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GENERAL BRANCHING PROCESSES IN VARYING
ENVIRONMENT!

By HARRY COHN AND PETER JAGERS

University of Melbourne, and Chalmers University of Technology and
Gothenburg University

A conditioning and martingale method is used to relate the asymp-
totics of uniformly integrable general branching processes in varying
environment to the behaviour of their expectations.

1. Introduction. Branching processes are naturally analyzed in two
steps. First you take the expectations, then the process itself. The first step
may be trivial for Galton-Watson or birth-and-death type processes, but
certainly not so for general processes, where you would have to resort to
Markov renewal theory or similar approaches. The second step relates the
process itself to its expectation, nowadays usually by martingale methods.

One such approach is due to Cohn (1985). It can be viewed as based upon
the following lemma [cf. Cohn (1985), Theorem 3.1]. (Note that the concept of
weak L'-convergence referred to is that of functional analysis: X, > X
weakly in L' means that E[X,Y] — E[ XY] for all bounded measurable Y.)

LEMMA 1. Let {X,} be a sequence of uniformly integrable random vari-
ables on a space (O, %, P), which also carries a filtration {#,} generating .

Assume that for all k E X, |5, ] L some Y, where — stands for convergence
in probability. Then {Y,,%,} is a martingale. It converges a.s. and in L' to a
limit X. Further, X, — X weakly in L. If there is a set A €% such that
X, = X on A and the contrary on its complement, then the convergence holds
even in L.

COROLLARY 2. If the X, and X are indicator functions and {#,} generates

P
Z, then E[ X,|9,]1 > some Y, for all k, implies that X, 5 X where — stands
for convergence in L,.

Proor. The corollary is obvious since indicators are bounded and hence
uniformly integrable. As the set A we can choose {X = 0}.

The lemma itself follows from weak L'-compactness being equivalent to
uniform integrability [ Dunford—Pettis; cf. Neveu (1965), page 118]. The strong
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L'-convergence is there since
E[IX, - XI|| =E[X,; A] —E[X; Al + E[X; A'] - E[X,; A'] - 0,
where the prime denotes the complement. O

We shall use this lemma to relate the asymptotics of branching processes
in varying environment to that of their expectations. The case treated will be
so general that many different types of mean behaviour will be included.

To make the object of study precise observe that a general branching
population, as in Jagers (1989), can be at least partly defined without any
reference to probability measures. Following this procedure, let

I- UN*, N°={0}, N={(1,2,...)

denote the Ulam-Harris space of all possible individuals. Denote the life
space of all perceivable individual life paths by ({,.%) and assume that a
reproduction process is defined on it. This reproduction process should tell the
mother’s age at bearing and the #ype of the child, the latter being an element
of a type space (S,.%). Thus, on the life space there is a sequence of maps
(r(k),0(k), k=1,2,...,0<7(1) <7(2) < - <00, o(k): Q- [0,»], with
the interpretation that 7(%) is the mother’s age at giving birth to her kth
child and o (%) is that child’s type. Of course, if 7(k)Xw) < 7(k + 1N w) = =,
then a mother leading the life path @ will never obtain more than % children.

The whole population space is (S X Qf, % X.%!) and on this space the birth
time and type of an individual x € I are denoted by 7, and o,, respectively.
[Note that there is a slight change in notation from Jagers (1989).] These are
inductively given from a starting type o, € S and 7, = 0.

