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DYNAMIC SCHEDULING WITH CONVEX DELAY COSTS:
THE GENERALIZED cp RULE

BY JAN A. vAN MIEGHEM

Stanford University

We consider a general single-server multiclass queueing system that
incurs a delay cost C(7,) for each class % job that resides 7, units of time
in the system. This paper derives a scheduling policy that minimizes the
total cumulative delay cost when the system operates during a finite time

horizon.
Denote the marginal delay cost function and the (possibly non-
stationary) average processing time of class & by ¢, = C) and 1/u,,

respectively, and let a,.(¢t) be the “age” or time that the oldest class &
job has been waiting at time ¢. We call the scheduling policy that at
time ¢t serves the oldest waiting job of that class # with the highest
index w;(¢)cr(ar(t)), the generalized cu rule. As a dynamic priority rule
that depends on very little data, the generalized cu rule is attractive to
implement. We show that, with nondecreasing convex delay costs, the
generalized cu rule is asymptotically optimal if the system operates in
heavy traffic and give explicit expressions for the associated performance
characteristics: the delay (throughput time) process and the minimum
cumulative delay cost. The optimality result is robust in that it holds
for a countable number of classes and several homogeneous servers in a
nonstationary, deterministic or stochastic environment where arrival and
service processes can be general and interdependent.

1. Introduction. We consider a general single-server multiclass queue-
ing system that incurs a delay cost C(7;) for each class % job that resides 7,
units of time in the system. Since queueing theory is the natural paradigm
to study dynamic competition for scarce resources, it is interesting to think of
our system as modeling order fulfillment at a firm which dynamically receives
orders (“jobs”) from customers for several different types or classes of goods
and services it provides as shown in Figure 1. In addition to the usual revenue
and operating cost associated with filling an order, the firm incurs a delay cost
Cr(7p) for each class & order that takes 7, units of time to fill. (The order ful-
fillment time 7 is also called throughput time, response time or cycle time.)
The purpose of this paper is to show how the firm should sequence the dif-
ferent orders that are competing for its scarce resources in order to minimize
the total cumulative delay cost during a finite time horizon.

Many providers of goods and services are experiencing an increase in the
variety and degree of customization in their customer orders. At the same
time, service quality metrics such as order fulfillment time are increasingly
important in environments where time performance provides a source of com-
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petitive advantage. When facing a delay-sensitive economic environment char-
acterized by a high degree of uncertainty, decisions about allocation of scarce
resources to orders can be important to the performance of the firm.

Denote the marginal delay cost function for class & by ¢, = C/,. If the func-
tions Cy, are linear (and the marginal delay costs constant), the well known cu
rule gives the optimal sequence under mild additional assumptions. Denoting
by 1/u: the (constant) average processing time for class %, we associate with
each waiting class & job the index c;ur and at each decision point serve the
class with the highest index. (With linear delay costs, it does not matter how
jobs are sequenced within a class.) Thus, small jobs that are costly to delay
are given priority. This static priority rule is robust in that it is optimal in
many settings where delay costs are linear. It appears that the optimality
of the cu rule was first suggested by Smith [31] for a deterministic, static
(i.e., all jobs are present at time 0 and no dynamic arrivals are allowed) en-
vironment. Cox and Smith [5] seem to be the first to have shown optimality
for a stochastic, dynamic (multiclass M/G/1) environment with arbitrary time
horizon. The cu rule was also shown to be optimal in stochastic, static set-
tings (e.g., see [24, 25]). Many extensions have been developed. For example,
Klimov [18] extended the cu rule to multiclass M/G/1 systems with feedback,
Harrison [12] showed optimality of a more complex static priority rule when
delay costs are discounted in multiclass M/G/1 systems and Tcha and Pliska
[32] studied the combination of discounting and feedback (again a static pri-
ority rule is optimal). More recently, Buyukkoc, Varaiya and Walrand [1] and
Hirayama, Kijima and Nishimura [15] have shown that the cu rule also ex-
tends to discrete time systems with general arrival patterns and decreasing
failure rate (DFR) service times, and Nain [23] generalized to continuous time,
discounting and partial feedback. De Serres [6] has shown that a cu rule can
also arise when scheduling and flow control are optimized simultaneously.
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In practice, however, delay cost functions are usually nonlinear. This nonlin-
earity may stem from physical phenomena (e.g., processing perishable goods
or landing fuel-limited aircraft) or, more frequently, from customer expecta-
tions. A customer often expects a certain delay or is quoted one in the form
of a promised delivery date. The marginal cost to the firm of not meeting
the expected delay or due date is usually much higher than the marginal
cost when the customer’s expectations are realized, as shown in Figure 2.
This cost includes not only traditional holding costs, but also the opportunity
cost of future lost sales and other strategic effects such as a decrease of cus-
tomer good will, market reputation and credibility. Shycon and Sprague [30]
show from empirical data that out-of-pocket delay costs in the food indus-
try are strongly convex increasing even without taking opportunity costs into
account. Chardaire and Lesk [2] argue that packet-switched computer net-
works are severely constrained in the delay that can be incurred in each node,
giving rise to nonlinear delay costs. Thadhani [33] presents empirical data
showing that productivity in interactive computing is a nonlinear function of
computer response time. Other domains where timeliness is important are
software development, securities trading, airline reservation systems, bank-
ing and communication systems, as discussed by Dewan and Mendelson [7].
Finally, the common practice in manufacturing environments of expediting
orders that have been waiting too long—and thus violating the static priority
rule—gives empirical evidence that marginal delay costs increase when the
delay increases.

