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Suppose that the scores of n players are independent integer-valued
random variables with probabilities p;. We study the probability P(T},)
that there is a tie for the highest score. The asymptotic behavior of this
probability is surprising. Depending on the limit of p;,, /pj, we find
different limits of different subsequences P(T},,,,). These limits are evalu-
ated for several families of discrete distributions.

This paper had a rather inauspicious beginning. A golf tournament on
television ended in a tie. A playoff was required and the question arose: What
is the probability of this outcome? That question established the context for
the present paper: The model is discrete, there are many players and we are
interested in the number of winners rather than the distribution of the
scores.

By actual count, 19% of the tournaments on the professional golf tour since
1945 ended in ties. A month after the mentioned tournament, there was a
five-way tie. This was an improbable event, but our paper will not go further
with golf. Ultimately that question was replaced by a more mathematical one.
The scores j=0,1,2,... will have probabilities p; and the highest score
wins. We examine the asymptotic probability of a tie and the asymptotic
distribution of the number of winners as the number n of (independent)
players approaches infinity.

We write S (or more precisely S,) for the event that there is a single
winner among the n players. This occurs with probability P(S,). The alterna-
tive outcome is T—a tie. The individual scores Xj,..., X, are independent
random variables with P(X; = j) = p,. The cumulative probability is F(;) =
P(X;<j)=py+ -+ p;- Then the probability of S, is the sum of probabili-
ties that there is a single winner with score j:

el

(1) P(S,) = Y npF(j—1)"""

Jj=1

(If there is only one player and that player scores zero, then we say that there
is no winner.) Our problem is the asymptotic behavior of P(S,) as n — o,
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The reader will recognize the competing influences on P(S,) as n in-
creases. On the one hand, additional players may tie current winners. On the
other hand, a new player may jump into the lead. This becomes less probable
as the p; decrease more rapidly: We are more inclined to expect a tie. What
we did not expect, especially in the most innocent cases, was that different
subsequences P(S,,,,) approach different limits.

For clarity of presentation, the theorems are stated in terms of P(S,)
rather than P(T,) = 1 — P(S,). We will distinguish four separate cases (and
the first is easy).

Case 1. p; =0 for j > M. All scores are bounded by M. In this case,
P(S,) — 0 as n — ». Therefore, P(T,) —» 1 (Theorem 1).

CASE 2. p;,,/p; = q for a fixed number 0 < g < 1. The scores then have
the geometric distribution p; = ¢’(1 — ¢) for j > 0. In this case Theorems 2, 3
and 4 imply the following:

@ lim, ,,P(S,) does not exist.

(i) If n(m) = [cq~™], the greatest integer in cq ™™, then lim , _,,P(S,,,))
exists. The limit is a function of ¢ that is approximately constant for ¢ not too
small.

(i) limy _, (1/In N)ZY_(P(S,))/n = (1 — q)/lIn g|. That is, the logarith-
mic means of P(S,) converge to (1 — q)/lIn q|l. We write P(S,) —,,, L for the
convergence of the logarithmic means of P(S,) to some value L.

CASE 3. p;,/p; — 1. In this case, P(S,) > 1 as n — « (Theorem 5).

CASE 4. pj,;/p; — 0. In this case, liminf P(S,) = 0, but lim sup P(S,) =
e ! (Theorem 7). However, P(S,) —,, 0 (Theorem 9).

One might expect the limit to be zero in Case 4, because it is so close to
Case 1. The surprise in Theorem 6 is that, whenever the scores are un-
bounded, lim sup P(S,) is at least e™!. We have the striking conclusion that
lim P(S,) = 0 if and only if the scores are bounded. If the p;’s approach zero
fast enough, however, then Theorems 8 and 9 show that P(S,) is logarithmi-
cally summable to zero. In this sense we can say that P(S,) converges to zero
on the average.

Cases 1-4 are not exhaustive. The reader is invited to consider the
behavior of P(S,) for other distributions. The results suggest that Case 1 and
a variation of Case 3 are the only instances in which lim P(S,) exists.