The easiest way to introduce an environment might be through an envi-
ronment space, E. It is then supposed that the environment varies in a
deterministic fashion according to some function of time; call it ¢: R, — E.
The ancestor 0 is born at time 0 when the environment is ¢(0). If her type is
0y, her life path will be chosen by a probability kernel determined by the
couple oy, ¢(0). More generally, if an individual of type s is born at time ¢,
her life path will be chosen according to the kernel P(s, ¢(¢), - ). Note that by
the abstract form of the environment space this formulation includes the
possibility of environmental changes during an individual’s life influencing
her career and, in particular, her reproduction. )

We shall not speak more about this dependence on the environment, or its
variation, but only require that it is such that a sequence of conditions can be
checked. Certainly this will be the case for a fixed [Jagers (1989)] or a
periodically varying environment [Jagers and Nerman (1985)]. To formulate
things consider a random characteristic, that is, a way of measuring individ-
ual contributions to the population, giving weight zero to yet unborn indi-
viduals and uninfluenced by the individual’s progenitors’ lives [cf. Jagers
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(1989)] and define the y-counted population z}X by
ti = Z X(t — Ty O'x’Sx)’

xel

S, denoting the daughter process of x, that is, allowing the lives of x and all
her progeny to influence the characteristic. For short we allow ourselves to
write x, (¢t — 7,) for x(¢ — 7,, 0,,S,) and to talk about it as the characteristic
pertaining to x. As function of this (age) argument, the characteristic must be
cadlag. Not to complicate arguments, we also take it to be nonnegative and
bounded. '

Now introduce the notation mX(u, s) for the expected value at time ¢ + u
of a y-counted population started from a newborn s-individual at time u.
Strictly speaking, if the subscript s denotes start from an ancestor O of type
s € S and the superscript indicates environment dependence, this is

m¥(u,s) = EZ“ (2],

For the particular characteristic x(a) = 1 (a), counting all individuals with
nonnegative ages a, that is, born, we delete the superscript, writing simply
m,. Similarly, we omit reference to the starting time u = 0 and the starting
type oy.

There seems to exist no literature about general, time inhomogeneous
branching processes. Generation-dependent reproduction in single-type popu-
lations was analyzed by Edler (1978). In the (one-type) Galton-Watson case,
where time and generation inhomogeneity coincide, there is a more extensive
literature; compare with D’Souza and Biggins (1992). Cohn and Hering (1983)
discussed Markov branching in the continuous time case.

2. The limit of a process normed by its mean. The following
conditions are to be used.

ConDITION 1. The mean of the process, as counted by the characteristic,
should tend to infinity: mX — «, as ¢ - «.

CoNDITION 2. The limiting ratio A(u,s) = lim,_, mX (u,s)/m{ exists
for all u,s. It is strictly positive and satisfies sup,., ;5 #(u,s) = 0, as
t > oo,

ConDITION 3. The random variables w/ :=z}X/m) are uniformly inte-
grable over ¢, but also over starting time u and starting type.

To show how the conditions combine with Lemma 1 to yield the process
- asymptotics, without too much of technicalities, we consider first weak L!-
convergence. Write mx to denote x’s mother, x € I, and let I, be the coming
generation at time u:

I

={xel;r,,<u<rTt <®
u x

mx —
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[Nerman (1981)]. Write .#, for the pre-I, o-algebra, that is, the o-algebra
generated by the complete lives of all individuals neither in I, nor stemming
from it. With < symbolizing the partial order of descent, so that x <y
means that y stems from x, we obtain for v < ¢ that

Z Xt — ™) + Z Z Xy(t - Ty)

T, SU x€l, x<y

(1) )
Z Xx(t - Tx) + Z zt—TxOS
TeSU xel,

By the branching property, the conditional expectation of the normed form of
this is
(2 Elwilr] = X x(t—7)/m¥+ L m&, /mf.

TeSU xel,

Since the characteristic is taken as bounded, Conditions 1 and 2 imply that
Elwxlz] > X (7, 0.),

xe€l,

as t — o, By Lemma 1 and the uniform integrability of Condition 3,

Y h(r,,0,)

xel,
is a martingale with a limit w?* almost surely and in L', and the weak
L'-convergence wX — w¥X, as t — =, follows.

L,
THEOREM 3. Under the stated three conditions, w} Sw X ast —

For the proof we shall need the following result on weighted sums of
independent random variables.