Denote the “age” or the time that the oldest class % job has been waiting at
time ¢ by ar(¢) and let 1/u; be the (possibly nonstationary) average process-
ing time of class k. We will refer to the scheduling policy that at time ¢ serves
the oldest waiting job of that class & with the highest index w(¢)cr(ar(t)) as
the generalized cu rule. This paper will show that with nondecreasing convex
delay costs, the generalized cu rule is “approximately optimal” if the system
is “operating near full capacity” and will give explicit expressions for its as-
sociated performance characteristics: the delay (throughput time) process and

Cy

Class k Delay Cost

Class k Due Date T

FIG. 2. Nonlinear convex delay costs.
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the minimum cumulative delay cost. (These statements will be spelled out
and proved in precise mathematical terms in the following sections.) The op-
timality result is robust in that a countable number of classes and several ho-
mogeneous servers are allowed in a nonstationary, deterministic or stochastic
environment where arrival and service processes can be general and interde-
pendent. The generalized cu rule is a dynamic or time-dependent priority rule
that depends on very little data (service rate and age) and is thus inexpen-
sive and simple to implement. In the presence of due dates, it shows that the
practice of scheduling late orders according to both their lateness penalty and
expected processing time is sound.

Among the scheduling research that does address nonlinear problems, most
studies consider static environments (e.g., see [26-27, 29, 35]). Veklerov [34]
shows that results for static scheduling problems do not necessarily gener-
alize to a dynamic setting. Haji and Newell [9] study the related problem of
scheduling two classes with convex delay cost during a “rush hour” in which
the arrival rate exceeds the service rate. By “neglecting stochastic effects and
Justifications of approximations” ([9], page 228), they solve a calculus of vari-
ations problem with a two-dimensional specific method and arrive also at the
policy which we call the generalized cu rule. Our work generalizes the lat-
ter and is different in that it employs a method that is independent of the
dimension (the number of classes), incorporates stochastic effects, provides
expressions for the delay process and for the lower bound on cumulative delay
cost and shows the optimality of the generalized cu rule while being explicit
about the necessary assumptions.

This paper uses the framework introduced by Harrison [10] that endows a
processing network model with dynamic control capability and then takes a
“heavy traffic limit.” Harrison’s paper has started a whole body of research.
Like Harrison and Wein [14, 13], Wein [36-39] and Kelly and Laws [17], we
have a special structure which is amenable to analysis and yields an explicit
dynamic scheduling policy. Like Krichagina, Lou, Sethi and Taksar [19], Kush-
ner and Martins [20], Kushner and Ramachandran [21] and Martins, Shreve
and Soner [22], we give a rigorous proof of optimality (without requiring the
same degree of mathematical sophistication for our setting). Our approach
differs slightly from this stream of research in that it starts with a determin-
istic or pathwise analysis and considers a broader class of scheduling control
policies.

The paper is organized as follows. In the next section we present our model
and discuss our methodology. Section 3 analyzes the model and Section 4
shows the main optimality results of the generalized cu rule. We conclude in
Section 5 with extensions and discussion.

2. Model and methodology. Consider a general single-server multiclass
queueing system that operates during the finite time horizon ¢ € [0, n]. Jobs
arrive at the system and require a service. Jobs are categorized into d (for
dimension) different classes depending on their specific arrival patterns, ser-
vice requests and time delay sensitivity. A class % job resides in the system for
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an amount of time 7, (which consists of actual processing time and waiting
delays), inflicts a delay cost C(7;) onto the system and then departs.

The model has three primitives: a d-dimensional arrival process A, a d-
dimensional service process S and a d-dimensional delay cost function C,
where each component Cj: R, — R, is nondecreasing and convex. Here Aj(¢)
represents the number of class % jobs that have arrived during [0, ¢] and S (%)
is the number of class & jobs that are served during the first ¢ time units that
the server devotes to class k. Construct d sequences of interarrival times

{up;: i e N} for k=1,...,d and a corresponding partial sums process U such
that
LJ]
1 Ur(j) =) uri with U(0) =0,
i=1
(2) Ar(t) =max{j e N: Up(j) < t},

so that Up(j) is the arrival time of the jth class & job. Similarly, one can
construct d sequences of service times {v;;: i € N} for 2 = 1,...,d and a
corresponding cumulative service process V, where V() is the total service
requirement of the first j class & jobs. For ease of exposition, we assume that
the system is empty at time ¢ = 0. (Section 5 discusses how to incorporate
different initial conditions.)

The objective is to determine a scheduling policy that minimizes the cumu-
lative delay cost function J, possibly at every point in time. Denoting by 7 ;
the time that the ith class & job spends in the system, the cumulative delay
cost up to time ¢ € [0,n] is

Ag(t)

d
3) J(@) =YY Cilrei)
k=1

i=1

(Although we assume that delay costs are incurred at a job’s arrival, the proof
of Proposition 4 shows that charging delay costs at a job’s departure does not
change the results in this paper.) Introduce a continuous-time process 74(-)
with 7,(Up(i)) = 71, so that 7;(¢) represents the delay of the job that arrived
at time ¢. Then J can be written as

@) I =3 [ Cutrae) dAx(e).
k

In order to proceed we need a representation of a scheduling policy (the deci-
sion variable) and a relation that expresses the delay process 7 in terms of the
primitives. We adapt the processing network model with dynamic control capa-
bility introduced by Harrison [10] as follows. A scheduling policy is expressed
as a vector allocation process T', where T'.(¢) represents the total amount of
time during [0, ¢] that the server allocates to class k. Let N(¢) denote the
total number of class % jobs present in the system at time ¢, and define the
vector headcount process N in the obvious way. We have the fundamental flow
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identity
5) Np(t) = Ap(t) — Sp(Tr(2)).

The server may not have enough work to keep him busy at all times and
may conceivably be idle when there is work to do. However, if preemption is
allowed, it is optimal to enable the server whenever there is work waiting
and not to insert scheduled idleness. Such a scheduling policy is called work
conserving. (In general, a policy is said to be work conserving if it does not
affect the arrival or service process and if service is provided whenever the
system is not empty.) Due to the rather crude nature of the asymptotic analysis
of Sections 3 and 4, the assumptions made regarding preemption do not affect
the scheduling policy that will emerge from the analysis. Define I(¢) as the
cumulative server idleness up to time #:

(6) I(t) =t = Tw(t).
k

We assume that the arrival times and the queues are observable, as is usually
the case in practice. Thus, the decisionmaker can base the allocation decision
at time ¢ only on the observed evolution of (A, N) up to ¢ According to (5),
this means that only the service times of the processed jobs are observable,
not those of the waiting jobs. The requirement that 7' be nonanticipating with
respect to (A, N) and its interpretation as a camulative time allocation trans-
late into the following conditions. Formally, a policy 7T is feasible if:

F1. T(0) =0 and {T'(¢), t € (0,n]} is adapted to the filtration {F;; ¢ €
(0,n]}, where &; = o{(A(s), N(s)), 0 <s < t}.