In the literature the winning score W, = max(Xj,..., X,) is called the
record value. Many of the most important results about record values assume
that the observations Xj,..., X, are continuous [Resnick (1987), Chapter 4
and Arnold and Balakrishnan (1988), Chapter 6.] The same is true in the
© related areas of rank tests and order statistics [Hajek (1967)]. The problem of
ties for the record value and the related problem of ambiguous ranks of
observations do not arise when the observations are continuous because the
continuity implies that ties have probability zero. Nevertheless, observations



ASYMPTOTIC PROBABILITY OF A TIE 733

in the real world are often intrinsically discrete—and a tie is frequently a
significant event.

The final section of this paper studies the asymptotic probability that &
players tie for first place. This yields some interesting limiting distributions
for the number of winners.

THEOREM 1. Ifp; =0 for j > M, then P(S,) — 0.

ProOF. The sum in (1) is finite; it stops at j = M. We may suppose that
j = M is the highest possible score. Then p,, > 0 and F(M — 1) < 1. Each
term np,F(j — 1)~ ! approaches zero as n — =, so the sum for P(S,) ap-
proaches zero. O

When the scores are bounded, the probability of a tie approaches 1.

The geometric case. We turn to Case 2, the geometric distribution
¢’(1 — ¢). The cumulative probabilities are F(j — 1) =1 — g’. This
arlses for a sequence of independent trials with probability q of success on
each trial. The score j is the number of consecutive successes until the first
failure. The sum (1) becomes

(2) P(S,) =(1-q) ¥ ng’(1-¢’)""
j=1

We will find the limit of P(S,) when the number of playersis n ~ c/q™ as
m — . More precisely, the integers n approach infinity along a sequence
n(m) such that n(m)q™ — ¢ = ¢~ *. The existence of the limit means that for
large n, P(S,) = P(S|,,). We ﬁnd that the limiting probability of a single
winner (or a t1e) depends on c and thus on x. If ¢ > 0.3, then the variation
with ¢ is very minute, but for smaller ¢ the variation with ¢ can be
considerable.

It has come to our attention during the revision of this manuscript that the
limiting behavior of the expression in (2) has been analyzed in an apparently
different context by Lossers (1993), Mann (1992), and Brands, Steutel and
Wilms (1992). They all consider a problem of Rade (1991), which at first
glance does not look like ours. His problem is as follows:

Suppose we have n identical coins for each of which heads

occurs with probability p. Suppose we first toss all the

coins, then toss those which show tails after the first toss,

then toss those which show tails after the second toss, and

so on until all the coins show heads. Let X be the number

of coins involved in the last toss. .

(a) Find P(X=i)fori=1,2,...,n and E(X).

(b) Let p, = P(X =1). Analyze the behavior of p, as

n — o,
This is a disguised version of our problem in Case 2. Each coin corresponds to
a player whose score is the number of times that the coin shows tails. The
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score has a geometric distribution with ¢ = 1 — p. X is just the number of
players with the highest score and p, is our P(S,). Mann’s thesis has graphs
and numerical estimates that complement our work. He also proves what we
call Theorems 2, 3, 2k and 3k. Lossers (1992) emphasizes the “astonishing
fact” that lim P(S,) fails to exist. Brands, Steutel and Wilms also prove a
version of Theorem 5.

We state our results in terms of x = In ¢/[In g|. The advantage of introduc-
ing x is that the limit of P(Sn(m)) is a periodic function of x with period 1. A
subsequence with n ~cq™™ =g *¢™™ yields the same limit as a subse-
quence with n ~ (cg™')g™™ = ¢~ **Dg~™ Theorem 2 establishes that limit,
which is L (x) = L (x + 1). Following the proof we study the dependence of
the hmltmg probablhty L on both ¢ and x.

The following simple inequalities are used in many of the proofs.

LEeMMA l. (@) If0<x<1, then(l—x)”<e “* and xe™* < x.
(b) If 1 <x, thenxe ™ < 1/x.