THEOREM 4. Let {¢((™; 1<i<n, n>1} be a triangular array of uni-
formly integrable random varzables with mean 1 such that for each n {£™;
1 < i < n} are independent. Write {a{; 1 <i < n, n > 1} for a set of posztwe
numbers such that lim,_,max,_;,_,a”/A, =0, where A, Laim.
Assume that lim,_, A, =«. Then U, = (Z;Llag”)fi("))/An converges in
probability to 1.

The proof of this theorem may be carried out as in Jamison, Orey and
Pruitt (1965), Theorem 1. In fact we shall use the following corollary.

COROLLARY 5. Suppose that {a{™; 1 <i<n, n>1} are some posztwe
numbers with lim,_,max;.; ., a(”) =0 and that «:=lim,_ X' ;o
.exists. Then T, = X"_; afMEM™ converges in probability to « as n — .

Proor. Take a{™ = af”/max, ;. ; a(") and apply Theorem 4 if a > 0.
The case a = 0 follows from E[|T,[] —»
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ProoF oF THEOREM 3. Write w/(7,, 0,) ==z~ S,/m} to denote a normed
process started u time units ago at time 7, from an ancestor of type o,. Then
in view of (1), the finiteness of the set I, and Conditions 1 and 2,

th_ Z h(Tx’ax)th—/-Tx(Tx’ox)

xel,
mi
3) =w/ - eZI mtXTx wi 'rx(Tx’ ;)
x u
mi,
+ Z '_'nT - h(Tx’ O'x) wt)f-fx(Tx’ (Tx)
x€l, t
-0

in probability, as ¢ — =, for any given « and thus fixed I,. On the other hand,
for any ¢ > 0,

E h(r,, 0,)é, — Z h(r,, ;)

x€l, xel,

> sl.fu) =0 as.

(4) lim P(

u— o

for any random variables {¢,, x € I,} independent of .7, and belonging to a
set of uniformly integrable variables with mean 1. Indeed, {A(7,, 0,), x € I}
act as constants when conditioning on .7, so that Corollary 5 applies pro-
vided that #I, - » as u — », where #I, stands for the cardinality of I,.
However, in view of the latter part of Condition 2,

#I,> Y h(Tx,O'x)/suph(t,s) - o,

x€l, uzé
se

unless the a.s. convergent martingale ¥, . ; h(7,, 0,) = 0, as u — .
Since, trivially,

xel,

'jit] = Z h(Tx’O'x)’

x€l,

the Markov inequality makes (4) hold in this case as well. By the dominated
convergence theorem the conditional statements expressed by (3) and (4) hold
unconditionally as well, and imply that {w/} converges in probability to w *
as t - . The L'-convergence follows now from Condition 3. O

For the general branching process we consider, the classical extinction-
or-explosion dichotomy is far from evident. Part of it is a consequence of the
preceding theorem. ’

COROLLARY 6. Under the conditions of Theorem 3, P(wX > 0) > 0 and

P .
z{f > =, given that wX > 0.

In the one-type Galton-Watson case the dichotomy was established by
D’Souza and Biggins (1992).
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3. The limit distribution is continuous. We shall need a result for
independent random variables due to Rogozin (1961) [cf. also Petrov (1975),
Chapter 3].

LEmMMA 7. Let X,,..., X, be independent random variables,
S, =X, + - +X, and p, = sup, P(X;, = y). Then

n -1/2
supP (S, =y) sA( X1 —pk)) ,
y B=1
where A is an absolute constant.

Rogozin’s result is in fact stated for discrete random variables, but it also
applies to the case where distribution functions may have a continuous

component.
We shall consider two conditions that guarantee the continuity of the limit

distribution of wX.

CoNDITION 4. The quantity g, = P(z} = 0) is bounded away from 0 uni-
formly over ¢, but also over starting time u and starting type.

ConDITION 5. The random variables (wX)? are uniformly integrable and
their expectations are bounded away from 1, uniformly over ¢, but also over
starting time u and starting type.

