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We study the large time behavior of random fields which are solutions
of a nonlinear partial differential equation, called Burgers’ equation,
under stochastic initial conditions. These are assumed to be of the shot
noise type with the Gibbs—Cox process driving the spatial distribution of
the “bumps.” In certain cases, this work extends an earlier effort by
Surgailis and Woyczynski, where only noninteracting “bumps” driven by
the traditional doubly stochastic Poisson process were considered. In
contrast to the previous work by Bulinski and Molchanov, a non-Gaussian
scaling limit of the statistical solutions is discovered. Burgers’ equation is
known to describe various physical phenomena such as nonlinear and
shock waves, distribution of self-gravitating matter in the universe and so
forth.

Introduction. The simplest nondispersive waves (i.e., waves in media
where the speed of propagation c¢ is independent of the frequency of the
wave) are planar hyperbolic waves described by the equation

(I1.1) u,+cu,=0,
where u = u(x,t) and where c is a constant. The obvious solution
(1.2) u(x,t) =ug(x —ct)

represents the distortionless propagation of the initial field u(x) = u(x,0).
Its straightforward nonlinear analogue is a hyperbolic conservation law
expressed by the equation

(1.3) u, +c(u)u, =0,

with the initial condition u(x) = u(x,0) [see, e.g., Lax (1973)]. Here the
speed of propagation c(x) depends on the amplitude u. The characteristic
equations for the above first order partial differential equation take the form

dU dX
5 = C(U) ’

14 - =
(1.4) dt 0, dt
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with the initial conditions

(1.5) X(0) =y, U(0) =u(y),

so that

(1.6) X(3,8) =y +c(ug())t,  U(y,t) = ue(y),
which gives the solution

(I.7) u=uy(x—c(u)t)

in an implicit form. As long as ¢’ # 0, we encounter a nonuniqueness prob-
lem, though. If

d
(L8) &) <0,
then for two characteristics starting at y and y + dy the difference

(1.9) X(y +dy,t) —X(y,t) =

d
1+ Ec(uo(y))t) dy,

and the two characteristics are bound to intersect for ¢ large enough. The
uniqueness can be guaranteed only in the interval

d -1
(I.10) te (O,min(— Ey—c(uo(y))) )

The above analytic phenomenon is physically reflected in formation of
shock waves (discontinuous solutions). One way to get around this difficulty is
to take into account nonlocal interactions with the medium, such as a linear
viscous dissipation, which leads to the nonlinear diffusion equation of the
form

1.11) u, +c(wu,=vu,,.
t x xx

It is known that if the viscosity coefficient » — 0, then the solutions of (I.11)
converge to the (generalized) solutions of (1.3) [see, e.g., DiPerna (1983a, b)].

The special case of equation (I.3) with c¢(z) = cu gives rise to the so-called
Riemann equation

(I.12) u, +cuu,=0,

which describes the hydrodynamic flow of noninteracting particles moving
along axis x with velocity u [see, e.g., Arnold (1988)]. Softening the shock
fronts in the Riemann equation by addition of a linear dissipation term
(parabolic regularization) leads to Burgers’ equation

(1.13) u, +cuu, = vu

xx?

which is the main object of study in this paper. The initial condition u,(x) is
assumed to be random. This is natural if one keeps in mind that Burgers’
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equation can be viewed as a special one-dimensional case of the Navier—Stokes
equation,

(1.14) Z,+(Z-V)d=-Vp+vAG +F,

describing turbulent fluid flow, where the pressure p and external force field
F terms are neglected. In such a flow, the velocity field appears to be random
even without random initial conditions and “this contrast is the source of
much of what is interesting in turbulence theory” [see Chorin (1975), page 1].
The statistical approach has been the established tool in the study of turbu-
lence for a long time.

To describe the relationship of the Navier—Stokes equation to the Burgers
equation, it is hard to improve on the following compact analysis penned
some 25 years ago by Kraichnan (1968):

The differences between Burgers’ and Navier—Stokes’ equa-
tions are as interesting as the similarities. The uu, term
[in (I.13)] conserves both [u(x,t?)dx and [[u(x, )] dx, as
in the incompressible Navier—-Stokes equation. In both
cases, the advection term tends to produce regions of
steepened velocity gradients, which implies a transfer of
excitation from lower- to higher-wavenumber components
of the velocity field. Perhaps the sharpest difference is that
Burgers’ equation appears to offer no counterpart to the
hierarchy of instabilities which makes the small-scale
structure of high Reynolds number [small v] turbulence
chaotic and unpredictable. If the initial Reynolds number is
high, Burgers’ equation leads to shock fronts which coa-
lesce on collision so that, at later times when the Reynolds
number is still high, an initially complicated u field is
reduced to a sparse collection of shocks, with smooth and
simple variation of u between fronts. The high-wave
number excitation is then associated with principally with
the shocks themselves. Burgers’ equation reduces initial
chaos instead of increasing it [ ---]. These similarities and
differences make Burgers’ equation a valuable vehicle for
exploring the limits of applicability of statistical approxi-
mations designed for Navier—Stokes turbulence. Interest is
heightened because direct numerical integration of initial
ensembles of velocity fields forward in time is much more
feasible for Burgers’ equation than for the Navier—Stokes
equation.

The interest in Burgers’ turbulence remains high in the fluid dynamics and
physics communities [see, e.g., Gotoh and Kreichnan (1993)]. In view of the
inelastic type of particles’ collisions, Burgers’ equation (coupled with the
continuity equation of passive tracer transport) has been also studied as a
model of the evolution of self-gravitating matter. Thus, information about the



464 T. FUNAKI, D. SURGAILIS AND W. A. WOYCZYNSKI

time dependence of the initial fluctuations is expected to yield a theoretical
model for the observed large scale structure of the universe in late nonlinear
stages of the gravitational instability [see Shandarin and Zeldovich (1989),
Weinberg and Gunn (1990), Gurbatov, Malakhov and Saichev (1991) and
Albeverio, Molchanov and Surgailis (1994)].

Over the last 10 years there was a renewed interest in the mathematical
community in the Burgers turbulence ranging from the study of propagation
of chaos [see, e.g., Gutkin and Kac (1983) and Sznitman (1986)], asymmetric
exclusion processes [Andjel, Bramson and Liggett (1988) and Ferrari (1992)],
cellular automata [Boghosian and Levermore (1987) and Brieger and Bonomi
(1992)], scale renormalization [Rosenblatt (1987)], Hausdorff dimension of
the shocks set [Sinai (1992b)] to maximum principles for moving average
initial data [Hu and Woyczynski (1994a, b)], and a large number of interest-
ing problems remain unsolved.

Our main question is how do the initial random fluctuations of u propa-
gate in the Burgers flow u(x,¢), x € R,¢ > 0, and. our goal is to provide a
rigorous mathematical study of the problem for a precisely specified initial
random data and based on some relatively recent advances in the theory of
random fields. Here the pioneering work was that of Bulinski and Molchanov
(1991), who also elucidated the importance of the initial shot noise type data.
However, we believe the present paper to be one of the first where the precise
description of non-Gaussian scaling limit distributions was obtained.

More precisely, following preliminaries in Section 1, we present a general
result for the scaling limit behavior for statistical solutions of the Burgers
equation and show a simple application of this result for strictly stationary
initial data for which the mixing coefficient satisfies an additional integrabil-
ity condition. This relies on the classical work of Ibragimov and Linnik
(1965).

