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POLLING SYSTEMS WITH ZERO SWITCHOVER TIMES:
A HEAVY-TRAFFIC AVERAGING PRINCIPLE
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AT & T Bell Laboratories; Institute for Problems in Information
Transmission, Moscow; and AT & T Bell Laboratories

In polling systems, M > 2 queues are visited by a single server in
cyclic order. These systems model such diverse applications as token-ring
communication networks and cyclic production systems. We study polling
systems with exhaustive service and zero switchover (walk) times. Under
standard heavy-traffic assumptions and scalings, the total unfinished
work converges to a one-dimensional reflected Brownian motion, whereas
the workloads of individual queues change at a rate that becomes infinite
in the limit. Although it is impossible to obtain a multidimensional limit
process in the usual sense, we obtain an “averaging principle” for the
individual workloads. To illustrate the use of this principle, we calculate a
heavy-traffic estimate of waiting times.

1. Introduction. A polling system consists of M > 2 queues visited by a
server in cyclic order. In the traditional system studied here, the server
remains at a queue serving customers in first in—first out (FIFO) order until
none remains, the case of exhaustive service. When a queue is empty on the
server’s arrival or when it becomes empty after the server finishes the last
waiting customer, the server moves instantaneously to the next queue in
sequence. That is, we assume zero switchover (walk) times, thus confining
ourselves to applications (e.g., certain of those arising in computer /communi-
cation settings) in which this is a useful approximation.

In the stochastic model studied here, independent arrival processes are
assumed for the M queues. Each arrival process consists of a sequence of i.i.d.
interarrival times drawn from a given general distribution that may vary
from one queue to the next. Service times comprise a sequence of i.i.d. random
variables independent of interarrival times and with a given general distribu-
tion, the same for all queues.

The analysis of polling systems and its many variants has a large and
growing literature. For example, see Takagi (1986) and Boxma and Takagi
(1992). Polling problems have attracted wide interest not only because of
their practical importance, but also because they couple an elegantly simple
structure with challenging analysis. The chief obstacle to explicit results is
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682 COFFMAN, PUHALSKII AND REIMAN

the interdependence of queueing processes that holds even under simplifying
distributional (e.g., exponential) assumptions. A classical Markov-chain ap-
proach must adopt a state that carries jointly the states of the M queues. An
attempt at explicit formulas for queue-length or waiting-time distributions
eventually founders, culminating typically in a system of equations that must
be solved numerically.

In these circumstances, one naturally resorts to asymptotic estimates. The
touchstone for the success of such techniques lies in the existence of limit
laws which show that the estimates are asymptotically exact. Here, we study
diffusion approximations in which the asymptotic regime is that of heavy
traffic. Reflected Brownian motions (RBM’s) approximate the total number in
system and the total unfinished work, under the usual heavy-traffic scalings.
The theory that can be called upon to support such approximations is well
developed. However, for the polling system we consider, in the time scale of
the RBM limits the individual queue-length and unfinished work processes
change at an infinite rate. As a result, the problem of formulating and
proving useful limit theorems for the joint distributions seems to be much
more difficult.

To illustrate the limit processes analyzed in later sections, consider the
symmetric, two-queue (M = 2) system and let (V,,V,) denote the limiting
unfinished work in the two queues under the heavy-traffic normalization.
Figure 1 represents the motion of the limit process (V;,V,) by a component
along the constant-work lines V =V, + V,, and an orthogonal component
along the diagonal where V varies. While V varies as RBM along the
diagonal, (V, V,) moves back and forth along the cross diagonal at an infinite
rate, the direction being determined by which of the two queues is being
served.

We estimate normalized waiting times as follows. Informally, given V = V;
+ V, a random arrival finds the process (V,V,) at a point uniformly dis-
tributed over the constant-work line V and moving in either direction with
equal probability. Thus in the heavy traffic normalization, the state seen by a
randomly chosen arrival is taken to be (UV,(1 — U)V ), where U is a uniform
random variable on [0, 1] independent of V. With probability 1/2 the arrival’s
queue is being served, in which case the waiting time is UV in distribution,
and with probability 1/2 the other queue is being served, in which case the
waiting time is UV + (1 — U)V/(1 — p/2) in distribution, where p is the
overall traffic intensity. Setting p = 1 for the heavy-traffic approximation, the
normalized waiting time is thus uniform on [0, V] with probability 1/2 and
uniform on [V, 2V] with probability 1/2, which is distributionally equivalent
to being uniform on [0, 2V ]. Thus we can write '

(1.1) . Z=20V

for the normalized waiting time.