F2. T is continuous and nondecreasing.
F3. I is nondecreasing.
F4. N=>0.

Define the workload input process L and the workload process W via
(7 Lr(2) = Vi(Ar(2)),

(8 Wi(t) = Lp(2) — Ti(2).

Here Lj(¢) represents the total amount of work (expressed in units of time)
requested by all the class % jobs that have arrived by time ¢, and W(¢) is
the amount of work requested by those class % jobs.that are in the system
at time ¢. It follows directly that the total work input L, = ¥, L, and total
workload W, = 3, W, are independent of the work conserving scheduling
" policies. Because L is exogenous, one could also use W instead of T to express
the scheduling policy.

In order to derive the system equation for the delay process 7, we first show
that serving each class in first-in first-out (FIFO) order is optimal.
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PROPOSITION 1. FIFO sequencing within a class is optimal in the expected
sense, EJriro < EJnot—riro, If class service times are homogeneous and not
observable and if the class delay cost function is nondecreasing and convex.
(Section 4 shows that FIFO is also asymptotically optimal in the stochastic
sense.)

(All proofs are given in the Appendix.) Notice that for strictly convex delay
functions, FIFO is the unique optimal service order. It follows from the defi-
nitions of T and W that, if each class is FIFO sequenced, the delay process is
given by

9) Tr(t) = inf{s € Ry: Wi(t) < Tr(t+s) — Tr(t)}
or
(10) Wi(t) = Tr(t+ 74(2)) — Tr(2).

Given the generality of the model that does not make any assumptions re-
garding the arrival and service processes, one cannot possibly hope for an
exact solution to this problem. Therefore, we will focus on policies that are
asymptotically optimal as “the time horizon n becomes large compared to the
job delays and the system operates near full capacity.” Before we can rephrase
this loosely stated condition in precise terms we will need some more analysis.
Considering heavily loaded systems is not very restrictive given that the im-
pact of scheduling is greatest when a system is operating close to its capacity
constraint.

The methodology that we use to study processing systems operating near
full capacity is heavy traffic analysis. One considers a sequence of systems sim-
ilar to the one described in this section. The nth system has a time horizon
of n, and as n gets large, utilization approaches 1 and the system is oper-
ating near full capacity. Because in the limit the jumps of the arrival and
service process become negligible, a considerable simplification occurs and the
problem becomes analytically tractable.

Nowhere have we made an assumption regarding uncertainty in the arrival
and service process primitives. The method is applicable to both deterministic
and stochastic settings. In the next section we will analyze our system un-
der heavy traffic without needing any reference to a stochastic environment,
which allows a more accessible, less technical exposition. We call this the de-
terministic system, but one could equally well describe it as a sample path
analysis or a study of a specific realization of the stochastic system. Section 4
shows how this analysis ties into a stochastic setting.

We will use the following notation: € denotes the space of continuous real
functions on [0, 1], ¢! is the space of real functions on [0, 1] that have contin-
uous first derivatives and 2 is the space of simply discontinuous functions on
[0,1]. The functions may be scalar or d-dimensional vector functions, which
will be clear from the context. Subscripts denote components of a vector. We
write x* — x and say that “x” converges” to mean that the functions x* ¢ 9
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converge to some function x € 2 under the uniform norm

(11) lxll = sup |x(2)],

0<t<1

which is interpreted as sup, max; |x;(¢)| for a vector function. Slightly abus-
ing the notation, we denote a vector function with components x;(#)yg(2),
x(¢)/y2(¢) and x;(yr(t)) at time ¢ by xy, x/y and x o y, respectively. Finally,
the identity function is denoted by e: e(¢) = ¢.

3. Deterministic analysis. This section describes the heavy traffic anal-
ysis of our problem. Consider a sequence of systems, indexed by n € N, similar
to the one described in the previous section. The nth system has an arrival
process A", service process S™ and delay cost function C" as its primitives,
and operates during [0, n]. The purpose is to derive insight into the effect of
a policy on the dynamics of a system that is operating near full capacity. The
primitives and policies (7™) can be different from system to system, but to yield
meaningful insights, they cannot be completely unrelated. The requirement
to operate near full capacity relates the arrival process and service process
within one system and among systems. We will also relate the cost functions
of different systems. Finally, we make the problem analytically tractable by
imposing convergence assumptions on the arrival and service processes. The
analysis makes no reference to a stochastic environment and simplifies to
an exercise in real analysis. However, the results will be applicable to both
deterministic and stochastic settings.

3.1. Analysis. Convergence assumptions on the arrival and service pro-
cesses are conveniently stated after a time transform to the common domain
t € [0,1], similar to familiar functional central limit theorems (FCLT’s) of
stochastic systems. All interarrival and service times are assumed finite in all
systems so that the arrival and service processes of the nth system are of order
n. We will show in Proposition 2 that the decision variable T" is (asymptoti-
cally) determined to a first order by the primitives A” and S”. Thus a second
order analysis is necessary to study a specific control policy. The FCLT for
renewal processes states that the second order term is of order n!/2, and since
the unit-size discontinuities of A” and S” are of order 1 = o(n!/ 2), 1t is natural
to decompose A" and S™ into a sum of continuous functions A", S*, A", S* in
€ so that, for ¢t € [0, 1],

12) A™(nt) = nA™M¢) + n2AM¢) + o(nV?),
(13) S"(nt) = n8*(t) + n28" () + o(n?).