Section 2 introduces the notion of a Gibbs—Cox random field as determined
by a Gibbs measure with a pair potential ®(x) and random fugacity A(x), and
studies limit properties of functionals on such processes. The general concept
of a Gibbs—Cox random field seems to be appearing here for the first time.
However, physically, it is a very natural and familiar object, and for some
special potentials it has appeared in statistical physics under the names such
as the spin glass model or the Ising model with random potential (see, e.g.,
Campanino, Olivieri and van Enter (1987), Funaki (1991)). Intuitively speak-
ing, it models a random distribution of points in space (like a classical
Poisson process), which itself can be a random medium (reflected by a
random intensity in the Cox process), with the points permitted to interact
according to a certain prescribed potential (as opposed to being independent
in the Cox process model).

Section 3 returns to the study of the scaling limits in Burgers’ turbulence,
this time with initial data which are of a shot noise type with the Gibbs—Cox
process driving the spatial distribution of the “bumps.” It relies on results of
Sections 1 and 2. In certain cases, this work extends an earlier effort by
Surgailis and Woyczynski (1993), where only noninteracting “bumps” driven
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by the traditional doubly stochastic Poisson (Cox) process was considered.
Permitting the bumps to interact is a major step towards making the model
more realistic physically. For example, in Shandarin and Zeldovitch’s (1989)
astrophysical work on the large scale structure of the Universe, the Burgers
equation modeled the clumping of cold, sticky, but otherwise noninteracting
matter, a reasonable first approximation. A natural next step would be to
take the gravitational interaction of the matter particles into account. This
should accelerate the clumping process. A full implementation of such a
program would be difficult analytically but introduction of our Gibbs—Cox
models can be thought of as a step in this direction.

The basic Theorem 4.1 gives a decomposition of possible limit random
fields into Gaussian and non-Gaussian parts. Finally, Section 5 gives a
complete classification of finite-dimensional distributions of possible scaling
limits of Burgers’ turbulence in the case considered in Section 4, but under
the additional assumption that the fugacity process A is the square of a
stationary Gaussian process. For other results of a similar nature, see
Giraitis, Molchanov and Surgailis (1992), Surgailis and Woyczynski (1993,
1994a, b) and Woyczynski (1993).

One of the methods we employ—the Wiener-Hermite (—Cameron—Martin)
expansion of a nonlinear stochastic functional—has, of course, a long history
of application to the Burgers (and Navier—Stokes) turbulence, both in the
mathematical and in the fluid dynamics communities [see, e.g., Cameron and
Martin (1947), Wiener (1958), Meecham and Siegel (1964), Meecham, Iyer
and Clever (1975), Orszag and Bissonnette (1967), Crow and Canavan (1970),
Kahng and Siegel (1970), Chorin (1974, 1975) and Fournier and Frisch
(1983)] and perhaps should also be seen in the context of the statistical
hydrodynamics for Burgers turbulence developed by Hopf (1952) and
Kuwabara (1978), among others. However, the rigorous complete picture that
we obtain in this paper for Gibbs—Cox initial random data, with full informa-
tion about limiting properties of resulting solution random fields, was not
available before and has to rely on more recent mathematical developments.

Finally, we would like to mention that in this paper we do not consider
Burgers equations with external (possibly random) forcing, even though it is
an extremely important topic. For such an equation, although the Hopf-Cole
transformation works, it leads to a Schrédinger type equation (with, possibly,
random potential) rather than the heat equation, and our methods do not
apply directly. Many partial results in this direction can be found in papers
from Kraichnan (1959) through Nakazawa (1980) to Sinai (1992a). Our
methods do not seem applicable either to analysis of stochastic flows gov-
erned by more general conservation laws (I.11), where different tools are
needed [see, e.g., DiPerna (1983a, b)].

1. Preliminaries. As is well known, the one-dimensional Burgers equa-
tion

(11) ut+(u2)x=uxx’
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with the initial condition
(1.2a) u(x,0) =uy(x),

which we will assume to be a stochastic process with parameter x € R,
admits, as long as the velocity potential

(1.2b) Up(9) = = [ ug(2)dz=o(y?), y-=,

a family of solutions of the form

(13) w(wt) = = log [ p(x,5,) xp(Uy(9)) d,
where

1 x —y)?
(14) p(x,9,t) = ‘/—Z_q;t—exp(—%).

This is obtained by the usual Hopf-Cole substitution v = —w,/w, which
reduces the Burgers equation (1.1) to the equation

(1.5) (. - w%)(wt ~w,,) =0,

and by using the usual solutions of the heat equation. Observe that rescaling
both time and space variables x — Bx,¢ — B2¢, we obtain from (1.3) that

1

J
T8 % %8 pr(x»y,t) exp (Uo( By)) dy

u( Bx, B%t)

(1.6) 1 [P, y,0) exp (Up( 87)) dy

B /Rp(x, y,t)exp (UO( By)) dy '

The significant feature of formula (1.6) is that the kernels p,(x, y, t) and
p(x, y,t) do not depend on B. This fact suggests that it is reasonable to look
for a nontrivial limit behavior of rescaled solutions (1.6) which, in turn, gives
a good approximation for statistical solutions of the Burgers equation for
large times.

The goal of this paper is to obtain such a scaling limit for certain particular
classes of initial processes (1.2). In another paper we will estimate its error as
a long range predictor for solutions of (1.1).

REMARK 1.1. A slightly more general form (I.15) of the Burgers equation
can be treated by a similar Hopf-Cole transformation u = (—2v/c)w,/w.
Since we are not interested in this paper in the dependence of solutions on
parameters v and ¢, and, in particular, in the zero viscosity limit (v — 0), we
consider only the case v =1, ¢ = 2.
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2. General scaling limit behavior. We begin with a result that gives a
convergence of finite-dimensional distributions of the rescaled solutions of
(1.1). The assumptions involve weak convergence in the Schwartz space .%'.
The general assumption in this paper is the finiteness of the exponential
moments of the initial velocity potential process

(2.1) Eexp(Uy(y)) <», y€R.

We shall also use the following notation for the centered and rescaled
exponential of the initial velocity potential process:

(22) Ve(y) = B(B) (exp (Up( By)) —A(B)), y€<R.

The scaling constants B(8) > 0 and the centering constants A(g), 8 > 0,
will remain unspecified at this point, but their role and nature will become
clear later on in this paper.

THEOREM 2.1. Assume that the processes Vg, B> 0, converge weakly in
Z'(R) to a generalized process V; that is, for each ¢ € A(R),

(2.3) éig;Eexp(ifRV,s(yM(y) dy) =Eexp(i(V,#)),
and that, for a certain a > 0,

(24) lim [ exp (U,( ) $(7) dy = a(1, &),

where the convergence is in probability. Then, as B — «, the finite-dimen-
sional distributions of the two parameter random fields,

(2.5) vg(x,t) == BB(B)u(Bx,B?), t>0,xER,

where u is a solution (1.3) of the Burgers equation, converge to the correspond-
ing finite-dimensional distributions of the random field

(2.6) —a ¥V, p.(x,,t)).

PrOOF. To show the convergence of finite-dimensional distributions, it
suffices to prove that for each ay,..., a,,¢,...,¢,, X1,..., £, the distribution
of the linear combinations

(2.7 wg = avg(xy,t;) + - +ov5(x,,¢,)
converges weakly, as B — «, to the distribution of the random variable
n
(2.8) - a_l <V, Z akpx(xk ,',tk)>.
k=1

Observe that because [g p,(x,y,t)dy =0,

n
wp = —a™t T ay(1+ o, ta)) [ po(was 3, 6)Va(3) o,
k=1
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where

a
e(x,t) = - 1.