THEOREM 8. Suppose that in addition to the assumptions of Theorem 3
one of Conditions 4 and 5 holds. Then the distribution function of w* is
continuous, except possibly at 0.

PROOF. As is easy to see from Theorem 3, w X, the limit random variable
of {w;}, admits the representation
(5) wi=Y h(r,, 0,)wX(,, ),

xel,
where {w X(7,, 0,)} are independent random variables given .7,. Write
p, = supP(wX(7,, 0,) = vl.%).
v>0
It is clear that under Condition 4 that
sup P(wX(7,, 0,) = vl.%)
v>0
is bounded away from 1. Also,
P(wX(t,, 0,) = 0l.%)
is bounded away from 1 in view of the uniform integrability (Condition 3),
which precludes a null limit for variables with expectation 1. As far as

Condition 5 is concerned, it is easy to see that random variables with
variances bounded away from zero and uniformly integrable in L? cannot
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converge to a constant in probability. Thus p, is bounded away from 1 in
either case.

Notice that for any nonzero constant a and random variable V,
sup, P(V = v) = sup, P(aV = v). Since the h(7,, g,) act as constants when
conditioning on .%,, the lemma implies that

-1/2
(6) Lyxs qP(wX =cls,) < 1(wX>0}A( > (1 "Px)) )
xel,
where 1; is the indicator of the set E.
Since

X h(r,,0,) > wX

x€l,
almost surely, it follows from Condition 2—as in the proof of Theorem
3—that #I, —» «© a.s. on {w X > 0}. The p, are bounded away from 1, and thus
the right-hand side of (6) must tend to zero as u — «. The theorem follows
from taking expectations. O

4. The asymptotic composition. The preceding section has dealt with
w/X and its relation to its mean. Another interesting topic is the relation, as
time passes, between processes counted by different characteristics, and in
particular between an arbitrary zX and the total population y,, that is, for
the particular choice of characteristic x = 1 . In order to approach it we
formulate two further conditions, using the shorthand m? for miz:xs, A € %
and m, = m5.

CONDITION 6. As t — o within some unbounded subset T' € R, the proba-
bility measures m2%,_, (v, r)/m,_ (v, r) converge in total variation to some
A, (du X ds).

ConDITION 7. The limit f,(u, s) =lim,cq , . E,_,_, [ x(w)] exists.

Typically, the subset 7' would be R, or some lattice, reflecting a diurnal or
seasonal rhythm. Note that, since characteristics are still bounded, the

conditions imply

mtx—v(v’ r)/mt—v(v’ r)

= Eu, sl x(t = v—u)]mg(v,r)/m,_,(v,7)
[0,2—v]XxS .

= Erovu, sl Xo(u)]m g (v, 1) /my_ (v, 1)
[0,t—v]IXS .

= [ flu,9)A,(duxds) asteT -,
R XS

by the strength of convergence in total variation.
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We write just A for A, , and f for f;.
THEOREM 9. Under all the given conditions,
2%/y. > [ f(u,s)A(du X ds)
R, XS
in L' on {w = w'*+> 0}, ast > »in T.

ProOOF. Recall the argument preceding Theorem 1:
ﬂE[zt)(/rntl‘ju] = Z mtX— Tx(Tx ’ a-x)/mt

xel,

= Z '/[.0 ; ]XSIEU,S[ X(t - T v)]m(éts;(Tx’ Ux)/mt—-fx(Tx’ Ux)
JCGIM s LT Ty

X(mt— Tx(Tx’ O'x)/mt)

> L[ ), (dvxds)h(r,, )

xel, "RB4X

as t — ©, When then u — o, this must converge to
wXlimmp}/m, =wxf f(v,s)AMdv X ds).
t>o R.xS

The random component of the converging expression does not contain
any reference to the characteristic x, and the latter is assumed to satisfy
Condition 7, which obviously holds for the characteristic 1z, that counts the
total population. Hence, it follows that w X = w. The rest is direct:

zX zX m, mjX

—_—=——— f(v, s)AM(dv X ds)

Vs m¥ y, m, R,xS

in probability and also in L!, because y is bounded. O
5. Examples.

