples 15.1 and 15.2; in the case of the
latter, the formulae (15.9) and (15.10) become

1
ex(t) = 20(0) (1),

() = 1= a(a(t)o*(t))‘l[b(t) —r(O)1+A(8)].

15.2 ExampLE (Continued). For 1 <i # j < d, this last formula gives

rrﬁ?(t) _ ((o(t)o*(£)) T [b(2) = r(£)1 +Aa(t)])(i)
0 ((e(®)o*(£)) '[b(t) — r()1 + Aa(t)])(j)'

Here A,(-) is the function of (15.7), which in general [i.e., unless §(-) = 0 on
K] wlll depend on a € (0,1), as will then the ratio of (15. 11)

In other words, for a general convex set K, the ratio (#@(¢)) /(#V(¢)) of the
optimal proportions in two different stocks will depend on the utility function
even in the case of constant coefficients. This is in contrast to the uncon-
strained case [cf. Remark 4.5 in Ocone and Karatzas (1991)] or to the case
where K is a cone.

(15.11)

}6. Extensions and ramifications.

1. The theory that has been developed thus far goes through without change if
one formally sets U; = 0 and ¢ = 0 throughout, and considers the problem
of maximizing expected utility from terminal wealth only.
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2. Certain changes are required, however, in the case where one formally
takes U, = 0 and considers the problem of maximizing expected utility
from consumption E[TU/(t, c(¢)) dt. Then one only requires

ftc(s) ds + /tllﬂ-(s)Hz ds <» as.,
0 0

for every ¢ € [0, T) in Definition 3.1, changes the inner product and norm
of the Hilbert space -# to

(,v) = E/OT(T — s)u*(s)v(s) ds,

Il = \/E/OT(T— t)llv(0) [ dz,
respectively, changes (8.1) to
9= {V e B[ (T - t)5(v(t)) dt < oo}
0

and defines the processes Z,(-), H,(-), W,(-), ¢,(-) and X,(-) of (8.7)-(8.9),
(8.17) and (8.19) on [0,T) (note that the event {lim,,, Z,(¢) =0} =
{Fl6t) + o~ X WD dt = o} may now have positive probability). With
such modifications, as well as obvious changes in notation (such as ignoring
statements and terms pertaining to terminal wealth), Theorems 9.1 and
10.1 continue to hold, as do the results of Section 11 in the logarithmic
case. The duality and existence theories also go through, provided U, is of
the form U¢,y) = ¢()U(y), 0 <t < T, y € (0, ), where ¢: [0, T] - [a, b]
is a continuous function, 0 < @ < b < », and U is the function of (5.2) for a
utility function U that satisfies (5.8), (5.9) and U(0 +) > —x. As they are
not hard to check, these claims are left to the reader’s care.

3. Let &= {K/(w); (¢, w) €[0,T] X Q} be a family of closed, convex, nonempty
subsets of #¢, such that the corresponding family of support functions
{6(:IK(w)); (¢, w) €[0,T] X Q} is uniformly bounded from below [by some
real constant §,, as in (4.4)]. Suppose also that

for every {%])-progressively measurable process V(t),}

(16.1) {0 <t < T, such that v,(w) € K (o) for /® P-a.e. (, ), the
process 8(,|K,), 0 <t < T, is {#,}-progressively measurable

Now we consider the constrained optimization problem of Definition 6.3
with admissibility condition 7(¢, w) € K,(w), /® P-a.e. on [0,T]X Q in
(6.4) and the dual problem of (12.1) with 9 = {v € #; E[f6(v,|K,) dt < *}.
The entire theory goes through, then, under the assumption (16.2), which
strengthens the one of (4.3):

) There exists a sequence {v,},, .y € 2 such that, for /® P-a.e.

| (16.2) (t,w) €[0,T] X Q and for every (nonrandom) vector v €
' K,/(w), there exists a subsequence {v,},cn Wwith|’
lim, ., v,(¢ ®) =vand lim, ,, 8, (¢, ) = 6(v)
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A sufficient condition for assumption (16.2) is that the convex cone K,(w) =
K be the same for all (t, ), that 8(-|1K/(w)) be continuous on K for all (¢, )
and that all constant K-valued processes v(¢,w)=v belong to 2 [ie,
E(l6(vIK,))dt <o, ¥ v € K]. In such a case, we may take {v,},cn to be a
sequence of constant vectors, forming a dense subset of K.