[ p(x,y,t) exp (Us( BY)) dy

As B — x, in view of assumption (2.4), we have that &(x,,¢,) = 0 in proba-
bility. On the other hand,

akpx(xk,',tk) Ey(R), k=1,...,n,

80, in view of assumption (2.3), we obtain that in distribution,

n

lim ¥ ay(1+ e(xy, ) [ Po(a5 ¥, 8)Va(9) dy
B—)ook=1 R

= <V’ i akpx(xk "’tk)>'

k=1

(2.9)

Hence, the distributions of wj converge to the distribution of (2.8). O

REMARK 2.1. Condition (2.3) can be rephrased as a statement that the
stochastic process exp(U,) = {exp(U,(y)), y € R} has a large-scale [in the
sense of Dobrushin (1980), page 169] generalized limit V with the normaliza-
tions A(B) and B( ). This condition will be also written

exp (Up) € DA{V; A(B),B(B)}.

It is well known [see Dobrushin (1979, 1980) for a general account of the
theory] that in this case, necessarily,

B(B) = B*L(B)
for some constant k € R and a slowly varying (as B — ) locally bounded
function L(B), B > 0. Moreover, if the centering constant A(B) does not

depend on B, the limiting generalized process V is self-similar with parame-
ter «, that is, for any 8 > 0,

(2.10) (v, (Bt ):¢pes}={(V,h: ¢ €5},
in the sense of equality of finite-dimensional distributions. In the general
case, when A( 8) depends in B, (2.10) holds only for any 8 > 0 and
s = {([) E‘?:f ¢(x) dx = 0}.
R

Self-similar generalized Gaussian random fields indexed by . and .#;
have been described by Dobrushin (1980). Below we shall denote by W'
Gaussian white noise, that is, the generalized process with the characteristic
functional

Eexp (i{W', ¢)) = exp [—%fR(bz(x) dx].
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The next general result provides sufficient conditions for certain function-
als of a stationary process to satisfy the central limit theorem. Latér on it will
be used to provide examples of initial processes for the Burgers equation that
satisfy assumptions of Theorem 2.1. Recall that if X ={X(y),y € R} is a
strictly stationary process, then the strong mixing coefficient ay(x), x > 0, is
defined as

(2.11) ay(x) = sup |P(ANB)—-P(A) -P(B)|,
Aes,
BeZ,

where

G, =c{X(y):y<x} and F.;=o0{X(y):y=x}.

We will also denote the covariance function of such a process (whenever it
exists) by

Ry(y) = Cov(X(0), X(y)) = EX(0)X(y) — EX(0) EX(y).

THEOREM 2.2. Assume that X = {X(y),y € R} is a strictly stationary
zero-mean process such that for some 8 > 0, the moment E|X(0)|**° <  and

(2.12) [ (ax(2))"® dx < .
0
Then
(2.13) of = [ Ry(x)dx <o,
R

where the integral converges absolutely and
X € DA{oxW;0, BV/2}.
In other words, for any ¢ € #(R), z € R,

lim P| B2 | X(By)d(y)dy <z
(2.14) poe ( f“ )

= P(fffo¢(y) aw(y) <2),

where W is the Brownian motion process.

ProOF. The absolute convergence of the integral (2.13) can be shown in a
way similar to the proof of (18.5.12) in Ibragimov and Linnik (1965), using
(2.12) and the estimate of the covariance function by the mixing coefficient
given in that book. By inspection of the proof of Theorem 18.5.3 in Ibragimov
and Linnik (1965), and also of the corresponding (multidimensional) limit
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Theorem 7.3.1 in Ethier and Kurtz (1986), we obtain that, under the assump-
tions of the theorem,

1 ps
(2.15) {—ﬁfo X(y)dy,xZO}=>{aXW(x),x20},

where = denotes the convergence of finite-dimensional distributions. By
(2.15), we easily get that for any n = 1,2,..., M =1,2,... and any
M

¢n(y)= Z ¢k1[k/n,(k+1)/n)(y), |kl < M,
k=-M

we have

1 M n
(218) —= ¥ ¢kfﬁ(k+1)/ X(y) dy = ox [ ¢u() AW().
B r="m Bk/n R

Indeed, substituting (=M + k)/n =x, so that x,=0,..., %5, = (M +
1)/n and X(y) = X(y — M/n), we can rewrite the left-hand side of (2.16) as
1 2M+1

Bxpi1
7L oK) dy.

Bxy,

As (2.15) obviously remains true for the shifted process X(y) as well, (2.15)
implies (2.16).

To finish the proof, it suffices to show that for any ¢ € #(R), the integral
on the left-hand side of (2.14) can be approximated in mean square, uniformly
in B> 0, by the corresponding integral with respect to a step function ¢,
introduced above. That is obviously the case since for any £ > 0 there exist
n,M and ¢,,k = —M,..., M, such that

sup |#(y) — ¢.(¥)| < &,
y€R

which implies that
sup [(¢ — ¢,) *(¢ — ¢,)| < Ce,
yeR

where C is a constant independent of ¢. Now, in view of (2.13),

E( BY2 [ (#(3) = ¢u(3)X(8Y) dy)2
= 7 [ Rx(x=9)(6(2/B) = $.(x/B))($(5/B) = $:(7/B)) ddy
= [Rx()((¢ = 6.)*($ = $.))(x/B) dv < Ce | Rx(x)|dx <= O

An application of Theorems 2.1 and 2.2 gives the following Gaussian
scaling limit result for the random field solution u from (1.3) of the Burgers
equation (1.1).
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COROLLARY 2.1. Let U, = {Uy(y), y € R} be a strictly stationary process
satisfying the mixing conditions of Theorem 2.2, and such that for some & > 0,

(2.17) Eexp((2 + 8)Uy(0)) < .

Then, as B — =, the two-parameter random field in (x,t)

(2.18) B3 ?u( Bx, B2t) = —a'lo-f p.(x,y,8)dW(y),
R

where a = E exp(U,(0)),
R(y) = Cov (exp(Uy(0)), exp(Us(¥)))

and
(2.19) o? = [ R(y) dy.
R
In particular, for each t > 0 and x € R, as B — o,
(2.20) B¥2u( Bx, B2t) = N(0,4 'n Y 2a 10 2t~%/2).

ProoF. Applying Theorem 2.2 with X(y) = exp(Uy(y)) — E exp(Uy(y)) we
can easily see that all the assumptions of Theorem 2.2 are satisfied so that for
any ¢ €. #(R), in distribution,

(2.21) lim [ Vo(5)$(9) dy = of #(y) aW(y),

where
Va(y) = BY*(exp(Up( By)) — a).

However, (2.21) is equivalent to assumption (2.3) of Theorem 2.1. On the
other hand, for any ¢ €.#(R), in probability,

[ exe(Uo( B))$(3) dy = B2 [ V() #() dy + a[ $(3) dy = a(1, $),

because the first term in the above sum converges to 0 in view of (2.21). Thus,
assumption (2.4) is also satisfied and Theorem 2.1 gives statement (2.18).
Statement (2.20) follows from (2.18) and the following computation of the
variance:

B([ pu(x.2.0) W) = [p2e 3ty dy = @meon)

3. Limit properties of functionals on Gibbs-Cox processes. We
begin with an introduction, in some detail, of the notion of the Gibbs—Cox
process. As far as we know, it appears here for the first time. However, it
should be mentioned that, for some special potentials, the Gibbs—Cox process
has been considered under the name spin glass model or Ising model with
random potential [see, e.g., Campanino, Olivieri and van Enter (1987) and
Funaki (1991)].
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Let us recall the notion of a Gibbs measure on R? [see, e.g., Ruelle (1969)
and Spohn (1991)] and of its cluster property at low density [Spohn (1986)].
The Gibbs measure itself is determined by the pair potential ® = ®(x), x €
R?, and the fugacity A = A(x), x € R¢, which plays the role of the intensity in
classical Poisson processes. We assume that the pair potential satisfies the
following five conditions:

1. @ is symmetric: ®(x) = P(—x).