In Section 2, a general averaging principle is formalized for the case
M = 2, arbitrary arrival rates and a general service-time distribution, the
same for each queue. Appropriately specialized, this principle underlies the
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Fig. 1. The limit process.

discussion above. Several preliminary results also appear in Section 2. Sec-
tion 3 prepares for the proof of the averaging principle by analyzing a
single-server threshold queue; Section 4 completes the proof. Extensions to
the case M > 2 and different service-time distributions at each queue are
discussed in detail in Section 5, but no proofs are given. Calculations of
waiting times are illustrated in Section 6.

2. The heavy-trafficlimit, M = 2. Consider a sequence of polling sys-
tems, each consisting of two queues, with the following parameters for the
nth system:

{&', i =1}, I =1,2, are the (independent) sequences of iid. interarrival
times at the [th queue;

A =(EgM ! and (0,")? = Var &, | = 1,2, are the rate and variance param-
eters of generic interarrival-time random variables, £*;

{n?, i = 1} is the sequence of i.i.d. service times, assumed to be independent of

the arrival processes;
w" = (En™~! and (0,")?> = Varn" are the rate and variance parameters of a

generic service time, 1"

We assume that the following heavy-traffic conditions hold:

(2.1) mA» =\, >0, [=1,2, limu"=p=A +2,
n—ow

n—ow

(2.2) lim Vo (A} + A% — p") =c,

n—o
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for some finite constant ¢, and

lim o) = oy, 1=1,2, lim 0" = o,
(2‘3) n—ow n—oow
o?= Mol + Aaf + plo® > 0.

We also assume that the Lindeberg condition holds:

lim E(£7)"1(¢! > efn) =0, 1=1,2,
(2.4) ' \
lim E(n")*1(n™ > &/n) = 0,

for all £ > 0. For later use we define p;, = A;/u, i = 1,2, as the limiting traffic
intensity in queue i.

Let Q/(¢), t > 0, 1 = 1,2, be the /th queue length and let @"(¢) = Q7(¢) +

2(¢) be the total queue length at time . Define the normalized processes
X" =(X™¢), t>0) with X"(t) =1/ Vn)Q"(nt). If X™(0) »p 0 (n - =),
then conditions (2.1)-(2.4) imply that, in the Skorohod space D[0,x), X"
converges in distribution to reflected Brownian motion with drift ¢ and
diffusion coefficient o [see Iglehart and Whitt (1970)]. The limit process is
denoted by X = (X(¢), t > 0) = RBM(c, 0 ?). The central result of this paper
is the following averaging principle for the normalized, individual queue

length, X"(t) = (1/ Vn)Q}nt), | = 1,2.

THEOREM 2.1. If X™(0) —p 0 and if conditions (2.1)~(2.4) hold, then for
any continuous function fon R, and any T > 0,

fOTf(Xln(t)) dt >, fOT(fOlf(uX(t)) du) dt, l=1,2asn - .

REMARK. The integrals above are well defined since X;*(¢) and X(¢) are
P-a.s. bounded on [0, T'].

Section 3 and the remainder of this section prepare the ground for the
proof of Theorem -2.1, which appears in Section 4. Section 3 proves an
averaging principle for a special single-server queue; this result plays a key
role in the proof of Theorem 2.1. The five lemmas concluding this section are
either well known or easily proved. We give them here for ease of future
reference. In what follows the notation —, will apply both to sequences of
random variables and to sequences of stochastic processes; the usage will be
clear in context.

LEMMA 2.1. Let X" = (X"™(t), t = 0) be a sequence of right-continuous
. processes with left limits and suppose that X" has paths unbounded above.
Assume that, for b > 0, X™(t) »p bt (n = ) uniformly on finite intervals.

(i) Denoting first passage times by F"(¢) = inf(s > 0: X"(s) > t), we have
F™(t) —»p t/b (n — ) uniformly on finite intervals.
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(ii) Let (t", n > 1) be a sequence of times with t" — t, (n — ») and define
F™ =inf(s > 0: X™(s) > t"). Then F" =, t,/b (n — ).

Ifthe X™ are increasing, the local uniform convergence in probability of X "(¢)
to t can be replaced by convergence at every t > 0.

Result (i) can be found in Iglehart and Whitt (1970) and Whitt (1980). The
version dealing with increasing X" appears in Krichagina, Liptser and
Puhalskii (1988). Result (ii) is an obvious consequence of (i).

In the next lemma, bear in mind that if E denotes a metric space, then
convergence in distribution in E® is finite-dimensional convergence.