These conditions, as well as assumption (16.1), are satisfied in the case of
the random parallelepiped K,(w) = Xl‘.’= La(t, w), B(t, w)] where (by analogy
with Example 14.7) the {% }-progressively measurable processes «;, B; are

square-integrable and take values in (—, 0] and [0, »), respectively. In this
case, K(0) = %%

APPENDIX A

The purpose of this section is to establish the implication (A) = (B) in the
proof of Theorem 10.1, under the assumptions (5.8), (8.25) and (12.2) on the
utility functions Uy(¢, - ) and U,(-). Our proof uses these assumptions heavily,
but we do not have counterexamples suggesting their necessity for the validity
of the implication.

Let us denote by (4, é) the optimal portfolio/consumption process pair in
&' (x), whose existence is being assumed in (A). According to (3.5), the
corresponding wealth process X(-) satisfies

H,(t)X(t) + [O’Ho(s)é(s) ds

(A.1)
—x— fotHo(s)X(s),u*(s) dW(s), 0<t<T,

where

(A2) n20—o*h.

A.1 LEMMA. We have P[X(#) > 0,V 0 <t <T]=1.

Proor. From (A.1), HOX' is a nonnegative, continuous supermartingale.
To show that it is a.s. positive on [0,T], it suffices to prove that the event

4 {X(T) = 0} has probability 0 [cf. Karatzas and Shreve (1988), Problem
1 3.29].

Let us notice that the solution of the linear stochastic equation (A.1) is
given by

(A.3) Ho(t)X(t)=Z,,(t)[ fz( )A( )ds] 0<t<T,

with v = oo*r, and define &,(t) 2 (1 — £)é&(t), X,(¢) 2 X*%(t), for 0 < ¢ < 1.
" Weé have
+ Hy(s)

H(t)fzy()A(s)dSZX(t)ZO, 0<t<T.

(Ad) X.(t) =X(t) +¢
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In particular (#, é,) € &'(x) and on the event B = {X(T') = 0} we have
Hy(s) Z,(T)
Z,(s) Hy(T)"

The optimality of (#, é) gives

0> E[fOT{Ul(t,(l — £)é(t)) — Uy(¢,é(t))} dt

(A.5) /OT é(s)ds =z, X(T)=ex

o) +H{U(2T)) - U(R(T))|

= _gEfoTé(t)U{(t,m(t))dt

+E[(R(T) - X(T))Us(p.)],

where (1 — £)é(t) < n,(¢) < é®) and X(T) < p, < X,(T). In particular, using
the property (5.8) on U/(¢, - ), we obtain from (A.6), (A.5):

1
:E/()Té(t)ul'(t, &(t)) dt > EfOTé‘(t)Ul’(t, 7.()) dt

X(T) - X(T
E o )8 ( )Ué(pe)lg]

Z,(T) ,(ngV(T))l]
Hy(T) 7" Ho(T) | "]

> xE[
Suppose P(B) > 0; then letting ¢ | 0 above, we obtain from Fatou’s lemma

Z(T) | } < Ej;Tc‘(t)Ul’(t,cA(t)) dt < =,

xUé(O +)E m B

a contradiction, since Uy(0+) = ». O

Our program is to show that there exists a process A € 2’, such that the
positive process X can be represented as

(A7) Hy(t)X(¢t) = E[/THA(S)CA(S) ds + H(T)¢,\|, ] 0<t<T

and the requirements
(A8) e = e,
- (8.22) S(A(2)) + X<(£)#(£) = 0

hold /® P-a.e. Then from (8.19) and (A.7) we shall have X*%(-) = X,(-) and
(B) will be established.
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We shall consider the integrable, nondecreasing process
(A9) A(t) 2 Até(s)U{(s,é(s)) ds, 0=<t<T,
and the continuous martingale
(A10) M(t) 2 E[A(T) +X(T)U(X(T))| % | =50 + f()tlp*(s) dW(s),

where y, = EM(T) < » [by the assumption (10.2)] and () is a suitable
H%valued and {F)-progressively measurable process (from the martingale
representation theorem).