2. @ is of finite range: ®(x) = 0 for |x| > R with some R > 0.
3. ® € C3R?).

4. ® is superstable in the sense of Ruelle [see Ruelle (1969)].
5. ®(x) = 0.

In the usual references it is assumed that the fugacity A is a constant and
does not vary with x € R¢ In our case it is essential that space-dependent
fugacity be permitted, but we impose a technical condition that A is a
function bounded by a constant determined by potential ®:

6. 0 < Mx) <z, < 1/(3C,), where Cy = Co(®) = e f A —e @) dx <.
R

Let us introduce some notation. By 2{A), A c R¢, we denote the space of
all Z,-valued Radon measures on A, that is, all locally finite configurations
on A. Note that if A is bounded, the space 21A) can be identified with
UZ_oA™ Let &,,A C R% be the o-field of 2(R?) generated by {{y, v);
¥ € C5R?), supp ¢ C A}, where v e ZR?) and (Y, v) = jl//(x) dv(x).

Then probability measure u = u, on the space Z(1R?) is called a Gibbs
measure (associated with pair potential ® and fugacity A) if it satisfies the
so-called Dobrushin—Lanford—Ruelle (DLR) equation. More precisely, u is a
Gibbs measure if, for all bounded A ¢ R, its conditional probabilities with
respect to B,. satisfy the following equation:

p(dxy - dac, | Bpe)({})

1
=lemexp[— L o(n-x) - £ ¥ e(x )| [TAG) @,

l<i<j<n i=1j=1

for (xl,..., x,) € A", n=0,1,2,..., and p-a.a.{y;} € x(A°), where

f"eXP[ Z D(x; — xj) - i i D(x; —yj)]ifll’\(xi) dx;

n= on l<i<j<n i=1j=1

is a normalization constant. The term corresponding to n = 0 in the above
sum is regarded as being equal to 1, and the integrability of Z, is guaranteed
by the superstability condition 4 imposed on ® at the beginning of this
section [see Ruelle (1969)].

Under conditions 1-6, the Gibbs measure u = u, is uniquely determined
by its potential ® and fugacity A. Furthermore, u has the exponential
L?-mixing property, uniformly in A, which is described in more detail in the



GIBBS-COX RANDOM FIELDS AND BURGERS TURBULENCE 473

next proposition, which will make use of the following notation: for A, A;, A,
c RY, |A| = the volume of A,

dist(A,, Ay) = inf |x — y|
xeA;
yEA,
and
A = {x € R%;dist(x,A) <R},

where R > 0 is the constant appearing in condition 2.

PROPOSITION 3.1. There exist constants C,c > 0, depending only on z, and
®, such that

[E“(gyis)| < (E#(92)E*(y2))"”” min{1, CIK, lexp(—c dist(Ay, A,))},

for each %, -measurable ; such that E*(4;) = 0, and each bounded A; c R,
i=1,2

The proof of Proposition 3.1 relies on the so-called cluster expansion and
can be carried out in almost the same way as the proof of Lemma 4 in Spohn
(1986) which dealt with the case of constant fugacity A(x) = A = const. The
fact that fugacity A(x) is assumed to satisfy condition 6 is sufficient to adapt
the Spohn’s proof to our situation. We omit the tedious details.

DEFINITION 3.1. A Gibbs-Cox random field in R? is a random field
generated by the Gibbs measure u, whose fugacity A = A(x) is an indepen-
dent stationary ergodic random field with bounded realizations satisfying the
above condition 6.

Let us make the above definition more formal. Since this paper is con-
cerned only with the one-dimensional Burgers equation, from now on we
assume that the dimension d = 1. Fix a pair potential satisfying conditions
1-5. Denote by L = L, , where 2z, < 1/3C,, the family of all measurable
functions A = A(x) on R satisfying condition 6. The stationarity and ergodic-
ity assumptions on the process A can now be phrased as follows:

The fugacity process A = {A(x,w); x € R, w € W} is defined on a probabil-
ity space (W, 7y, @), and satisfies the following conditions:

1. Mx,w) is jointly measurable in (x,w) and A(-,w) € L for Q-almost all w.
2. Mx,Tyw) = Mx +y,w) for all x,y €R and a certain ergodic flow {7:
W W g

Condition (2') can be written out more explicitly as follows:

25. Ty is @-invariant for all y € R.

2. = identity and T, T, = T, ISTEIN A R.

2’ (y,w) ERXWo T w € W is measurable.

2’ {T,}, is ergodic; that is, an arbitrary Fy-measurable bounded function
Whlch is T, invariant for every y € R is Q-a.s. constant.
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Then the Gibbs—Cox process has the distribution

u= [ w) dQ(w),

and when conditioned on A, its distribution is a Gibbs measure y,. In
probabilistic terms the fugacity is taken to be independent of the Gibbs
measure.

ExampLE 3.1. The basic example of the Gibbs—Cox process is the classic
Cox (sometimes called doubly stochastic Poisson) process with the random
intensity measure

A(A) =fA)t(x)dx, ACR,

generated by a nonnegative process A = {A(x), x € R} so that, in other words,
if

N(4) = ¥ 1,(x)
k=1

is the number of counts in a Borel set A, then for any mutually disjoint Borel
sets A;,..., A, € R and any nonnegative integers j,..., j,,

@ ( k)) — 7 —exp(—A(A))|.

n

P(N(Al) =J1---» N(A,) =jn) =E U

This example allows no interactions and corresponds to the case of zero pair
potential (& = 0) for the Gibbs—Cox process.

Let u = u, be a Gibbs measure associated with the pair potential ® and
fugacity A = Mx) € L. We denote by P,, A € L, the distribution of the point
process

V= Z S(Ekvek:xh) € X = X(Rs)
k=1

on R3, where {x,);_; is p,-distributed and {(¢,, 6,)};_; is R%valued, i.i.d. and
independent of {x,);_;.

Our goal in this section is to establish a limit behavior of a special class of
functionals F on the Gibbs—Cox processes introduced above.

THEOREM 3.1. Assume that the functional F = F(y,v),y € R, v € y, sat-
isfies the following four conditions:

(a) F is jointly measurable in (y, v).

(b) There exists an r > 0 such that F(y, ) is By, ., measurable in v € x
for every y € R, where A(y,r) =R XR X (y —r,y + r).

(c) There exists a y> 2 such that F(y, ) € L"(dP,), for every y € R,
A€ L, and supyeR rer EBLF(pI] < oo

@ F(y +y', v) =F(y,T,v), y,5' € R, where T,v = T3_,8, 5, «—y>
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Furthermore, let
B = 877 [ 3)(FG) - BAFG) dv, wes®), B

If a Hilbert space & is imbedded in L*(R) and its inclusion map is of
Hilbert—Schmidt type, then, for Q-a.a. X's, the distribution of F, under P,
converges weakly to that of cW' in &' as B — ©, where W' = W'(x) is the
Gaussian white noise and

2 = EQ[fREPA[(F(O) — ER[F(0)])(F(y) — ER[F(»)])] dy|.

The proof of Theorem 3.1 will be based on the following proposition.