THEOREM 2. Ifp; = q’(1 — q) and n(m) is a sequence such that n(m)q™
— q7%, then

(3) nlli_rﬁop(sn(m)) = (1 - q) Z qt—xexp(_qt—x) = Lq(x)
= —
PrOOF. Choose M so large that ¢ */2 < n(m)q™ < 2q~* for m > M. Let
J=m + t in (2). Then

©

P(Sn(m)) = (1 - Q) Z n(m)q’"”(]_ _ qm+t)n(m)—1

t=—-m+1

= (1 - q) Z am(t)’
t=—
where a,,(¢) = 0 for t < —m and a,(¢) = n(m)g™* *(1 — g™+ )™~ 1 for ¢ >
-m. When m exceeds M, the terms are bounded by a,(¢) <2(1 —
q) 'q' " exp(—q?~*/2). These bounds are summable. Thus by dominated
convergence

5im P(S,) = (1-9) ¥ lman(t) = (1-q) ¥ ¢"*exp(~g"*). O

t=—o t=—o
CoROLLARY 1. If n(m)q™ — 1, then lim,, ,.P(S,,,) >e ' > 0.36.
ProoF. In this case x = 0 and L,(0) > (1 - q)if=0qte‘1 =e L. O

Thus in the coin tossing problem, if p = 0.99 and the number of coins is an
arbitrarily large power of 100, then the probability of a tie for the largest
sequence of tails is less than 0.64—a somewhat surprising result considering
that about 99.99% of such coins land heads by the second toss. If the number
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of coins is very large, but net a power of 100, then the conclusion is very
different, as we shall see.

The form of (3) shows that L (x) is periodic with period 1. The limiting
probability L (x) has the following Fourier expansion, with coefficients in-
volving the gamma function.

THEOREM 3. L, (x) is an infinitely differentiable periodic function with
Fourier expansion

l1—-q 2 2min
(4) L,(x) = Tnal F(l + {E—q—})exp(%rinx).

n=—ow
Because L,(x) is not constant, lim, _,,P(S,) does not exist.
Proor. By Lemma 1 and the Weierstrass M-test, the infinite series (3) for

L (x) and the series of its termwise kth derivatives converge uniformly on
[0, 1] for all k. The nth Fourier coefficient of the sum in (3) is

c(n) =(1- f])fo1 i q' " exp(—q‘ *)exp( —2winx) dx

= —
=(1- q)fw q ¥ exp(—q *)exp(—2minx) dx.
Change variables to u = ¢~ *. The Fourier coefficient c(n) becomes
l1-—gq 2min 1-g 2min
Uyl ——|du=——T1+ .
Ilnql—/;)e u( lnq) “ n q| ( {lnq })

Then (4) is the Fourier series, it converges uniformly and L varies with x. O

To understand the nature of L (x), first note that c¢(0) = (1 — ¢)/lln q| =
[Oqu(x) dx is the average value of L (x). We call this the average asymptotic
probability of a single winner. It is the approximate probability of a single
winner if the number of players is a random variable distributed as N =
[g ™ %], where m is a large integer and X is uniformly distributed on [0, 1].
Alternatively, the number of players is distributed as N =[¢ ™Y ], where Y
has density f(y) = (ylng)~! for 1 <y < g~ 1. A table of the average values
of L, is therefore useful; see Table 1.

The greater the probability ¢ of success per trial, the greater the average
asymptotic probability of a single winner when the score is the number of

TaABLE 1
The average asymptotic probability of a single winner

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

foqu(x) dx 0.39 0.50 0.58 0.65 0.72 0.78 0.84 0.90 0.95




736 B. EISENBERG, G. STENGLE AND G. STRANG

consecutive successes. Intuitively, the highest score tends to be relatively
isolated within the wider range of scores that occurs as g approaches 1.

For g not close to zero, L (x) stays remarkably close to its average value
¢(0). This follows from an examination of the magnitudes of the Fourier
coefficients c(n) for n # 0. Let c(n) = c(0)a(n). Then |c(n)| < |a(n)| for all n.
Using a gamma function identity [Jahnke (1960)],

la(n)|* = a(n)a(—n) =T(1 +2)[(1 - z) = wz/sinmz with
z =2mwin/|In q|.
It follows that if § = 1/|ln g/, then’

(5) la(n)* =la(—n)|* = 4m%n6/{exp(272n6) — exp(—27%n0)).