One may think of the first and second order terms as the long-term trend and
the variation around this trend, respectively. Because A™ and S™ are nonde-
creasing, we can always require the same of their continuous first order terms
A" and 8™ so that the inverse functions (A")~! and (S")~! exist. Introduce
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the functions
(14) Ry =(S})'0A? and R" =) R}
P)
We will show that R}, is the first order approximation of the work input process

L", so that the nth system operates near full capacity if R is close to the
identity function.

ASSUMPTION 1 (Main convergence). There exist functions A*,$*,é&* ¢ ¢
and increasing functions A*, 8* € ¢1, such that

(15) A" > A*, S" — S*,
(16) A" 5 A*, S" - S*,
amn n'2(R" —e) — &.

Equation (17) is the heavy traffic condition stating that, for large n, the
system is operating near full capacity. Denote the positive first derivatives by

(18) A¥ =,
(19) S¥ = u,

(20) Y = pr = Ar/Mr,

which are all bounded on [0, 1] because they are continuous. The quantities A,
1 and p represent the (asymptotic) scaled instantaneous arrival rate, service
rate and traffic intensity of class k. The main assumptions imply convergence
relations for all other system variables:

PROPOSITION 2. Given Assumption 1, we have that, for any scheduling
policy,

(21) N™(nt) = nY2N"™(t) + o(n'/?),

(22) T"(nt) = nT™(t) + n'2T"(t) + o(n'/?),
(23) U™(nt) = nU™¢) + n'20"(t) + o(n'/?),
(24) Vr(nt) = nV*(t) + n'2V™(¢) + o(n'/?),

(25) W™(nt) = n'2W"(¢) + o(n/?)
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and, for FIFO sequencing in each class,

(26) ™ (nt) = n'25"(¢) + o(n'/?),
with the following convergence relationships:
(27) g T" - R* e ¢,
(28) U" - U* e ¢,
(29) Vr» Ve ¢l
(30) U - U*e ¢,
(31 Vv Ve g,
(32) Wt Wheég,
(33) n Y2 sup u?, -0,
1<i<Ar(n)
(34) n Y2 sup v}, -0,
1<i<8S"(n-)

(35) W" converges < T" converges < N™ converges < " converges,

and where lim supnIIN ™|, lim sup,, 177, lim sup,, ||W”|| and limsup,, | 7| are
all bounded. :

Since counting processes and partial sums processes are almost inverse
processes, the convergence relationships for U” and V" are not surprising.
Equation (27) shows that the decision variable 7" is asymptotically known
to a first order as argued intuitively by Harrison [10]. Also, the scaled total
workload W} converges, but that need not be true for the class workload pro-
cess W". Moreover, the convergence of the class workload processes implies
the convergence of the second order policy process 7™, the headcount pro-
cess N" and the delay process 7". Nonconverging policies are not an esoteric
mathematical artifact; they can represent scheduling policies that are widely
used in practice. For example, polling systems where the different classes are
served until exhaustion in a specific order have nonconverging class workload
processes as discussed by Coffman, Reiman and Puhalskii [4]. The underlying
reason is that, in heavy traffic, the class workload process lives on a smaller
time scale than the total workload process. Unlike other researchers [13, 14,
17, 19-22, 36—40], who define the asymptotic policy a priori as an RCLL (right
continuous with left limits) function (i.e., an element of 2), we study a broader
class of control policies that includes nonconvergent policies.

The law of large numbers (LLN) applied to the workload process yields that
class workloads are well approximated by the product of class headcount and
asymptotic service requirement:
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PropPoOSITION 3 (LLN). Given Assumption 1,

(36) peW3 — N? - 0.

Little’s law, relating time averages of the delay, arrival and headcount pro-
cess, generalizes:

PROPOSITION 4 (Little’s law). Given Assumption 1 and a,b € [0,1], where
a<b,
n

~3/2 nb
e Az<b)—Az(a)/na TR T Anp) - A”( )/ ot~

Delay cost functions in a system are defined in terms of the natural time
scale of throughput times. Because the nth system has throughput times of
order n'/2, its delay cost functions will assign a moderate cost to delays of this
order. To investigate the asymptotic behavior of costs, we therefore make the
following assumption:

ASSUMPTION 2 (Cost convergence). The (vector) cost functions C” in differ-
ent systems scale to a nondecreasing convex function C* as

(38) c*(n'2.) = C*(-).

Therefore, the total cumulative cost J”(nt) is of order n, and we define the
scaled cumulative cost J" as

(39) J"(t) = n~1J*(nt) = Z/ CH(tM)n~tdA} forte[0,1].

3.2. Converging policies If the sequence of policies 7™ is convergent, then
so are W, N* and 7", according to Propos1t10n 2, and we denote their corre-
sponding 11m1t1ng functions by W*, N* and 7*. Propositions 3 and 4 directly
yield the following proposition:

PROPOSITION 5. Given Assumptions 1 and 2, if the sequence of policies T"
converges, then

(40) AF* = N*,
(41) uW* = N*

and the corresponding sequence of cumulative cost functions converges:

(42) Jn - \_,:/Ak(t)c;;(fk(t))dt.
k
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The convergence in (42) follows directly from the generalized Lebesgue con-
vergence theorem [28, page 270] because 7* is bounded. Thus, if the policies
converge, there exists a limiting system in which, according to Proposition 5,
throughput times are proportional to workloads (i.e., Little’s law holds at each
point in time). However, an exclusive analysis of the limiting system precludes
the consideration of nonconverging control sequences which may have a supe-
rior performance and can be important in practice.

4. Asymptotic optimality. In this section, we first present a closed-form,
asymptotic lower bound on the scaled cumulative cost function of any feasi-
ble policy, converging or not. Then we introduce a family of policies whose
asymptotic cumulative cost function attains the lower bound for all times ¢ si-
multaneously. These policies, which include the generalized cu rule, are called
asymptotically optimal and we give an expression for their associated delay
process. Finally, we show how these results extend to stochastic systems.