PROPOSITION 3.2. For Q-a.a. A and all € A(R), the distribution of F,(¢)
under P, converges weakly to N0, o 2||§/|3:®)) as B — .

Proor. Fix 0 < & < (y — 2)/(2(y — 1)) and divide F;(¢) into the sum
(3.1) Fy(¢) =X5(¢) + Rgo(¢) + Rpo(¥) — EPA[RB,z(‘/’)]-

Here

(32) X,(0) = T XH),

k=—o
(3.3) X} =X} () =87 [* 0 (y/B)Gr(9) dy,

where £, =, s = kB2, 5, =5 5 =t + B4,

(34) Gp(y) = 1(|F(y)|s g0 F(9) = EB[Lypiyyc gro-aF ()],

(35) Royuw)- L B m[ ¥(y/B)Gy(y) dy,

_—®

(3.6) Rp,z(‘/’) = 3_1/2f l//(y/ﬁ)luF(y)p BI/Z—s]F(J’) dy.
Notice that Xj ¥ = 0 except for finitely many k’s; in fact, X k=0 for |k| >
aB®/? + 1if supp Y € [—a, a]. Since

|RB, 1("[,)' < (2aBe/2 + 1)[3_1/2[38/4”1/1”00 X 231/2—8

and
ER|Rpa(w)|] < BY/27 420 D)y, x sugE”*[lF(y)V],
yeE

and since the right-hand sides of these two estimates tend to 0 as 8 — o, the
proof of Proposition 3.2 can be completed if one can show the weak conver-
gence of X;(y) to N(O, o?llylZ:m) as B — = [see Ibragimov and Linnik
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(1965), Lemma 18.4.1]. Equivalently, we shall prove the convergence of its
characteristic functional, relying on the following proposition and lemma.

PROPOSITION 3.3.

(i) lim maxE5|(x4)°] = o,
@ m T EAE] - olulw, @ean,
el P
(i) lim kEWEPA“X; ] =o.

LEMMA 3.1. In the above notation,

o

EP[exp(iX,(y))] - kngPA[eXp(iX;)]

< const Bexp[—cB*/t], B=1.

ProoF. For n € Z, using Proposition 3.1, we have

TT_ewn(ix})] - B fena(ix)] 2% TT_exn(ix))

< const B17¢/2 exp{—cB*/*}.

Now the conclusion easily follows. O

PROOF OF PROPOSITION 3.2 (Continued). From Proposition 3.3, noting
Lemma 3.1, we obtain

lim E%exp(iX, ()] = exp[ =30 2m)]
since
. . 2 3
Jexp(ix) - {1+ ix} - (x4)"}] < |3
and since EP[X}] = 0. This completes the proof of Proposition 3.2. O

The proof of Proposition 3.3 itself will be based on a series of lemmas.

LEMMA 3.2. There exists a constant C independent of A €L, , B> 1 and
¥1, Y2, ¥3 € R, and such that

() |ER[{F(51) — ER[F(y)]}{F(55) — ER[F(5,)]}]]
< Cexp(—cly, — ysl),
(ii) |EP[Ga(51)Gs(93)]| < Cexp(—cly; — ysl)
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and
(iii) |EP*[Gﬁ(y1)Gp(y2)Gﬁ(y3)]|
<cplre exp[ —C max {|y1 - ¥l,lys — ysl}] ’
ify1<ys <Ys
ProoF. This lemma is shown easily from Proposition 3.1 by using condi-
tion (c) on F and noting that |G5(y)l < 28?7 ¢ in view of the above condition

3. O

LEMMA 3.3. Let

o?(%) = [ ER[{F(0) - EM[FO)(F(y) ~EP[F(»)])] dy, A<Ls,

Then

(3.7) 0< sup 0%(A) <
A€,

and

lim ft“l_xEP"[GB(O)GB(y)] dy = a2(A), 8, <x<thiq,
x

B—x Sp—
uniformly in A, x, k.

PrROOF. Lemma 3.2(i) yields (3.7) directly. To compute the limit note that
by Chebyshev’s inequality and condition (c) on F, we have that

|EPA[F(y1)F(y2); |F(y)| <BY?7%,|F(y,)] 531/2_'9] —EP‘[F(yl)F(yz)]l
< const B~(1/2=2Xv=2),
|ER[F(y);|F(y)| < BY/2~°] — EP[F(y)]| < const g~/2=Xr=1),

These estimates imply

|EP[Gs(91)Gs(5)] — ER[{F(9:1) — EP[F(51)IH{F(y:) — ER[F(5,)]}]]

< const g~(1/2-2Xy=2),
Hence, noting Lemma 3.2(i) and (ii), we get the conclusion. O

PROOF OF PROPOSITION 3.3. To compute EM[{X}}?], set

Y = B (t,/B) [*7'Gy(y) dy.
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Then, using Lemma 3.2(ii), we have that

en[(x} - Y|

2
tk+1 - tk thetl (s
S
T EARA
< const B~3¢/2,

Therefore, it suffices to prove assertions (i) and (ii) of Proposition 3.3 for Y}
in place of X}.
Let us compute E®P A[{Yk}z] Using condition (d) on F, we get that

EP,\[ }fﬂk ] _ B_l‘)b(tk/ﬁ) j:kn stk“EPA[GB(yl)GB(yZ)] dy, dy,
(3.8)

E'PA[GB(yl)Gg(yz)] | dy, dy,

=B ]‘l’(tk/ﬁ) f“l A(T w)) +"ﬂ(y1))dy1,
where
tho1— w
r3(y) = [ TEATO[G(0)Gy(5)] dy — o (N(Tw)).
Notice that Lemma 3.3 shows that
lim suplrg(yl)l = 0.
ﬁ—-)oo k’yl

Now, in particular, assertion (i) of Proposition 3.3 with X[f replaced by Yﬂk is
shown easily from (3.8) by noting (3.7). To prove (ii) for Y}f it suffices to prove
that

t
li Mlag2(MT. d
39 ﬂgx;k_;wﬁ W(t/B) [ ot (NTw)) dy
=0 ||1/’"L2(R), Q-a.a. A,
or that
i [ 4o (A(T)

= 02| | Z2m)s Q-a.a. .

In fact, (3.9) follows from (3.10) by noting (3.7), and (3.10) itself is a conse-
quence of the individual ergodic theorem.
Finally, assertion (iii) of Proposition 3.3 follows from the estimate

En[| x} ]

(3.10)

<6832 1/’”2[ |EP*[Gﬂ(y1)GB(y2)Gﬂ(y3)] | dy, dy, dy;

Sp<y1<¥Y2<¥y3<tp41

< const 8732 X (t,,, — s;) X BY?7¢° < const B73¢/2,
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which is implied by Lemma 3.2(iii). The proof of Proposition 3.3 is thus
complete. O

ProoF OF THEOREM 3.1. Let P‘B be the distribution of F; on the space &’
under P,. Then the family {P }B>1 is tight on &' for all A € L. Indeed,
Lemma 3 2(i) shows

ER[Fy(¢)’] < const|y|}oq, B = 1.
The conclusion, therefore, follows from Proposition 3.2. O

REMARK 3.1. (i) A method similar to that described in Section 18 of
Ibragimov and Linnik (1965) might also work here. However, since F(y) is
not stationary under P,, we have provided a complete proof above.

(i) Guo (1984) and Spohn [(1991), page 87], considered special cases of F
(e.g., a density field or a linear functional of ») for which a concrete represen-
tation of log EP [exp(iF ()] is possible via the cluster expansion.