Because 272 = 20, we have for n > 1, la(n)|?> =~ 40n6 exp(—20n0) for g not
too close to zero. In particular, ¢ = 0.5 gives 0 ~ 1.45 and |a(1)| = 5 X 1076,
Mann (1992) has more detailed estimates in this case. The coefficients
decrease very rapidly with n, especially for larger ¢. Even for ¢ = 0.3 and
6 ~ 0.83, we find |a(1)| = 0.0016 with a rapid decrease. This gives |c(—1)| +
le(1)| = 0.0018 with the sum of the other coefficients insignificant compared to
this. On the other hand, |a(n)|> - 1 as @ — 0, so that the nonconstant terms
in the Fourier series are significant as q approaches zero. For ¢ = 0.2, we
find |c(—1)| + |e(1)| = 0.03, which is not insignificant.

Nevertheless, for ¢ not too small, Theorem 3 has a useful corollary: For all
practical purposes P(S,) = (1 — ¢)/lIn gl for large n.

COROLLARY 2. ILq(x) — (1 - q)/lln q|| < 0.002 for all x for ¢ > 0.3.

Thus the values in Table 1 are essentially the limiting probabilities of
having a single winner. Although lim P(S,) does not exist, the lim sup and
lim inf differ by less than 0.004 for g > 0.3. Numerical computation of the
exact probabilities of having a single winner shows that n does not have to be
very large for P(S,) to be close to the values in Table 1 for g > 0.3.

The inequality in this corollary is not valid as ¢ — 0 because Corollary 1
shows that L,(0) > 0.36, whereas (1 — ¢)/lln g| - 0 as ¢ — 0. Because (1 —
q)/IIn q| is the average value of L, it follows that L, must have sharp peaks
at 0 and 1 for g near 0. In particular, for ¢ = 0.01, the average probability of
a single winner is approximately 0.21, whereas numerical computation shows
that L ,,(0) is approximately 0.38.

It is worth noting that in the unrelated problem of fitting splines with
knots at the geometric progression ¢™ to f(x) = log (x) for ¢ > 1, Newman
and Schoenberg (1975) found asymptotic behavior that is remarkably similar
to L,(x). Series similar to that in (3) appear there along with the gamma
functlon They found that the splines S,(x) do not converge to f(x), but that
their logarithmic means (In n)"}{X7_,S k(x) /k} converge uniformly for x > 0.
This type of convergence also holds for P(S,). In fact, P(S,) is logarithmi-
cally summable to the average asymptotic probability of a single winner.
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THEOREM 4. If the scores have a geometric distribution with parameter q,
then

1 N
li
Nl_rgo In N g’

P(S ) l1-gq
~ lngl

- joqu(x) dx.

PrOOF. From (2) we have that
N » N N
YP(S)/m=01-q) Y ¥ q'(1-4q)
n=1 j=1n=1

It is easily seen that ¥¥_,q/(1 —g/)* ' 1=1-(1 —-¢/)" is a decreasmg
function of j. It follows that el Nl qu(l — g/)*~ 1 differs from [XN-lg*(1
— q*)" dx by at most 1. Setting u = q*, this integral becomes

! iNil 1 "du=[ngql 1 L !
— - = + =+ =]
Ilnqlfo L (1-u)du=lng 2 N

The theorem follows because (1 + 1/2 + - +1/N) ~In N. O

The use of logarithmic means when limits do not exist is analogous to the
use of Cesaro averages for probabilities in periodic Markov chains when the
limits of those probabilities do not exist. The logarithmic mean is more
natural here because P(S,) is approximately “multiplicatively periodic” as
opposed to being approximately “additively periodic.” The graph of P(S,)
versus n tends to repeat with periods growing by a factor of 1/q.

The extreme cases where p;,, /p; approaches zero or one. For
the distribution p; = = q/(1 — q), the ratio pj+1/p; has a constant value 0 <
qg < 1. Table 1 1nd1cates the different asymptotic behavior of P(S,) in case q
is near O or 1. Indeed, (1 — q¢)/Ing| > 0 as ¢ » 0 and (1 — q)/lln gl— 1as
q — 1. This suggests that P(S,) — 0 whenever p;,,/p;, > 0 and P(S,) - 1
whenever p;.,/p; > 1. In this section we show that the second of these
conjectures is true, but the first is false.