LEMMA 2.2. Let X" = (X}, X},...),n =1,2,..., be a sequence of random
elements of D[0, )", where X]' = (X]*(¢),t > 0), k = 1,2,..., are real-valued
increasing right-continuous processes. Let " = (7],7},...), n > 1, be a se-
quence of R’ -valued random elements defined on the same probability space.
If 7" >, 7 and X} —p X,, where 7= (7,,7,,...) and where X, = (X,(t),
t>0),k=12,..., are deterministic and continuous, then X"(t") -, X(7),
where X(1) = (X(7,), X5(75),...).

PrOOF. By Theorem 4.4 in Billingsley (1968) we know that (X",7") —,
(X, 7) as n — «, with convergence being in D[0,©)” X R’ . By the Skorohod
embedding we may assume that

(2.5) (X", ") > (X,71) P-as.
Then for e>0,6>0,T>0,k=1,2,...,
P(IX(72) — Xy(r)| > #)
<P(lry — 1|l > 8) + P(r, > T)

£
(2.6) +P( sup |X7(t) — X, (¢)| > —)
t<T+8 2
&
+1 sup | X, (¢) — X,(s)| > 5)
s,t<T+8,|t—s|<éd

The X are increasing and X is continuous, so by (2.5) the first and third
terms on the right of (2.6) tend to 0 as n — . The fourth term is also O for &
small enough, by the continuity of X,,. Finally, P(r, > T) — 0 (T — ») takes
care of the second term, so by (2.6), X/(7}") —»p X,(7,) (n — «). By the
definition of the topology on R*, we have X"(7") -, X(7). The lemma then
holds since convergence in probability implies convergence in distribution
[Theorem 4.3 of Billingsley (1968)]. O

LEMMA 2.3. For & > 0, let real-valued random variables a™(¢), (&) and
y* n=12,..., satisfy a™(e) <y" < B™(e); a™(e) =4 ale), B (&) =y
B(&) (n > ©); and a(e) =, v, Ble) >, v (¢ > 0). Then y* =, y (n — ©).
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PROOF. Let x be a continuity point of the distribution of y. Then
limsupP(y" < x) < limsupP(a”(¢&) < x)

. <P(a(e) <x) »P(y<x), e—0,
so limsup, , . P(y" < x) < P(y < x). On the other hand,
11m1an(y <zx) = hmlan( B"(¢e) <x)
>P(B(e) <x) > P(y<x), e— 0.
The lemma follows. O

LEMMA 2.4. Let {x], n>1, i > 1} be a triangular array of random
variables. If, for any £ > 0,

1
hm — Z P(lxFl>¢e)=0

i=1
and
hm lim sup Z P(|xPl> k) =0,
n-ox  j=1
then

1 n

— ! —p 0.
n ,;1 ¥i ~p
In particular, if {x?, i = 1} are identically distributed, the above conditions

are reduced to

i

xf —p 0, n — o,
and
klim limsupnP (x| > k) = 0.

— C n—oow

PrOOF. The result follows either from general theorems on the law of
large numbers for- sums of random variables [e.g., see Petrov (1975)] or
directly, since if § > 0, then for arbitrary & > 8,

.

:ill(lxi"l_ E) 22) + ZP(Ix"|>k)

+P(AZ 1(lx]I> k) > 1
i=1

<P
2

12 é
2y pllar + Y P(la?
< 5n=21 (le|>2) Z (Ix?1> k),

i
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and this last term goes to 0 as n — © and £ — ® by the assumptions of the
lemma. O

The next lemma deals with the continuity of “penetration” times [cf. Jacod
and Shiryaev (1987), Section VI.2.11].

LEMMA 2.5. Let G, and G, be open subsets of R with nonintersecting
closures, and let G{ and G5 denote their open s-neighborhoods, & > 0, with
G = G, and GY = G,. For x = (x(¢), ¢t > 0) € D[0,»), define {)(x,G3) =0
and, fork > 1, T > 0 (inf & = «),

m(%,G¢) = inf(t > {,_1(x,G5): x(t) € G}), k=1,
&(x,G5) = inf(¢ > 7,(x,Gf): 2(¢) €G5), k=1
If 2 = (£(t), t = 0) € D[0, ) is continuous and, fork > 1, T > 0,
limr,(£,Gf) AT =7,(£,Gy) AT,

el

then, as maps from D[0,») to R, x = 7,(x,Gy) A Tand x = {,(x,Gy) A T,
k> 1, T > 0, are continuous at x.