4, Scaling limits for solutions with shot noise initial process driven
by a Gibbs-Cox process. In this section, we will apply Theorem 2.1 in the
situation when the initial velocity potential process U, from (1.2b) is a shot
noise driven by a Gibbs—Cox process (see Section 3). As we will see later on,
the special case of the latter is a well known Cox process which is sometimes
also called a doubly stochastic Poisson process [see Grandell (1976) for the
theory of doubly stochastic Poisson processes].

The shot noise processes have long been a standard model for physical
phenomena described by random processes (or fields) with sample paths (or
surfaces) which have a smoothed out point process appearance [see, e.g., the
classic paper by Rice (1945)]. The shape of their trajectories is immediately
clear; they are smooth bumps of “fixed” shape which are randomly scaled and
appear at random points in space. From the viewpoint of realistic physical
modeling, the shot noise driven by a Gibbs—Cox process has an additional
advantage of being able to describe nontrivial interactions between different
bumps. This can be a useful feature in several applications and, in particular,
in the stochastic Burgers flow model of evolution of matter density in the
universe discussed in the Introduction [see Shandarin and Zeldovich (1989),
Weinberg and Gunn (1990), and Gurbatov, Malakhov and Saichev (1991)].

Let u = w, be the Gibbs measure associated with the pair potential ® and
fugacity A = M x) € L. Then

(41) 0x) = I o5

where ¢ is an integrable and smooth function on R, 6 is a positive random
variable,

(42) (£,0),(£1,01),(£2,02), -

are independent identically distributed random vectors and (x;) is a
Gibbs-Cox process with distribution u,, independent of {(£;, 6,)}.

Xp
), x €R,



480 T. FUNAKI, D. SURGAILIS AND W. A. WOYCZYNSKI

We establish first a general result about the scaling limit distribution of
the solution u(x,t) of the Burgers equation (1.1) for the initial velocity
potential U, given by the shot noise process (4.1). We shall assume in this
section that the fugacity process A is independent of everything else, that A is
a stationary process, and that &, 6 and ¢ satisfy some boundedness assump-
tions. As we shall see, even under these restrictions, the scaling limit
distribution of u(x, ¢) may be non-Gaussian. This effect is in contrast to the
case of the Poisson process driven shot noise when A is nonrandom, where
only Gaussian limiting distributions arise [see Bulinskii (1990) and Bulinskii
and Molchanov (1991)]. The special case of the shot noise process driven by
the Cox process from Example 3.1 was considered in Surgailis and Woyczyn-
ski (1993). It did not allow interaction of “bumps” of the shot noise permitted
under the Gibbs—Cox model considered here. For other scaling limit results
for the statistical solutions of the Burgers equation, see, for example, Rosen-
blatt (1987), Hu and Woyczynski (1994a,b) and Woyczynski (1993).

THEOREM 4.1. Assume that the shot noise process U, defined in (4.1)
satisfies the following three conditions:

@ r={Mx),x €R} €L, , 2, <1/3Cy(®), is a stationary ergodic pro-
cess.
(i) 0, |¢| are bounded, and ¢ is smooth with a compact support.
(iii) There exists a generalized process Z, depending on the distribution of
the process A and normalizing constants A(B), B(B) > 0, B > 0, such that

(4.3) E"(e%) € DA{Z; A(B), B(B)}
and such that

B
(4.4) lim —== =d <

Then, as B — «,

(4.5) BB( B)u( Bx, B2t) = —a NV, p.(x,.,t)),

where u is a solution (1.3) of the Burgers equation with the initial velocity
potential U,

a = E exp(U,(0))
and
(4.6) V=0od W +Z,
where

gl = EQ[[ EP).[(er(O) — EP,\[ er(O)])(er(y) — EPA[ er(y)])] dy],
R

Eexp(i(Z,8)) = lim Bexp(i || B(B)(E"[e ] - A(8))#(») dy .

for each ' (R), and W' is a white noise process independent of Z.



GIBBS-COX RANDOM FIELDS AND BURGERS TURBULENCE 481

ProOF. The proof is based on an application of the basic convergence
results contained in Theorems 2.1 and 3.1. With V; given by (2.2), we can
write that

Vg ) = B(BYE™ [ 4 B719)(exp(Uu()) = B exp(Uy())) d

+B(B)B [ w(B1y)(EMexp(U()) ~A(B)) dy
=I(¥) + L(¥),

where the second integral I;(¢) is A-measurable. Then
E exp(i(V, 1)) = E exp(il;(¢)) E(exp (ily (¥))IA),

where E(:|A) stands for the conditional expectation with respect to the o-field
generated by A, and to verify (2.3) it suffices to prove that almost surely

gi_r)r;E(exp(iIé((//))lA) =Eexp(icd W', )
(4.7) o2d?

=exp(— 3 fR¢2(x) dx)

Indeed
E exp(ily(¢)) E(exp(il;(¢))A)
= Eexp(ilj(¢)) Eexp(ic W', )
+ E exp(il(¢))( E (exp(ily(#))IA) — E exp(icd{ W', M),
where the first term converges to
Eexp(i{Z,y)) -Eexp(icd W', ¥)) = Eexp(i{V, )
by assumption (iii), while the second tends to O in view of (4.7) and the
dominated convergence theorem.
To prove (4.7), it suffices to apply Theorem 3.1 with
F(y,v) =e%

which satisfies the conditions (a)-(d) on F stated in Theorem 3.1 in view of
assumption (ii). O

REMARK 4.1. Notice that in the case of the shot noise driven by the usual
Cox process independent of {(¢;, 6,)}, many of the above computations sim-
plify. In particular,

EP exp(U,) = exp(A* V),
where
(4.8) V(x) = E¢9(exp(ép(x/0)) —1), =x€R.

We will use this fact in what follows.
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THEOREM 4.2. Assume that conditions (i) and (ii) of Theorem 4.1 are
satisfied, and that the shot noise is driven by the Cox process. Additionally
suppose that process A satisfies the strong mixing condition of Theorem 2.2 for
some & > 0. Then the statement of Theorem 4.1 holds true with B(B) = B2
and

V=0oW + 0,7,

where Z' is a white noise independent of the white noise W' and
a7 = [ Cov(exp((A*W¥)(0)), exp((A* ¥)(x))) da.
R

ProOF. Similarly as in the proof of Theorem 2.2 we have that under the
assumptions of the theorem,

e**¥ € DA{0,Z';a, B},

that is, the condition (iii) of Theorem 4.1 is satisfied with d = 1 and Z = 0,Z'.
O

REMARK 4.2. For the Cox process we have that C,(®) = 0, since the pair
potential ® = 0. In fact, we can prove Theorem 4.1 for the Cox process under
milder conditions. More precisely, assumptions (i) and (ii) of Theorem 4.1 can
be weakened to the following ones:

(i) The process A = {Mx), x € R} is a strictly stationary, nonnegative,
ergodic process such that for some ¢ > 0,

E[e©] < oo,

(ii’) 0, |£| and |¢(-)| are bounded by constants c,, ¢, and c,, respectively,
where ¢, and ¢, may depend on ¢, and ¢ has a compact support.

In particular, the boundedness assumption on A(x) is unnecessary in this
case, as demonstrated in Theorem 3.1 of Surgailis and Woyczynski (1993).