4.1. An asymptotic lower bound on the cost J". Define the mapping
g 9 — 9¢ such that y — g oy, where g o y(¢) is the solution of the
minimization problem

(43) goy(t) = argmm Z Ak(t)C*< (t))

where Q) = {x € ]Rd Y rxr = y(¢)}. It will be shown later that the mapping
g applied to the total workload process y1elds the optimal class workloads,
W*=go W* Because the objective function is convex on the convex set (2,
the solution set is also convex. If C* is convex increasing, the solution is unique
and g is continuous at any continuous y. (If C* is nondecreasing convex, there
can be an uncountable set of solutions, but we can pick a particular solution
such that g is continuous). We can now show the following lower bound.

PROPOSITION 6. Given Assumptions 1 and 2, the asymptotic cost is bound-
ed from below. That is, for any sequence of feasible policies, the associated
sequence of cumulative costs {J": n € N} satisfies, for each t € [0,1],

(44) lim inf Jn(t) > J*(t),

where

(45) F=x/ Ak(t)C};(Ego—M(«t—)) dt.
p (t)
Notice that the lower bound depends only on the instantaneous rates A and
' and variability, reflected by the second order “tilde processes,” affects J*
only through the total workload process. The following section will show that
the bound is tight.
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4.2. Asymptotically optimal scheduling rules. From the expression of the
lower bound J* and Proposition 5, it follows that any sequence of policies
that controls the class workloads such that W» — go W is asymptotically
optimal. Thus, if we approximate W, by u, 1IN, (Propos1t10n 3), then “serving
to hug the optimal workload curve” as shown in Figure 3 is a feasible and
asymptotically optimal policy.

Another way to attain the lower bound is to control according to the first
order optimality conditions of the minimization problem (43) if C* is smooth,
that is, C* € €. Denoting the derivative (gradient) of C* by c*, the marginal
cost function of C*, the Kuhn-Tucker optimality conditions are sufficient be-
cause the objective function is convex, and for each fixed ¢ € [0, 1] the solution
x* = go y(t) solves

x*
(46) uk(t>c;(;}f—t)) — ap = a,
47 apxl = 0,
(48) > xp = y(1),
k

where the Lagrange multipliers satisfy a;, > 0 and ag e R, and 1 < & < d.
In the general case, there can be boundary solutions. That is, x* belongs to
the boundary U¢_;{xs = 0} of the set Q, or an uncountable set of solutions.
To keep the exposition simple, we will assume that the solution x* is unique
and interior for all ¢ € [0, 1], which is guaranteed by the following regularity
assumption:

W,

X g(w,)

.Yerve class 2
"\ Serve class 1
W,

W

FI1G. 3. “Hug-the-curve” scheduling.
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ASSUMPTION 3 (Cost regularity). The (vector) cost function C* is strictly
convex, smooth (C* € ¢!) and has an interior solution to the minimization
problem (43).

Under Assumption 3, the sufficient conditions reduce to

of %k ) _
(49) Mk(t)ck(pk(t)> = ay,

(50) 2% =)
k

PROPOSITION 7. Given Assumptions 1, 2 and 3, the sequence of feasible
policies {T™: n e N} such that

() w5
MECh, mic
Pk pi

where W = Ln—T™n, is asymptotically optimal. That is, the associated sequence
of cumulative costs {J": n € N} attains the lower bound

(61)

b

1<kl<d

(52) Jr — J*,

and the associated sequence of delay processes {7": n € N} satisfies
‘Vw

(53) o =800
p

The proof of the proposition shows that this sequence of policies is neces-

sarily convergent so that according to Proposition 5 the asymptotic optimal
scheduling rule implies that
(54) R kl ; ax |prch(7}) — mici (7)) — 0.
Serving the class k with highest w.c;(7}) increases the u;c;(7}), thereby low-
ering the maximum difference among the classes. Because the difference be-
tween the age of the oldest job and its delay becomes negligible for large n, the
generalized cu rule implements precisely an asymptotic optimal scheduling
policy. Since we have shown that both the generalized cu rule and “hug-the-
curve” scheduling are asymptotically optimal, they are essentially equivalent.
The former provides a concise mathematical representation for any number d
of classes, while the latter has an attractive pictorial form, especially if d = 2
(although it carries over to higher dimensions).

Recall that we have assumed that the minimization problem (43) has a
unique interior solution for all ¢. In general, there can be boundary solutions,
'such that, for some i € {1,...,d}, the solution x* = g o y(¢) has x} = 0.
This means that we should schedule these classes such that W” — 0, and
the remaining classes &,/ according to (51). The condition W” — 0 implies
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that “boundary” classes i should be given priority above “interior” classes
k,l. Under heavy traffic conditions, it is irrelevant how the ranking is done
among the boundary classes because their queue lengths will be negligible
compared to those of the interior classes. Therefore, serving them according
to the generalized.cu rule is also asymptotically optimal and scheduling the
highest cost generating class first remains intuitively attractive. Finally, be-
cause p;c}(0) > pxci(x}/pr) for any boundary class i and interior class £,
serving all classes according to the generalized cu rule is an asymptotic op-
timal strategy (regardless of whether the optimal point is interior or on the
boundary).

4.3. Stochastic systems. Now embed the analysis in a probabilistic struc-
ture. We are given a sequence of stochastic systems defined on a corresponding
sequence of probability spaces {(Q*, ", P*): n € N}. We write X" = X to
denote weak convergence of random elements X" € 9 to X € 2 in the space
9 under the Skorohod topology. All limiting functions X in this paper will be
continuous, in which case convergence under the Skorohod metric is equiv-
alent to uniform convergence [i.e., convergence under the norm || - || of (11)]
according to Glynn [8, Proposition 4, page 149] In that case, invoking the
Skorohod representation theorem [8], the above analysis holds for almost all
sample paths in the Skorohod space. Relating these results to the original
system sequence immediately yields the following proposition.