A.2 LEMMA. We have, £® P-a.e., the identity

M(t) —A(t))

(A.11) &t) = Il(t, %0

Proor. Let us start by defining the nonnegative process
(A.12) B(t) 2e(t)/X(t), O0=<t<T,
in terms of which the solution of the linear equation (3.4) (with ¢ = ¢, 7 = 7,
X = X) is given as

A tr A N
Y1) = vexp| - [(B(5) + 31#*(5)o () ) s

(A.13)
+ [#*(s)o(s) dWO(s)].

0

Our method proceeds by a small random perturbation of the process f in
(17.12). In particular, for an arbitrary but fixed {#}-progressively measurable
process p(-) with |p(#)] <1 A B(#),0 <¢t < T and 0 < ¢ < 1/2, we define

(A.14) B.(t) 2 B(t) +ep(t), O0=<t<T,
X,(t) & R(t)exp| e [[o(s) ds .

(A.15)
cu(t) 2 X(DB.(1) = [e(0) + en(t) X()]exp( e ['n(s) ds .

Note that X*™¢(-) = X,(-) and so (#,c,) € &'(x). On the other hand, we
have

c.(t) = 2é(t)e T,  |c.(t) — &(t)| < e const. é(¢),

> whence, in conjunction with (5.8),

;|Ul(t,c€(t)) — Uy(¢,6(t))| < const. é(t)Uj(t, &(t)).
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This last process is £® P-integrable, thanks to (10.2). Similarly,
%|U2(X£(T)) — Uy(X(T))| < const. X(T)U3(X(T)) as.

where again the right-hand side is integrable.

From these remarks and the Dominated Convergence Theorem, we obtain

1
0 < lim ;E[f()T{Ul(t,é(t)) — Uy(t, c.(t))) dt

+H{on(2(1) - (x|
(A.16) . t
= E[/O Uj(¢, é(t)){é(t)fop(s) ds — p(t)X(t)} dt

T
+U2’(X(T))X(T)f0 p(s)ds].
But in the notation of (A.9), (A.10), it is easy to see that

(A.17) EjOT(fO’p(s)ds)dA(t) =E/0Tp(t){E[A(T)|z] — A(t)} dt,

E[Uz’(X(T))X(T)pr(s) ds]
(A.18) 0
- ELTp(t‘)E{Ué(X(T))X(T)IZ } dt.

Back into (A.16), these computations lead to
T e A
Efo p(t)[ M(t) — A(t) - R(t)U;(¢,&(¢))] de = o.

From the arbitrariness of p(-), we deduce
(A.19) X()U(t,é(t)) = M(t) — A(t), /@ P-ae.,
which is equivalent to (A.11). O
A.3 REMARK. The right-hand side of (A.11) defines an a.s, continuous
process. Thus we may, and shall, assume henceforth that é(-) is given in its

continuous modification, so that (A.11) actually holds for all 0 < ¢ < T, almost
surely.

A.4 PROPOSITION. The process

¥ (2)
M(t) - AQ@) |

satisfies (8.22) and [FIANDI? dt < o, [F6(A(#) dt < » a.s.