5. Non-Gaussian scaling limits. Here we apply the results of the
previous section to the situation where the initial velocity potential process is
a shot noise driven by the usual Cox process with the intensity process A
equal to the square of a stationary Gaussian process. When the Gaussian
process is complex (and A is the square of its modulus), the corresponding
Cox process is known as a boson process and was studied by Macchi (1975)
[see also Daley and Vere-Jones (1988)]. In other words,

(6.1) Mx) = ¢*(x),
where { = {{(x), x € R} is a stationary Gaussian process with mean m =
E{(0) and covariance R(x) = E({(0) — mX{(x) — m). A slightly more gen-
eral situation A(x) = ¢%(x) + Ay, A, a nonnegative constant, requires below
only trivial changes.

According to Theorem 4.1 and Remark 4.2, the problem of the limiting
distribution of u(¢, x) in the above situation reduces to the problem of finding
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the scaling limit of the exponential process e** ¥, with ¥ given by (4.8), that
is, of finding conditions on ¥, m and R(x) such that

(5.2) e*Y e DA{Z; A(B),B(B)},

for some possibly non-Gaussian generalized process Z.

The basic reference on non-central limit theorems for nonlinear functionals
of Gaussian processes (and the process e** ¥ is such a nonlinear functional) is
Dobrushin and Major (1979), which is used also in Theorem 5.1 below.
However, the fact that the functional e**Y is nonlocal (because of the
convolution) makes the application of the Dobrushin—-Major theory more
difficult; see Dobrushin and Major [(1979), Section 6] or Major [(1981 ), pages
102-103], with the main effort given to finding explicit coefficients of the
Hermite expansion of e**¥ in a series of It6—Wiener integrals (Lemma 5.1).

Put

(5.3) a =a(m) =Eexp(({2*‘lf)(0)),

(54) a' =a'(m)=2E(exp(({**¥)(0)) (£*¥)(0)),

(55) o' =a’(m) = 2E(exp((£%*¥)(0))(2((£ *¥)(0)" + ¥)),
where ¥ = [p¥(x) dx.

THEOREM 5.1. Let the covariance R(x) be of the form
(5.6) R(x) =L(x)x™*,
where 0 < a < 1 and L() is a slowly varying function. Let ¥(x), x € R, be
an integrable function such that |¥|; = [|¥(x)|dx < §R(0)™! and T+ 0.
Then the expectations (5.3)—(5.5) exist and we have:

G) If m # 0 and a’(0) # 0, then
e**¥ e DA{a(m)W); a(m), LV?( B)B*/?},

where W, is the a-fractional Gaussian noise, that is, the generalized Gauss-
ian process with

Eexp(iW,, ) = exp| ~4 [ #(x)(5)|x =y dsy]

= eXP[—%f [g(p) o1 dp],
R
with  being the Fourier transform of ¢ € .%.
(i) Ifm=0,a"(0) # 0 and 0 < a < 3, then
e*? € DA{3a" (0)W®; a(0), L( B)B*},
where W® = (W)?: is the second Wick polynomial of W,, that is, the general-

ized process given by the double It6—Wiener integral [ see, e.g., Kwapieri and
Woyczynski (1992) and Major (1981)]

(5.7 <Wa(2)’ ‘r”> = /RZ‘»E(Pl +pz)lpll(“_l)/2|p2|(°‘_1)/2W(dp1)W(dp2),

where W is complex Gaussian white noise (the Fourier transform of W').
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ProoF. Let G(dp) be the spectral measure of Gaussian process {; that is,
R(x) = [ ¢'*?G(dp), x<R,
R
The process ¢ itself has the spectral representation
(5.8) {(x) =m + [ e*r M(dx),
R

where M(dp) = M(—dp) is the random spectral measure, E|M(dp)® =
G(dp). Let L*(Q) be the Hilbert space of all real square integrable random
variables measurable with respect to the o-field generated by the Gaussian
process. Then it is well known that any ¢ € L?(Q) admits the representation
> 1
¢= X [ f™(py,.--r pa) M(dpy) - M(dp,)
n=0 n:’re
< 1
=Y —[f™Wd'M
n=0 ! f

n

(5.9)

as a series of multiple Ito—Wiener integrals convergent in L2%(Q)), where
™) e LA(G™) = L*R";G™), n > 1; fO = [fO d°M € R and

Y I r®lzeen <o

n=0T:

To prove the theorem, we shall need rather detailed information about the
kernels of the Hermite expansion (5.9) of ¢ = exp (¢ 2 * ¥(0)), which is explic-
itly given in the following lemma. In the sequel we shall assume for nota-
tional convenience that the function ¥ is even, that is, ¥(x) = ¥(—x), or its
Fourier transform V¥ is real.

LEMMA 5.1. Let W(-) satisfy the conditions of Theorem 5.1. Then
exp ({**¥(0) € L*(Q) and

1
(5.10) exp ({2*¥(0)) = sgo g/f“)('; m) d°M,
where f© = q,
s!
f(s)(.; m) —a Z -
(5.11) on+jth=s NUE!

x[r“ & (2m¥)” © (4mro«ir)®k], s>1,

where the sum is taken over all integers n, j, k > 0 such that 2n +j + k = s,

el

(5'12) F(p17p2) = Z Zk_l‘i’(k)(Pl,pz), p17p2 € R’
k=1

¥®(py, py)
(5.13) = /Rk_lxi’(lh + x1)‘i’( —x; + xz)‘i'( —x,_1 +DPy)

XG(dx,) -+ G(dx;_1),
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E=2,3,..., ¥O(p,, p,)=¥(p, +py), ¥(p)=[re’P*W(x)dx,p €R, is
the Fourier transform of ¥ and

(5.14) (To¥)(p) = [ T(p, 2)¥(~2)G(dx).
In particular, for m = 0,
(5.15) exp (£2%*¥(0)) = ani:‘,o %fr@ndan.

Foranym € R,s = 1,2,..., f®(; m) € C,(R*) and

s\1/2
(5.16) @l < c(s8ew])"?,

where C = C(m,¥) < x is a constant independent of s.
Moreover, the function a = a(m) of (56.3) is twice continuously differen-
tiable in m € R,

(5.17) a'(m) = f®(0)
and
(5.18) a’(m) = £@(0,0).

PrOOF. Let us first prove the bound (5.16). Note that

I®1. < IIER(0) " < I¥IER(0)*
hence,

(5.19) ITl < X s* Y ¥IiR©)" " < §1¥l;.
k=1

In the case m = 0, £ = 0 for s odd, and for s even,

Ir@ll < alT[* < —=a2e /2| W[},

(s /2)' =1 /2)'

which proves (5.16) by the inequality s!< C2°((s/2)!)?. The case m # 0 is
more involved. Accordlng to the definition (5.11) and the inequality ||IT" > ¥[.. <
IT ||l %[, RO) < 2| ¥[TR(O) < 4||‘I’||1 [see (5.19)],

Irol.< X

2n+j+k=s

+2k j+k
,,k,nrnm 112 11T o Blj2 27+ 2

s! .
<2 X mlYIETm e

2n+j+k=s
[s/2] s!

<28y —————
n= 03nn!( —2n )'

= 2%/2(s)) | [)*C(s)

)i " (8m/2)° ™"
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and (5.16) follows if we show that C(s) is bounded by a constant. Assume that
s = 2p is even (the case of s being odd requires only minor changes). Then

Nz p ! 2k
cepy - CB g P it (5) ses
2Ppl o (2R)!(p — k)! 2

p k 2k 1/2
<Ccy (p)3_(p_k) |¥]1(3m/2)""k
z—o\k 4*p!