LEMMA 2. X5 onp;  F(D" ' <1 <5 np,F(H" .

Proor. Writing p; as F(j) — F(j — 1), the inequalities become

o <3}

Y alF(j+1) —F()IFG)" ' <1< ¥ a[F(j) -FG - DIFWN)"

Tile left-hand side is a lower Riemann sum and the right-hand side is an
upper Riemann sum for [fnx"~ ! dx = 1. The lemma follows. O
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THEOREM 5. Ifp;,,/p; = 1, then P(S,) — 1.

PrROOF. From (1) and Lemma 2, a tie has probability

<3}

1-P(S,) < Y n(p; - ps ) F()"

Jj=0

Il

P(T,)

=) npj+1('ﬁ‘ - I)F(j)n g

j=0 Pj+1

Given & > 0, it follows from the assumption p;,;/p; = 1 and from Lemma 2
that for M large enough, ¥7_ynp;.(p;/p;j.; — DF()D" ! < /2 for all n.
Because each term in the series goes to zero, one can then choose n large
enough that the sum of the first M terms of the series is less than £/2. Thus
P(T,) < & for n large enough and this proves the theorem. O

The hypothesis of Theorem 5 is stronger than is absolutely necessary. For
example, there is the following corollary:

COROLLARY 3. Let 0 =j(0), j(1),..., be an increasing sequence of integers
and let r; =p;;, + " +Djis1y-1 for i=0,1,.... If r; 1 /r; > 1, then P(S,)
- 1. :

PrOOF. Consider a new scoring system, where the score is X* =i if the
original score X takes values from j(i) to j(i + 1) — 1. Then P(X* =1i) =r,.
Let S} be the event that there is a single winner in the new scoring system.
Because a tie in the old scoring system implies a tie in the new scoring
system, we must have P(S}) < P(S,). By Theorem 5, P(S}) — 1. Hence
P(S,) -1 0O

Corollary 3 strictly extends Theorem 5 in the case where p,; = c /j% and
Poji1 = 2¢/j%, w1th DPo = 0 and ¢ as the normalizing constant. If J@) = 2i,
then r; = 8¢/i? for i # 0. Corollary 3 applies, but not Theorem 5.

THEOREM 6. P(S,) — 0 as n — « if and only if the scores are bounded. If
the scores are unbounded, then
limsupP(S,) =e ! > 0.36.
n—o
Proor. With bounded scores, Theorem 1 gives P(S,) — 0. If the scores

are unbounded, we may choose a subsequence n(m) S0 that n(m)1 — F(m))
— 1. Then

0

P(Sum) = L n(m)p;F(j—1)"""" = n(m)(1 - F(m))F(m)" ™.

) J=m+1

This converges to e "1 under the assumption on n(m). Thus lim sup,, _,, P(S,)
-1

>e . O
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We next consider the extreme case where p;,;/p; = 0. One might conjec-
ture that a tie is highly probable because the scores would be concentrated
around fairly low values. Although Theorem 6 shows that lim,_, P(T,)
cannot equal 1 in this case, Theorem 7 shows that at least limsup,, _,,, P(T},)
= 1.

LEmMA 3. Ifp;,1/p; = O, there exists a sequence n(m) such that n(m)p,,
— o and n(m)p,,,; = 0.

ProOF. Let n(m) be the greatest integer in ( pm Dmr) Y2

Recall that W, = max(X,,..., Xn) is the winning score with n players.

LemMA 4. If p;.q/p; > 0 and n(m)p, — « and n(m)p, ., > 0, then
P(W,y = m) - 1.

ProOOF. We show that a score abové m is improbable, and then that a
lower score is not likely to win. Choose J large enough so that p;,; <p;/2
for j > J. Then m > J implies

n(m) ©
P(Wymy>m) < 3. P(X;>m) =n(m) Y. p;<2n(m)py,, —0.
i=1 j=m+1

On the other hand, all the scores are below m with probability

( (m)<m)<(1 Pm) SeXp(—n(m)pm)—ao.