PROPOSITION 8. Given Assumptions 2 and 3, if there exist processes A, 8%,
¢ with a.s. continuous sample paths on [0,1] and processes A*, S* with a.s.
continuously differentiable increasing sample paths on [0,1], such that

(55) (47, A", 8", 8", n'2(R" —¢)) = (A%, A*,5*, 8", &),
then the asymptotic cost is stochastically bounded from below. That is, for any

feasible policy, the associated sequence of cumulative costs {J": n € N} satisfies,
for each t € [0,1],

(56) liminf J™(¢) > J*(t),

n—oo

and the sequence of feasible policies {T™: n e N} such that

wn wn
MECY (—k> - Mlc?<—l)
Pk Pl

where W* = L™ — T™, is asymptotically optimal in the stochastic sense. That
is, the associated sequence of cumulative costs {J": n € N} attains the lower
bound .

(58) J" = J*,

‘and the associated sequence of deiay process {7": n € N} satisfies

B7) max
1<k,l<d

=0,

goWi
P

(59) "= 7 =
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Proposition 8 applies directly to multiclass GI/G/1 systems with indepen-
dent renewal arrival and service processes. Similar to “classical” heavy traffic
scaling, set A™(t) = At + n~Y/2¢*(t), A*(t) = n"Y2(A™(nt) — Ant) — &(t) and
require ¢*(¢) = vyt for a real constant vector y. The functional strong law and
central limit theorem for renewal processes state that A* is the deterministic
linear function Ae and A* is a Brownian motion with drift y, and likewise
for the service process, so that the assumptions of Proposition 8 are satisfied.
However, the proposition is much more general and also applies to nonsta-
tionary systems with dependent arrival and service processes [that satisfy
the joint FCLT in (55)].

5. Extensions and discussion. If the system is not empty at time ¢ = 0,
the analysis needs to be extended. The initial data add a fourth primitive to
the model—for each class k&, the number of jobs present at time O together
with their age and service times: {—U(i),vs,;: i = —1,...,—N(0)}. The jobs
present at time ¢ = 0 represent an additional delay cost Jin;:

d_Nx(0)

(60) Jini =Y Y Cal7r-i).

k=1 i=1

Assumption 1 is extended with the following: There exists a vector W=(0) € ]Ri
such that, for the initial data and k=1,...,d,

Ny (0) 3
(61) nV2 N up - Wi(0),
i=1
N3(0)
(62) n! Z Cy(n'2 + Uy(=i)) - 0.

The last assumption guarantees that the additional delay cost JJ},; becomes
negligible compared to the cumulative delay cost J" for large n. The only
impact of the initial conditions is in providing an initial workload condition
W*(O) which influences the lower bound J* through the initial total workload
W*.(0). '

+The generalized cu rule also extends to mildly time-dependent delay func-
tions. As long as the delay functions do not vary substantially over a delay
period (i.e., a time period of order nl/2 for a system with time horizon n), the
analysis still applies.

In addition, the generalized cu rule is asymptotically optimal for a multi-
class system with multiple parallel servers with equal capabilities. In heavy
traffic, the multiserver simplifies to a single server with service capacity equal
to the sum of the parallel servers, and the analysis still applies.

The generalized cu rule is a myopic or greedy rule. Assume the system
has Poisson arrival and service processes. If one serves a class k job with
age a during [¢,¢ + A], the probability of its service completion during that
interval is wiA + o(A). The reduction in cost would be Cr(a + A) — Cr(a) =
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ck(a)A +o(A), so that serving class k& would decrease the total expected delay
cost by urck(a)A?+o0(A?%). A greedy minimization approach is to serve the job
with highest index w,ci(a).

Similar to the cu rule, the generalized cp rule requires very little input
data: only service rates and age. Interestingly, no arrival data nor higher
moments of the service distribution are needed. In this sense it resembles
scheduling rules derived from fluid models such as discussed by Chen and Yao
[3]. On the other hand, as in diffusion models, variability influence shows up in
the expression of the optimal total cumulative cost and associated throughput
time process.

The fact that the generalized cu rule applies to nonstationary and finite
horizon settings makes the model particularly relevant to current economic
environments where notions such as infinite time horizon, stationarity and
long-run average costs become almost irrelevant. Chen and Yao [3] argue that
it is only natural (as well as practical) in that case to follow a policy generated
by a myopic procedure, which is reminiscent of a rolling horizon method.

The generalized cu rule is also pertinent in the presence of due dates, where
typically the marginal delay cost strongly increases gast the quated due date
(Figure 2). Our model could be used, for instance, to study the effects of quoting
different due dates for different “grades of service,” where one would offer a
product at multiple prices representing a promised faster due date.

Another factor that should be considered in relation to the generalized cpu
rule is the empirical estimation/quantification of the delay costs. Also, the
generalized cu rule is shown to be asymptotically optimal. From a theoreti-
cal point of view, it would be interesting to investigate how the rule performs
when operating with plenty of excess capacity, although, in practice, schedul-
ing matters most when resources are scarce and constrained. Therefore, the
fact that the generalized cu rule is “only” asymptotically optimal should not
diminish its applicability.

APPENDIX

PROOF OF PROPOSITION 1. Assume class k is not ordered FIFO at time ¢.
Then there is at least one class k& job (say the jth) that arrived at time U () <
¢ which is scheduled before the ith class & job which arrived at U(i) < Uj(j).
We will show that interchanging these two jobs cannot increase the expected
cumulative cost E(J(n) — J(¢)).

Interchanging the two jobs can only affect the delays of the two jobs and
of those jobs currently scheduled between them. In addition, if class & service
times are homogeneous and not observable, we cannot distinguish a priori
between the service times of i and j, and interchanging the two jobs can
therefore not change the a priori estimate of (and thus the expected) delay
cost of those jobs currently scheduled between them. Denote the change in
cumulative cost due to the interchange by AJ(n) = J changed (1) — Joriginal (7).
Also, denote the total service requirements of all jobs originally scheduled
before job j and all jobs in between j and i by vP¢fre and vbetween regpectively.
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Then
EAJ(r) = E[Co(vP™® + ¢ — Us(i) + vis)
+ Cp (0P vy 4 0PV 4 ¢ — Up(§) + g, )
— Cr(vPPr® ¢ — Uk(j) + vs,5)

_ Ck(vbefore +op,+ pbetween +t—Up(i)+ Uk,i )]

= E[Ch(o"™® + ¢ — Up(i) + vg2)
+ C(VPP 4 vy + OPOVEER ¢ T () + i)
— CR(0P® 4 £ — U4 () + o)
— CR(0P"® gy + 0Pt — U3 + vaa) .