For any m, ||'¥?||;, there exists an integer k£, > 1 such that for all £ > &, the
last fraction is less than 2*. Therefore,

C(2p) < C(p*3~(r~k) + 1) < C,

which proves (5.16).
Denote A(m) = exp (¢ 2 * ¥(0)). Then

A(m) = exp (4§ * ¥(0))exp (2m{, * ¥(0) + m*¥?)
= A(0) exp (2m{, * ¥(0) + m*¥?),

where {,(x) = {(x) — m, x € R, is the centered Gaussian process. Consider

(5.20)

o3

(5.21) A(0)= ¥ ;Ll—,(zoz*‘l'(o))n
n=0 ""*

By Holder’s inequality,

l(2¢*%(0))" | 2car < [/ B () [e(—x) x| el
<| vl [ Eein(0)]”
= w|;[4~11]"*R(0)".
Hence,
= [4n]Y?
(522) A0 |z < gon—n«lfn R(0)" < 204"”«1'"112(0) <o

in view of the conditions of the lemma, which shows also that the series on
the right-hand side of (5.21) absolutely converges in L*(Q).

Using the diagram formula for powers of Ito—Wiener integrals [see, e.g.,
Major (1981), Theorem 5.3] one has

(5.23)  ¢(F*¥(0) = [¥(p, +p,) M(dp,)M(dp,) + FR(0)
and

([‘i’(pl + py) d2M) é’: (k]i'l)' (f\p(p1+p2) d2M)k—z

ri—1agp(ry) 2s
X 2 s‘f[®2 «Ir]dM

c+rg=1
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where the sum is taken over all s = 1,2,...% and ry,...,r, = 1,2,... such
that r; + -+ +r, = [ (for [ = 0, it equals 1 by definition) and ¥® is defined in
(5.13). Consequently,

(& w(©)" = ¥ (;;)( [amm) (@R (o))"

s
(5.24) 2 1 1
— 9ri= I (r)
=0 (n - l) ri+ -Z-l-rs=l s'f ’:g
Xd*M E({Z+¥(0))""’

Substituting (5.24) into (5.21) and changing the order of summation, one
obtains

A(0) = v Z _f[ é 2r—1\p(r,)] d2sMZ

l= n>l n—l)'

n—1

E({¢* w(0))

=a(0)i Z 5 fl 2rx-1«1r<r=>] d2M

I=0ry+ - +r, =18
o 1 e g2
- a(O);;Os—![r d*M
or (5.15); the validity of the change of the order of summation is justified by
(5.22) and the bounds (5.19) and (5.16).

In the general case m € R, the expansion (5.10) can be obtained by (5.15),
(5.20) and

N — 1. Al B .
525)  exp|2m |V dM + m2¥%| =™ Y — [(2my ® d’'M,
j=0J!

where c¢(m) = 2m?[|¥|* dG + m2¥2. Indeed, using the diagram formula for
the product of the summands of (5.15) and (5.25), one has

©  nAG/2)
A m) = a(0)e™ Z Z E[ rerd?Mm {I‘,®2rd2rM]
( ( ) n,j=0 r=0 r!(2r)! f f
(n—r)A(-2r) 1

T VR < ey T oY

2n+j—2k—4r
d M

x [[ree-r-b g (4mro¥)* o (2m)*9 )]

_ ec(m)E[A(()) exp(me'\i'dM — 2m2f|‘i’|2 dG)]

xY ¥

re» @ (4mro¥ ® 2m¥ a‘M
s=02n+j+k= sn'J'k'f[ ( ) ( ) ]
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or the expansion (5.10); see (5.20). The change of the order of summation
above can be justified using (5.16) and (5.19) similarly as in (5.15). From the
above-mentioned estimates and the continuity of ¥ and ¥® k =1,2, ...,
follows the continuity of I', and consequently, the continuity and bounded-
ness of f®, s =1,2,....

It remains to prove the relations (5.17) and (5.18) [they suggest further
relations of this type, namely, a® = f¢X0,...,0) for s =0,1,..., but we
shall not pursue this point here]. According to (5.11),

(5.26) fO = 2ma(m)(¥ +2r-¥),
(527) f® =2a(m)(T+2m?*(¥ @ ¥ +4¥ @ (%) +4(T-¥) @ (T - ¥))).
In particular,

fO(0) = 2ma(¥ + 2T - ¥(0))

= 2ma(«7 +2 f 2k-1 f\i'(’”(O,p)‘i’( —p)G(dp))
E=0

5.28 — 2 A
(5.28) = 2ma(‘I’ +2) qf<k+1>(o,0))
E=0

=2ma(¥ + 2;5(T(0,0) — ¥))
=2ma(m)I'(0,0)
and, similarly,
(5.29) £®(0,0) = 2a(m)(T(0,0) + 2m?I?(0,0)).

On the other hand, from (5.4) and (5.10) and the orthogonality of It6—Wiener
integrals,
(5.30) a'(m) = 2a(m)¥ + 2 [fO¥ daG,
where

[rovde = 2ma(m)(f|‘i’|2 dG + 2 2k-1«ir<k+2>(0,0))
k=1
= ma(m)(T(0,0) — ¥).

Substituting the above equality into (5.30), one obtains (5.17) through (5.28).

We shall prove (5.18) for the case m = 0 only, as this will suffice for the

proof of Theorem 5.1 and it simplifies calculations. From (5.5), (5.15) and
(5.23) we have that

a”(0) = 2E[A(O)(2f\if®2 d2M + zfl«irl2 dG + T»)]
= 8[f®¥°24%G + 2a(0)(2[|‘i’|2 dG + Tf)

= 2a(0)T'(0,0) = £f®(0,0).
Lemma 5.1 is proved. O
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Proor oF THEOREM 5.1 (Continued). According to Lemma 5.1,

B( B)fR(eXp(s’2 *W(By)) —a(m))y(y) dy =Io(B) + I,( B),

where

Io(B) = B(B)— f $(By(p1 + - +P,,)) 2 (p1,- -5 Pyy) d¥M,

1,(B) = B(B) i L [H(BY(p1 +  +2)) B p) dM

s= so+1
and sy, = sy(m) =1 (m # 0), s,(0) = 2. Using the continuity and bounded-
ness of f¥ and f® together with (5.17) and (5.18) and the assumptions of
the theorem, similarly as in Dobrushin and Major [(1979), Theorem 3], we
conclude that the distribution of Io( B) converges weakly to the distribution
of the stochastic integrals a'(m){W,’, &) and 1a” (0){W,®, ), respectively. It
remains to show that I,( B) is negllglble in the limit 8 — o, that is,

(5.31) ;EI:OEIf( B) =0.
Using bound (5.16) we have

EI}(8) - B(B) T fldf(B(pl )1 F (P p) I d°G

ss+1

capy 5 1L

sot+1

flt/f(B(pl «+p)| @G

2
- B(RY'B( [ H(s(B) ) |
where H(x), x € R, is a real function given by the Hermite series

= R(0)*?| .
s e § ROV

s=sot1
with H(x) = (—1)%e**/2d*(e™*"/?)/dx*®, s =0,1,..., being the standard
Hermite polynomials. Series (5.32) converges in LZ(R e * /CRO) dx) Indeed,
from (5.16) it follows that

S (R0) ),

- IrOkrO por’
EHY(g) = ¥ =2 <c T 8YER(0) <.
s=s0+1 s: s=sot1

Hence the main result of Dobrushin and Major [(1979), Theorem 1’ for local
functionals] applies with small changes, yielding (5.31) and the theorem
itself. O

One can easily note that if ¥ > 0, then a'(m) # 0 (m # 0) and a” 0) # 0.
Indeed from (5.5) we see that a”"(m) > 0 for each m as long as ¥ > 0.
Moreover, a’(0) = 0, so that a(m) is strictly convex and has minimum at
m = 0.
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