Therefore the probability that the winning score is m approaches 1. O

n(m)

LEMMA 5. Forany 8 > 0, thereis an g, > 0 such that if ¢ < ¢y and x > 0,
then
e  + gxe ** <e ! + 6.

PrROOF. First note that ye™ <e™! for all y and ye™ - 0 as y > o,
Choose t > 1 so that te™® < 8. Let ¢, =6/t. If x >¢ and ¢ < g,, then
e ¥ + exe t <tet+ecxe *<b+e . If x<t, then xe * + gxe ** <

Lt gt<el+6.0

THEOREM 7. If hmj_,w Pj+1/pj =0, then liminf, ,, P(S,) =0 and
limsup, ., P(S,) =e %

Proor. Let ¢ = sup(1 — pj)_l. Choose n(m) as in Lemma 3. Then
P(Suimy) < 1(m) Pp(1 = pp)" ™" + P(W, # m)
<cn(m)p,, exp(—n(m)p,) + P(W, # m).

This approaches zero by the assumption on n(m) and Lemma 4. This proves
the first part.
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For the second part, it follows from Theorem 6 that it is enough to show
that for any § > 0, if n is large enough, then P(S,) <e~! + 55. Using
Lemma 5, choose ¢ so small that the following three inequalities hold:

@) xe ™™ + gyxe 1* <e !+ § forall &, <& and x > 0.
G) A+ eXe P +8) <e™ ! +26.
Gil) e(1 + &)/(1 — &) < 6.

Then choose J so that (1 —p;)™' <1+ & and p;,,/p; < & for j > J. For n
large enough, np; > 1. Thus there is a unique j(n) > J so that np;,,, > 1 and
nPjny+1 < 1. From (1),

o

P(S,) < Y np;(1 —pj)n_l.

Jj=1

Break this sum into four parts: from j=1to J, from j=J + 1 to j(n) — 1,
from j = j(n) to j(n) + 1 and from j = j(n) + 2 to infinity. We will show that
only the third sum with two terms is significant.

For n large enough the first finite sum can be made less than § because
each term approaches zero as n — «. Next notice that npj ., < &. Thus
from the fact that p;,,/p; < & for j > J, the fourth sum is at most £/(1 — &)
< 8. For the second sum note that the assumption on j(n) shows that
nPjny-1 = 1/e. From Lemma 1(a) and (b) and the assumption on J,
nP - 11 = Pjny- )" < (1 + &)e. Looking at the sum from right to left it
follows that the second sum is at most (e + 1)/(e — 1), which is at most &
by (iii). Furthermore, it follows from Lemma 1(a) and (i) that the third sum
can be made less than (1 + £Xe~! + 8), which is less than e~ ! + 28 by (ii).
Putting this all together we have that for n large enough, P(S,) <e™! + 58.

O

The following theorem is a useful variation of Theorem 7.

THEOREM 7'. Assume that p;,,/p; = 0.

@) If n(m)p,, — 1, then P(S, ) — e .
G If n(m)p,, - © and n(m)p,, ,, — 0, then P(S,,,) — 0.

Proor. If p;,,/p; = 0 and n(m)p,, — 1, then n(m)1 — F(m — 1)) > 1.
The first part then follows from the proof of Theorem 6. The second part
follows from the proof of Theorem 7. O

Because the p; decrease rapidly in Theorem 7', the sequence n(m) with

n(m)p,, = 1 grows very quickly. :

. ExaMpLE. Poisson distribution with A = 1. The distribution p; = ™' /;!
has p;,,/p; = 0. Hence n(m) ~ em! leads to P(S,,,) - e"'. On the other

hand, n(m) ~ em!(m + 1'/? yields P(S,,,) — 0. It is interesting to note

that in the geometric case P(S,) is approximately “multiplicatively periodic”
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with “period” g~ !; that is, P(S,) = P(S;,,4-1)). For g very small the period is
very large but constant. In the Poisson case even the apparent “multiplicative
period” of P(S,) is approaching infinity. That is, in the sequences above
n(m + 1)/n(m) approach infinity.