Because C}, is nondecreasing convex on R, we have that, for any x,y,z € R,
with x # y,

Cr(x) — Cr(y) - Crlx+2)—Cr(y+2)
x—y - x—y '
Set x = vPefore 4 ¢ — U (i) + vy, y = VPP 4 ¢ — Uk(j) + v, and z = vbeween 4
Ukm. By assumption, x — y > 0 such that EAJ(n) < 0. This remains true
for any other time ¢ while i and j are in the system. Therefore, EJrro <
Ednot-rFro. O

PROOF OF PROPOSITION 2. From Assumption 1 that A* (S*) is increas-
ing, we can infer that the associated time-scaled arrival (service) epochs
{n=1U"(i): i € N} become dense in [0, 1], and thus

(63) n! sup uj; >0,
1<i<Am™(n)

(64) ‘ n! sup vj; > 0.
1<i<8"(n)

Therefore, using ¢ — sup;_; an) U3 ,; < UR(AR(2)) < ¢ (and likewise for V and
S), we have that a counting process and its associated partial sums process
are (asymptotically) inverse processes:

(65) nlU"cAone — e,

(66) nlV*oS"one — e.

Thus, the convergence main assumption implies the expansions (23) and (24).
[It follows directly that n~1U"o nA*oe — e and thus U"(n-) = nU™(-)+o(n),
where U* — U* = A*". Because A*" € €1, we can choose a continuously
differentiable function for U” (the expansions are only unique in the limit),
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from which the bounded second order term follows directly by Taylor expan-
sion.] The limits in (23) and (24) can be expressed in terms of the limits of the
associated counting processes

o > 0" = &,
Vs V=8,
A*x . Ax"1
o AAT
Ao Ax?
V"—-)V*:-———S O§ o
o S*
Notice that U*, V* € ¢! and U * Ve d. Moreover, we can choose
(67) Ur=A"" and V'=8"".
From (7), it follows that L™ has the expansion
(68) L™(nt) = nL™(t) + n'2L"(t) + o(n'/?),
where [using V¥ (-) = 1/u(8*(-)) € €]
(69) L" = R" —» R*,
(70) L" —» L* = (V¥ o A*)A* + V* 0 A™.

From (17) and (69) it follows that the total workload netflow process X" =

L" — e is of order n'/2:

(71) X"(nt) = nY2X"(t) + o(n'/?),
where

(72) X" =L" + n'*(R" —e) » X* = L* +&.

From the continuity of the reflection mapping ¢ (cf. Harrison [11]) it follows
that the total workload process W” = ¢(X") has expansion

(73) W™ = n2W" + o(n'/?),
where
(74) W2 = ¢(X") > Wr = o(L% +&).

The latter implies that the (class) workload process W” is also of order n'/2
such that we have (25) and lim sup,, | W"|| is bounded by |W* ||, which is finite

“(because W’; € €), but W need not converge. From (8), (68) and (25), it follows
that 7™ has expansion (22), where

(75) T" — R,

(76) ™ + W™ = L*.
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Thus, like lim sup Wn, lim sup " is ‘bounded, but T need not necessarily
converge. Moreover, convergence of 7" is equivalent to convergence of W".
Given the expansions of A”, S*, W™ and T", using (5) and (10), we have that
both N™ and 7" (under class FIFO) are of order n'/2 as stated in (21) and (26).
Using the convergence and differentiability assumption of S* together with
the boundedness of lim sup 7™,

77 N"= A" —§"o R" — (wo R™)T™.

Also, from (27), (26) and Assumption 1, it follows that

(78) Tt +n e (nt)) — TH(t) = pr(t)n~17%(nt) + o(n=22),
so that (10) yields

(79) W" = p 7" + T2t + n~ 77 (ne)) — TH).

Again, lim sup N” and lim sup 7" are bounded but N” and 7" need not neces-
sarily converge. However, their convergence is linked, yielding (35).

To show (33) and (34) we need the following lemma (which is a generaliza-
tion of Lemma 3.3.c. in the seminal work of Iglehart and Whitt [16]).

LEMMA 1. If U3, U% € €, then n™Y2supy_;i an(n, up, — 0.

PROOF. From U? — U3, it follows that n=Y/2(U? on — nU}) — U*. Define
the maximum jump function 2: 2 — R,: x — h(x) = sup,[o,1; | x(t)—x(t-) |.
Because £ is continuous at any x € ¢, h(n_l/z(UZ on — nlj’,;)) — h(l};).
Because U and U % are continuous, this yields n=Y/2h(U% o n) — 0, which
finishes the proof. O

The assumptions of this lemma are satisfied for both U” and V", which
concludes the proof of Proposition 2. O

PROOF OF PROPOSITION 3. Denote by UZ(O) the amount of service, if any,
already given by time ¢ to the oldest class % job. We have that

(80) Wi(t) = VR(AL(t)) — VE(A(t) — N(2)) — v}

8)  =nVi(nANY) — VL TARE) — n o NLE) + o(N3(2) — v}
(82) = Vi (n " A(O)NY(0) + o(N(8)) - v},

and thus

(83) Wi(t) = Vi (Ap(0)N3(0) + o(N(8)) — V203,

Thus, because lim | V% o A%l < oo,

(84) IW2 — (V% 0 AT) N2l < o(|NEI) + 12 sup v},

lging(n)
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Using Proposition 2 and noting that (17) implies that ‘7};' 0 A" — ,u,;l — 0 ends
the proof. O

PROOF OF PROPOSITION 4. Define Cg, Cy, C7 as follows (recall that 7}, ; rep-
resents the throughput time of the ith class % job in the nth system):
A7 (nb)
n3P(ANb) - Af(a))Cr= Y. %,

i=AZ(na)

n®2(AMb) — Aa))C" = /nb N%(¢)dt,

_ B A" (nb)—N"(nb)
n®2(Ap(b) - Ap(@)Cy= Y. .