5.1. Single and Multitype Galton—Watson processes in varying environ-
ment. Inthe case of a single-type Galton—Watson process [see Jagers (1975)],
the data consist of the offspring variables {X,} whose distribution functions
may vary with generations. It is easy to see that the A functions in Condition
2 reduce to (E(X;) - E(X,))~!, which tend to 0 by Condition 1. Thus, in this
case Condition 2 follows from Condition 1. For a close investigation of
this case, refer to D’Souza and Biggins (1992).

. For p-type Galton-Watson processes in varying environment, the crucial
Condition 2 reduces to classical weak ergodicity (and some properties of the
limits) for positive matrices. This is expressed via ratios of entries of products
of matrices, and as in Condition 2 such quantities arise from expectations
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of variables associated with the branching process. Indeed, if M,(i, j) is the
expected number of offspring of type j produced by one individual of type i of
the nth generation and M, = (M,(i, j)) is the corresponding matrix, then the
expected population sizes of various types at time n generated by one
individual of the kth generation will be given by products of the form
kM =M » -- M. For classical and modern conditions ensuring weak ergod-
icity, we refer to Cohn and Nerman (1990), and for a more detailed analysis of
the convergence of processes in this case, to a forthcoming paper by the same
authors.

5.2. Single-type general processes in constant environment. Consider the
classical case of supercritical general branching processes with all individuals
of the same type [cf. Jagers and Nerman (1984)]. If the reproduction function,
i, now just a measure on R, without any suffix for time-dependence, is
nonlattice, then established theory works to yield the process limits precisely
under the famed x log x condition [Jagers and Nerman (1984), Theorem 7.2].
This goes for characteristics whose expectations, normed by e*’, are directly
Riemann integrable. If we want to get rid of this, we have to impose
an absolutely continuous component in the reproduction function. Then the
conditions considered here hold.

Condition 1 holds trivially by the exponential growth of the mean of
well-behaved supercritical branching processes,

m} ~e“'E[ ()] /aB,

where o is the Malthusian parameter, the caret denotes the Laplace trans-
form and

B= fwte“” (dt) < oo.
0

In Condition 2 the function A(u, s) reduces to e ~**“. The uniform integrability
follows from the x log x condition, and convergence in total variation of mean
ratios is precisely where the renewal theorem is needed in the form requiring
a diffuse reproduction function.

5.3. Abstract type space and constant environment. If individuals can
be of various types, then conditions trivially satisfied in the one-type case
typically impose a uniformity requirement. Of course, the process is still
assumed to be supercritical, to ensure Condition 1. In the terminology of
Jagers (1989), Condition 2 holds if the elgenfunctlon h is bounded, since our
ratio limit A(u, s) now takes the form

h(u, s)‘ =e *“h(s)/h(0y)

in Jagers’ terminology, where o, is the starting type. Condition 3 follows
from xlog x and a condition of uniformity in the starting type [cf. Jagers
(1989) and Condition 7 from Markov renewal arguments (under suitable
assumptions], which can also be used to investigate Condtion 4 or 5.
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5.4. Periodic environment. Jagers and Nerman (1985) studied one-type
general branching processes, such that an individual born s o’clock would
have a life law, and in particular a reproduction function, determined by
s. (This has a background in the diurnal rhythms of certain cell kinetics.) In
our terminology, this means that u, would have period 1. The assumptions
made in 1986 include boundedness of the eigenfunction involved and a con-
dition (3.2) leading to the uniformities asked for in the mean asymptotics.
The probabilistic theory in t\hat work was developed under L?-assumptions,
stronger than x log x.
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