Although limsup P(S,) > e~! for any unbounded distribution, the next
result shows that if the distribution is close enough to being bounded, then
P(S,) goes to zero on the average. In Theorem 8 recall that P(S;) = P(X, #
0).

THEOREM 8. For any distribution of scores:

@ _(P(S,)/n < E(Wy) for all N.
Gi) If E(W,)/Inn — 0, then P(S,) -, 0.
@(ii) If liminf p;/{1 — F(j — 1)} > 0, then

P(8S,) 21z 0 ifandonlyif E(W,)/Inn — 0.

PRrROOF. Assume that the scores are unbounded. Then from (1),

N P(S,) © N o D; .
=Y Y pFG-1D" = . 1-F(j-1
n=1 I j=1nz=:1 i ) j=1 (I—F(J“'l))( ) )
< L1-F¥j-1) = ¥ P(Wy>j) = E(Wy).
j=1 j=1
If the maximum possible score is M, then replace the « in the summations by
M. Parts (i) and (ii) follow immediately.
Under the additional assumption, the preceding expressions show that
¥ (P(S,)/n = c¢,E(Wy) — ¢, for positive constants ¢, and c,. The con-
verse of (ii) then follows. O

COROLLARY 4. In the geometric case ©N_,(P(S,))/n = (1 — q)E(Wy) for
all N. In particular, E(WW,)/Inn — [In q|™".

Proor. In the geometric case p;/{1 — F(j — 1} = 1 — q is constant. The
first part then follows from the proof of part (i) of Theorem 8, The second part
follows from Theorem 4 and the first part. O

THEOREM 9. If{1 —F(j — 1}q~V - 0 forall ¢ > 0, then E(W,)/Inn — 0
and P(S,) —,, 0.

ProoF. Under the assumption for any g one can choose J so that for
J>dJ,1-F(j—1) < q’. Hence

EWy)= L 1-FG-1)¥<dJ+ § 1-(1-¢")" <d+E(Wy),
, j=1 j=d+1

where Wy is the winning score when the individual scores are geometric with
parameter q. It follows from Corollary 4 that lim sup E(W,)/Inn < 1//In q|.
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Bﬁt q is arbitrary. Letting ¢ — 0 we see that E(W,)/In n — 0. The result
then follows from part (i) of Theorem 8. O

COROLLARY 5. If p;,1/p; = 0, then E(W,)/In n — 0 and P(S,) -, 0.

PROOF. It is easily seen that {1 — F(j — 1)}g™/ — 0 for all ¢ in this case.
O

The probability of k players tied for first place. Let N, be the
number of winners. Equation (1) gives the probability that N, = 1. A single
winner was the event S,. The same reasoning leads directly to the probabil-
ity that there are 2 winners. For each j, we look for & (k¢ > 1) players to have
score j and n — k players to have a lower score:

(6) | P(N, k)= ¥ (Z)pko(J' et

Jj=1

(If all n players score zero, then we say that there are no winners.) The
problem is still the asymptotic behavior of this sum. We consider the same
four classes of distributions.

Case 1. Bounded scores (still easy). As in Theorem 1, let M be the
highest possible score. The sum in (6) stops at j =M and F(M — 1) < 1.
Each term in (6) approaches zero as n — .

CasE 2. The geometric distribution. The probability (6) of 2 winners
becomes

PN, = k) = (1-0) T (F]a*(- )"

The proofs of Theorems 2 and 3 now lead to extensions of the theorems.

THEOREM 2k. Ifp; = q’(1 — q) and n(m) is a sequence such that n(m)q™
— q7%, then

, Q-q9* = . )
@ Jim P =8 = S T (=gt = L ().

t=—o

THEOREM 3k. L, ,(x) is an infinitely differentiable periodic function with
Fourier expansion

. 1—-qg) =
® Lo - G ol

n=—w

in i
z )exp(27nnx).
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The average value is

1 (1“‘1)k
'/(;Lq,k(x) dx = —-—~———~—klln 7l

Once again L, , stays close to its average value for g not too close to zero.
Let

9) l,(k) = (1 - q)*/(klnql).