(A20)  A(t) 2 —a(t)|n(t) + 0<t<T
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Proor. Take an arbitrary portfolio process nm(-) with values in K, a
number 0 < e < 1, a suitable increasing sequence {7,}, .y of {#}-stopping

times with lim, ., 7, = T a.s. [cf. (A.25) for the precise definition] and create a
small random perturbation of the optimal portfolio #(-), according to

(1 —e)7(t) +en(t), 0O<t<r,
(A.21) m(t) = {‘ﬁ'(t), . <t<T,

for every n € N. Define also X,(-) and c(-) via
o), (6) 2 xexp - ['(A(s) + Hm () (5) ) ds
(A.22) +ft7r;"(s)0'(s) dWO(s)},
0

and notice that X* 7« %(-) = X,(-),

X.(t) = X(t)exp[efom"(n(S) — #(s)) o (s) dW(s)

(A.23)
—%/OMT"HO'*(S)(n(s) - ﬁ-(s))”zds]
where
W) £ w(e) + [ u(s) ds,
(A.24)

N(#) 2 [[(n(s) = #(5)) o (s) AW(s).
If we define the {%,}-stopping time
. AT A inf{t € [0,T]; |N(t)| = n,
(A.25) ' or A(¢) > n,or |M(t)| =n,
or (N) >, or [u(s) [P ds > n}

for every n € N, we have almost surely

'

X(t)e %" < X (t) < X(t)e*",  &(t)e 3" <c,(t) < é(t)e> ",
VOo<t<T,
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and lim, 1 7, = T. In particular, (7, c,) € &'(x) and

1 1 N
—[U(X.(T)) - U(X(T))| = —|X(T) = X(T)| U3(R(T)e ")

3en __
e3an

< Uz’(X(T)e‘3E")X(T)e‘3E”e

<K,Usy(X(T))X(T) as.,

where K, £ e®" sup, ., .(e*" — 1) /e, again thanks to condition (5.8). Simi-
larly,

1
;lUl(t, c.(t)) — Uy(t,8(2))| < K, U{(t,8(¢))é(t), O0<t<T.
From these inequalities, the integrability of the random variable
[Tt é()) et dt + U(X(T))X(T),
0

the optimality of (#, ) € &'(x) and the Dominated Convergence Theorem, we
obtain,

1
0> 11?% —G-E[/;)T{Ul(t,ce(t)) - U(t,é(¢))} dt
+H{O(X(1)) - O(ZD)))|

(A.26) = E[fOTUl’(t, é(t))é(t){jo’“"(n(s) —#(s)) o (s) dW(s)} dt

FU(R(T)ET) [(n(s) = #(6)"o(5) aW(s)|

= E[/OTNn(t) dA(t) + (M(T) - A(T))Nn(T)], VneN,

in the notation of (A.9), (A.10), (A.24) and with N (¢) £ N(¢ A 7). The
product rule and the definition (A.25) give

- B[ ['N,(1) dA() - N(T)A(T)|
= B[ A(2) dN,(t)
(A.27) 0
= E[ TA(5)(n(2) = #(£)"o () [AW(e) + u(t) o]

= E["(n(t) = #(0) o () A(1)u(1) .
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On the other hand, we get by the same token
E[M(T)N,(T)] = E[M(T)N(r,)] = E[M(7,)N(7,)]

(A.28) ™ x
= B[ "(n(t) = #(0) o () [M(2)(2) + w(0)] dt.

Substituting from (A.27) and (A.28) back into (A.26), we obtain
(A.29) E/T"(M(t) —A))(F() — () *A(t)dt <0, VYneN,
0

where A(-) is the process of (A.20).
It follows from (A.29) that, for any K-valued portfolio process m, there
exists aset A, C [0, T] X Q of zero product measure, such that

X (¢ 0)n(t, w) 2 X*(t, w)F(t, @), V(L w)€EA,.
In particular,
N(t,w)m = X*(t, 0)7(t,w), V(t,0)€EA,

for every m € K (taking n = 7). Now A = U, cxnqeA, has zero product
measure and 6(x) = sup,, < g »od(—x*7); therefore,

S(A(t,w)) < —X*(t,w)F(t,w), V(t,w)&A.

The opposite inequality is trivially true, since # takes values in K; this
establishes (8.22). It is not hard to see that [T[IA(s)lI® ds < o holds almost
surely. Then [J8(A(s))ds < » as. follows from this, (8.22) and the
Cauchy-Schwarz inequality. O

A5 REMARK. Let us denote by _# the class of {#}-progressively measur-
able processes v(-) with

j;)T”v(s)"2 ds < oo, '/(;TB(V(S)) ds <» a.s.