i=Af}(na)

The quantities on the right-hand side may be thought of as three different
charging schemes where jobs pay one dollar per unit time spent in the system.
Scheme C7; charges the entire job cost at the job’s arrival, C7 at the job’s
departure and C? charges continuously. It is clear that

(85) Cr<C}=<Cy.
Further,
_3/2 A% (nb)
n __ n __ n / { n
a d— Zn(b) K”( ) Thi
r\0) = AplQ) = A" (nb)- N (nb)+1
n-3/2
< =———=——Nj(b) max Thi
A%(b) — A%(a) Aj}(nb)—Np(nb)+1<i<Ap(nb) ™

n-1/2
<=
- AR(b) - Aj(a)

and, using Proposition 2,

N7 + o(n~Y?)

86) lim C* — C" = 0.
Since

nb b
@87 n-3/2 /n N(¢)dt =/a N (¢)dt + o(1),

taking lim in (85) ends the proof. O

PROOF OF PROPOSITION 6, THE LOWER BOUND. Fix ¢ > 0 and, forany n € N,
consider the sequence of stopping times of W* , {¢;: i € N}, defined as follows:

(88) t1 = min{1,inf{0 < ¢ < 1: |[W%(¢) — |[W*(0)/¢]e| > &}},

(89) tiv1 = min{l,inf{t; < ¢ < 1: [Wi(t) - Wi(&)| = }}.
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Thus ¢;,1 is the first time W* changes by & starting from w* 1(¢:) at time ¢;.

Because W* is continuous, sup;(¢;11—¢;) — 0 as ¢ — 0, so that sup;(¢;;1—¢;) =
O(e). Using Jensen’s inequality for convex functions, we have that

90) =3 f n(r2)nt AT

z Zk: Z[n_l[A’I:(tHl) — AL(t)]
<o [ 10

Us1ng Assumption 1 that n=1A"(n.) —> A*, W1th continuous first derivative
A¥ = )\, we have that

(92) nHAM#i1) — AM(8)] = A (fi41) — A (%) + 0a(1)

(91)

(93) = Mt;)(tip1 — ti) +o(e) + 0,(1),

where 0,(1) — 0 as n — oo, and both bounds 0,(1) and o(¢) are uniform over
[0,1]. Thus,

Jr s zz[wti)(tm — 1) + 0(e) + on(1)]
ki

ntiy
x C} (n_l[)t(ti)(ti+1 —t;)+o(e) + on(l)]_lf ' T dA’,;)].
nt;
Evaluate the argument of C}, as follows:

nty1
n LA (i1 — £3) + (&) + 0n(1)] ! / ™ dAD
nt;

= n ) s~ 0) (o) +0n (D] [ 7 dA

[(x+Ax) =271 — Ax + 0(Ax)]
= nV2( A (biar — )] / N”dt+o(a)+on(1)>

(Proposition 4 + N™ is bounded)

2 ([AGE) (bias — )] / ukW"dt+o<a)+on<1))

(Proposition 3)
= (Lt + O NAU (i1 = e [ Wit + o(e) + (D))

(w is continuous)

=n'2([pr(t:i)(tiz1—t:)]~ / W" dt+ O(e) +on(1)) (W” is bounded).



THE GENERALIZED cu RULE 831

Assumption 2 and the continuity of C3 on [0, || V~V1 || ] together with the bound
lim sup W”" < ||Wi|| yield

i

I > 3 M) (frar — t,->c;;<pk<ti)-1<ti+1 oyt [ v‘v;;(t)dt)
ki 4
+ 0a(1) + O(s)
> 5 Alt)(tigs — ti)c;;(pkui)-l[go (i1 — 1) /t "t o W:]kui))
ki

+ 0n(1) + O(s),

where we invoked the mapping g. Using the fact that Wﬁ — Wi and the
construction of the stopping times #;, we have that

tivi . ~
(94) (tip1— ti)_lft_ Wi(t)dt = W3 (¢) + O(e) + on(1).

The continuity of C}; and g on the bounded interval [0, ||W1 |I] gives a uniform
bound

95) J" = 33" M(t:)(tivr — t)Ch(pr(ti) ™ g 0 WE],(£)) + O(e) + 0a(1),
P

and, thus,
(96) liminf J* > 373 Aw(ti)(tis1 — t:)C;(pa(t:) " [g 0 W3], () + O(2).
ki

The left-hand side is independent of ¢. Therefore, since ¢ is arbitrary, letting
& — 0 [which implies sup;(¢;+1 — ¢;) — 0] and invoking the definition of the
Riemann integral [since the function Cj( gk(Wj(-))) /pr(+) is continuous on
[0, 1], it is Riemann integrable] completes the proof. O

PROOF OF PROPOSITION 7. We will first show that 7™ converges. Fix a class,
say j, and define the sequence of scalar functions {A": n € N}, where h"(¢) =
p,j(t)c;(pj(t)‘lW;?(t)). The policy shows that for all ¢ > 0 there exists an
integer N such that for all n > N,

|ch(pr()TTWR(2)) — mp (DA™ (2)] < &,

for all ¢ € [0,1] (because ur > 0 is bounded on [0, 1]). According to Assump-
tion 3, ¢}, is increasing and continuous. Therefore, its inverse function cj,;‘1 is
also continuous on [0, 1]. Thus, for all & > 0 there exists a (uniform) § > 0
such that if £ < §, then

(T W) — ¢ (my (DR (D)] < &

Summing over the (maximally d) classes k,

|| W () — Zpkmcz”(f;—((j;)

k

< lplé'd.
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Because the marginal costs are increasing and W’ converges, A" and thus also

Wn converge. The policy controls the workloads such that W* is the solution
to the sufficient first order conditions of the m1n1m1zat10n problem (43). Thus,
W*=go W* and Proposmon 5 shows that J" — J*.
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