Then X} _,l,(k) = 1. The values [ (k) form a probability distribution, which
we call the &  distribution. [ q(k) represents the average asymptotic probabil-
ity of k players being tied for first place when the scores have a geometric
distribution with parameter g. Table 2 is a short table of these distributions.

The apparent monotonicity of /(%) as a function of g for fixed % is easily
verified for £ = 1. It does not hold, however, for 2 > 2. For example, Mann
(1992) shows that /,(2) is maximized for ¢ ~ 0.28, [ (3) is maximized for
q = 0.15 and /,(4) is maximized for ¢ = 0.10. Evidently the smaller g is, the
greater the chance of a large number of players being tied for first place.

If N, is a random variable with the £, distribution, then simple calcula-
tions show that

(10) E(N.) =(1-4q)/(qllngl) and E(N?)=(1-gq)/(q*Inql).
It is easily verified that E(N,) increases as g decreases. Mann (1992) and

Griffin (1993) show that for finite n, E(N,) = P(S,)/q. Because P(S,) =,
(1 — q)/IIn ql, we can thus say that E(N,) —,, E(N,).

CASE 8. p;.;/p; = 1. Theorem 5 shows that P(S,) » 1. Thus P(N, = 1)
— 1land P(N, =k) - O for & + 1.

CASE 4. p;,/p; — 0. As in Case 2, the limit of P(N, = k) depends on the

choice of the subsequence. We have the following extension of Theorem 7.

TABLE 2
L, distributions

E
q 1 2 3 4 -5 6 7
0.2 0.50 0.20 0.11 0.06 0.04 0.03 0.02
0.3 0.58 0.20 " 0.10 0.05 0.03 0.02 0.01
05 0.72 0.18 0.06 0.02 0.01
0.65 0.81 0.14 0.03 0.01

0.7 0.84 0.13 0.03
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THEOREM 7k. Assume that p;,,/p; = 0.

(i) If n(m) is a sequence such that n(m)pm — o and n(m)p,, ., = 0, then
P(N,,, = k) = 0 for each k. In fact, Ny, is asymptotically binomial with
parameters n(m) and p,,.

(i) If n(m) is a sequence such that n(m)p,, = A for some X >0, then
lim,, . P(N,,, =k) = e "\t /k! for k = 1.

Proor. Let n(m)p,, — « and n(m)p,,,, — 0. By Lemma 4, the probabil-
ity that the winning score with n(m) players is m approaches 1. The number
of players with this score is binomial with parameters n(m) and p,,. Because
n(m)p,, = ®, P(N,,y = k) = 0 for all k.

A subsequence such that n(m)p, = A # 0 has n(m)p,,., > 0 and
n(m)p,,_, = «. It follows as in the proof of Lemma 4 that P(W,,,, > m) — 0
and P(Wn(m) <m —2) - 0. Thus PW,,,,=m —1or m)—> 1 that is, the
winning score will very likely be m or m — 1

Let Y, _, be the number of players scoring m — 1 and let Y,, be the
number of players scoring m when there are n(m) players. Then Y, is
binomial with parameters n(m) and p,,_, where n(m)p,,_, = ». Thus

P(Nymy=kNW,y=m ~1)<P(Y,_;=k) >0 forall k.
On the other hand, Y,, is asymptotically Poisson with parameter A. Thus
P(Nymy =k 0 Wy = m) = P(Y,, =k O Wy() = m)
=P(Y,=knW,,, <m) fork+O0.
Because P(Y,, = k) —» e "A*/k! and P(W,,,) < m) — 1, it follows that
P(Nymyai N Wyimy = m) = e 2*/k! fork # 0.

Combining these two results with the fact that P(W,,,=m — 1or m) - 1,
we have that P(N,,,, = k) — e */k! for k + 0. O

For the original golf problem, it is interesting to pursue the (unsupported)
assumption that players have equal skills and that the number of strokes
below par has a geometric distribution. If 19% of large tournaments end in
ties, then Table 2 (g = 0.65) suggests that less than 1% of tournaments
should end in five-way ties, but about 5% should end in ties of three or more.
Corollary 4 with ¢ = 0.65 then suggests that the winning score (strokes
below par) should average 2.31n n, where n is the number of players. For
n = 100 this is 10.6.
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