All processes v,(-), Z,(-) and H,(-) are well defined for every v € 7, as are the
functions Z,(-) and J(-;v) = E[[fU(t; - H(¢))dt + Uy,(-H (T))].

Proor oF (A.7) aAND (A.8). From (A.11) and the definitions (A.9) and (A.10)
we obtain :

X(1)Ui(t,6(2)) = M(t) — A(2)

(A.30) . ]

= E[[TU{(s,é(s))é(s) ds + Uy(X(T))X(T)
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as well as
d(X(t)U(¢,é(t)))
= dM(t) — dA(¢)
(A.31) = 9*(2)dW(2) — Ui(¢,¢(2))E(t) dt
= X()Ui(t, () [ - B(2) dt
+{o* ()R () — 0(2) —  (H)A))" dW(2)].
On the other hand, we may rewrite (A.13) as

(O R(0) = xexp| = [[(~B(s) + 5(3(s)) + FHlo*()(5) ) ds

+[Jﬁ*(s)a(s) dWO(s)],

whence

d(m(t)l.)é(t)) ) n(t)lﬁ(t) [(B&) + 20@) +le*@#OF) ot
(A.32)
| —#*(£)o (2) dW,(1)].
From the product rule and (A.31), (A.32) we deduce

o[ Bl ) _ Ui k)
(A.33) 7x(8) yA(?)

whence Uj(¢, &(t)) = . Hy(£), ¥+ £ U{(0,6(0)).
This yields, in conjunction with (A.10) and (A.30),
M(T) - A(T)
X(T)

[6(2) + o= ()A(D)]" AW (2),

(A34) Uy(X(T)) = = U{(T,&T)) =y H(T),

(A.30") H,(t)X(t) = E[fTHA(s)é(s) ds + H(T)X(T)|%, ] 0<t<T.

Evaluated at ¢ = 0, this last expression yields, in conjunction with (A.33) and
(A.34),

x = E[/OTHA(s)Il(s,y*HA(s)) ds + HA(T)Iz(y*HA(T))] — Z(30).

From this and Remark 8.5, we conclude
(A.35) Z(y) <%, Vye(0,%) and y, = Z(x),
where %, = 2;'. Consequently, the expressions (A.33) and (A.34) become
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&) = I(t, Z(x)H, @) = c)(t) [ie., (A8)] and X(T) = I(Z(x)H(T)) = &,
respectively, and thus (A.30") becomes (A.7). O

PROOF OF A € 2'. In Proposition A.4 we showed that the process A(-) of
(A.20) belongs to the class -2 (Remark A.5) and satisfies the requirements of
condition (B). Just as in Section 10, the same arguments that led to the
implications (B) = (E) = (D) in the proof of Theorem 10.1, show here again
that

j(y*;/\)gj(y*;y), Vves, where y, = Z(x).

We wish to prove A € 2 [because this then implies A € 2, in conjunction
with (A.35), and we are done]. Clearly, in light of condition (12.2), it suffices to
show

(A.36) J(y;v) =®, VYveLs\D,ye (0,).

For this, consider first v € - with [v]? = E[ZIv(@®)I? dt = », define 7, £
T A inf{t € [0, T]; [{Ilv(s)II® ds > n} for n € N and notice thatlim,, .7, =T
a.s. Recall that we have again v,(¢) < eM, 0 <t < T, in the notation of (12.13).
This, the fact that U,(-) is decreasing, the convexity of Uy(-) and Uy(e),

Jensen’s inequality, and the supermartigale property of Z,(-), imply for any
neN,

EU,(yH,(T)) = E| E{Ty(y7(T)Z,(T))| %}
> E[ B{U(0e"2,())|7.,}| = BO, (e E(Z.(T)| 7))

> EUz(yeMZ,,(frn))

> Uz(y exp{M - E/:"Gj‘(s) dW(s) — éE/OT"HOv(s)Hz ds})

= O yexp{ M~ 1E[loce) + o0 )

and EU,(yH,(T)) = » follows by letting n to. Second, take v € _# with
E[ZIv(s)I?ds < o but E[{8(v(s))ds = . For such v, Remark 13.3 shows
EU,(yH/(T)) = . O

APPENDIX B

Consumption / investment with a higher interest rate for borrow-
ing. We have considered so far a model in which one is allowed to borrow
money and at an interest rate R equal to the bond rate r. The purpose of this
section is to show that the convex duality approach of the present paper
permits a complete treatment of the consumption/investment problem of
Definition 6.1 (without portfolio constraints) in the general case R > r. More
specifically, we shall assume that the process R(-) is progressively measurable
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with respect to {%,} and satisfies
(B.1) R(t,w) > r(t,w) fora.e. (¢, w),
(B.2) E["(R(t) - () dt < .

0

In this market .#*, the wealth process X = X*™° corresponding to a given
portfolio /consumption pair (w,¢) and initial capital X(0) = x satisfies the
analogue

dX(t) = i wi(t)X(t){bi(t) dt + i aij(t) dW}(t)} —c(t)dt
i=1 j=1
d + d -
+(1 -y 'n'i(t)) X(t)r(t)dt — (1 -y 'n'i(t)) X(¢t)R(¢) dt
i=1 i=1
(B.3) =I[r(®)X(t) —c(?)]dt

+ X(¢t) [w*(t)a(t) dW,(2)

., -
—(R(8) - r(t))(l - X m(t))' dt}

i=1
of (3.1), and the stochastic control problem is that of Definition 6.1.

B.1 REMARK. Condition (B.1) implies that it is not optimal to borrow
money and to invest money in the bond at the same time. Therefore, we
restrict ourselves to policies for which the relative amount borrowed at time ¢
is equal to (1 — L¢_,m,(2))".

Consider now the bounded subset

(B4) 94{veH;-(R-r)<v,=+ =v,;<0,/® P-ael}
of the Hilbert space s# (Section 8), set
(B.5) 8(v(t)) & —vy(t) foreveryve 2,0<t<T,

and notice that 0 < E[f8(v(¢))dt < E[J(R(t) — r(¢))dt < », v € 9, in accor-
dance with (8.1). With these conventions, the auxiliary market .Z,, v € 9, of
(8.3) and (8.4) consists of exactly the same stocks [since 5(v(#)) + v,(¢) = 0,

i=1,...,d] and of just one interest rate for both borrowing and lending,
ngmely, .
(B.6) r,(t) =r(t) —vy2), 0<t<T.

Notice that r <r, < R. Just as before, one looks for a process A € 9, for
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which the solution to the consumption/investment problem in .#, (uncon-
strained, single interest rate r,) induces a solution to the corresponding
problem in .#* (unconstrained, interest rate R > r for borrowing).

With these new interpretations, all the results proved in Sections 9-13 go
through with only the obvious changes. For instance, (8.21) and (8.22) are
replaced by

(B.7) Y4t w) =0 for /® P-a.e. (¢, w),

where, for any portfolio 7 and any v € 9, ¥»7 is the nonnegative process

. ]
vT(t) £ [R(t) —r(¢) + Vl(t)](l - Z. m(t))
(B.8) ) =1

—vl(t)(l— Zwi(t)) , 0<t<T,

i=1

the same holds for (10.3). Similarly, §(v(#)) + #*(#)v(¢) has to be replaced by
P 7(¢) in (9.3), (9.7), (9.8), (12.5), (12.6) and so forth. In the proof of Theorem
9.1, we take v(¢) £ v (¢)1, where

vy(t) 2 -[R(t) - r(t)]1(2?=1n,»(:)>1),
and arrive at the analogue of (9.14):

x(A) — x(A,
0 < lim sup ) ( . )
el0 €

< E["H ) X(5)[7*(5)(+(5) = A(0)) = (ra(8) = A1) dt

Tn d
~E["H®)X(®)[ni(t) ~ M(0)] (1 > m(t)) dt

i=1

~E["H()X(t)¥*"(t)dt, VY neN.
0

From this one obtains ¥*™ = 0, /® P-a.e., which is the analogue of (9.8).

In particular, under the conditions of Theorem 13.1, there exists an optimal
process A, € 9 for the dual problem of (12.1) and, for any given x € (0, »),
there exists an optimal portfolio/consumption process pair (#,¢) for the °
original control problem in .Z*.

B.2 ExamPLE. General coefficients, logarithmic utilities. In the special
case U(t, x) = Uy(x) = log x, (¢,x) €[0,T] X (0, %), we see from (11.3) that
A(#) = A()1, where .

M) =arg  min  (-2x +]6(2) + o (D)1]).
r(t)—-R(#)<x<0

With A(?) 2 trl(o~1(2))*(~%(¢))] and B(¢) £ 6*(¢)o~}(¢)1, this minimization
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is achieved as follows:

1 - B(?)
A)

0, if B(t) <1,

r(t) — R(t), if B(¢) —1=A(¢)(R(¢) - r(t)).

From (11.5), the optimal portfolio is then computed as

if0 < B(t) — 1 < A(¢)(R(t) — (1)),
(B.9) AM(2) =

. B(t) - 1
(o(t)o*(2)) [b(t) - (’"(t) + —m—)l],
if0 < B(t) — 1 <A(#)(R(t) — r(?)),
(o(t)o* (1)) 7'[b(2) — r(»)1], if B() <1,

(a(t)a*(2)) '[b(¢) — R(1)1],
if B(t) — 1= A(¢)(R(t) —r(2)).

(B.10) #(¢) =

With obvious minor modifications, the results of Section 15 carry over to
this case as well; in particular, so do the feedback formulae (15.9) and (15.10)
under the conditions of Theorem 15.3.

B.3 ExampLE. Deterministic coefficients, HARA Utilities. In the case
U(t, x) = Uy(x) = x%/a, (t,x) €0, T1 % (0,) for some a € (0,1), we get
) = A(®)1 from (15.7) as

M(t) —arg  min [-2(1-a)x +]6(e) + o i(t)1x[]
r()-R#)<x<0

1—a—B(t)
A(t)

0, if B(¢) <1-—a,

r(¢) — R(t), if B(£) — 1+ a>A(t)(R(t) —r(t)),

in the notation of Example B.1. The optimal portfolio is given as

(a(t)o*(t)) " B(t)-1+a
——————A(t) [b(t) — (r(t) + —_—_—A(t) )1],

if0 < B(t) —1+a <A(t)(R(?) —r(t)),

(B.11) if0 < B(t) — 1+ a<A(t)(R(t) —r(t)),

(B.12) #(t) = E’ﬁzlij—(of—)L[b(t) ~ (1], fB()<s1-a,

(o (t)o*(2) ™
1 -

a

[6(t) — R(#)1],
if B(t) — 1 +a=A(t)(R(t) —r(1)).
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B.4 REMARK. The problem of maximizing expected utility from consump-
tion, on an infinite horizon with discounting, was studied by Fleming and
Zariphopoulou (1991) using analytical techniques for d = 1 and constant
R > r, b,, 0,;. Explicit formulae were obtained in the case of a HARA utility
function.

B.5 REMARK. It is also possible to study the constrained portfolio optimiza-
tion problem of this paper in the presence of a higher interest rate for
borrowing, using the “combined dual problem” of minimizing J(y;v, u) over
(v,n) € 9, X 9,, where 9, and D, are given by (8.1) and (B.4), respectively.
Here J(y; v, n) is defined as in (12.1) with H,(¢) replaced by

H,(6) & exp| - [(r(s) + 5(4(5)) - ui(s)) ds

_f()toj#(s)dW(s) - %fot”é)l,,“(s)nzds],

0, (2) £ 0(t) + o (&) [v(2) + n(2)].

We leave the details of this development to the diligence of the reader.
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