PrROOF. We begin by proving that x — 7,(x,G;) A T is continuous at %.
Let G7* consist of those @ € G, whose s-neighborhoods belong to G; this set
is nonempty for £ small enough.

Our first observation is that, for x € D[0,»),

(2.7) lingfl(x,G{g) = 7(x,Gy).
el

Indeed, since G;® € G,, we have that 7(x,G;°) > 7/(x,G,). In particular,
this proves (2.7) if 7(x,G,) = ». If 7(x,G,) <, then, for some 6> 0,
x(r(x,G,) + 8) € G, and, since U , , , G; * = G, we have that x(r,(x, G) +
8) € Gy* if ¢ is small enough, so 7,(x,G;) + 8 = 7,(x, G *). Since & can be
chosen arbitrarily ‘small, we conclude that 7,(x,G;) > limsup, ,7,(x,G1°).
The limit (2.7) is proved.
Now let x" = (x™(¢), ¢ > 0) converge to £, as n — . In particular, since £

is continuous,

lim sup|x™(t) —x(¢)|=0.

no®4<T
Let & be arbitrary but small enough so that G;* is nonempty, and let n be
such that

(2.8) fu¥’|x"(t) —#(t)| < e.

Then, since £ € G;° implies x" € Gy,
(x",G) AT <7 (%,G;°) AT
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and, by (2.7),
limsupr (x",G;) AT <7(%,G,) AT.
n—-x
On the other hand, under (2.8), x” € G, implies £ € G%, and hence 7,(x", G,)
AT > 1(%,G;) AT, and by the conditions of the lemma,
liminfr,(x",Gy) AT = 1,(£,G;) A T.
n—wx
The continuity of 7,(x,G;) A T at £ is proved. Replacing G, by G, and x(¢)
by x(¢ + 7(x,G;) AT), ¢t > 0, we get that x - {,(x,G,) A T is continuous
at %.
The proof is concluded by induction if we note that, for x € D[0,») and
k> 2,

(%,G)) AT = ({(%,Gy) AT+ 7,_1(2,,G,) AT) AT,
L(2,Gy) AT = (4(%,Gy) AT + & 1(21,G) AT) AT,

where
x(t) =x(t + {(%,Gy) AT). O

3. The threshold queue with exceptional arrivals. In this section
we prove an averaging principle for a single-server queue, called the thresh-
old queue, which provides a critical element in our analysis of polling
systems. The threshold queue is basically the standard FIFO single-server
queue except that, for a given parameter A > 0, busy periods of the threshold
queue begin only when the queue length first exceeds #4; busy periods
terminate in the normal way, whenever the queue becomes empty. We say
that the server switches on when the busy periods begin and switches off
when the busy periods end. Those periods during which the server is switched
off are called accumulation periods; such a period includes the usual idle
period plus a period during which arrivals are accumulating in the queue. An
accumulation period and its following busy period make up a cycle.

Threshold queues correspond in the obvious way to the queues in our
two-queue polling system; for example, the accumulation periods of the
threshold queue representing queue 1 correspond to the busy periods of
queue 2. In our general approach to the proof of the main result (cf. Theorem
2.1), the time interval [0,T] is divided into subintervals sufficiently small
that the total number in the system remains approximately constant during
each. Then, during a subinterval, the behavior of each queue is approximated
by that of a threshold queue. The main result of this section (Theorem 3.1)
shows that a threshold queue also obeys an averaging principle. The averag-
ing principle for the polling system is derived as a consequence of the
averaging principles of the threshold queues defined for the subintervals.

Consider a sequence of threshold queues indexed by n. With the exception
noted below, interarrival and service times form independent i.i.d. sequences,
where generic interarrival and service times are denoted by £" and 7%,
respectively. The threshold for the nth queue is A" = |Vn a”], where a” is a
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given constant. Assume that
(3.1) sup E( f”)z < oo, supE(n")2 < oo,
n n

and, letting A" = (E£™)™! and u* = (En™)~', assume that
(32) limA"=2A>0, limu'=wp>0, lima"=a>0, A<p.
n—x n—© n— o

For technical reasons to be made clear later, we will need a slight general-
ization of the renewal arrival process determined by ¢ for the nth threshold
queue: within each busy period, at most one of the interarrival periods is
allowed to be exceptional, that is, have a distribution other than that of £".
We make no specific assumptions about the dependence of exceptional inter-
arrival periods on other quantities, but we assume they are bounded, as
follows. _

For each i > 1, we define a nonnegative random variable £" and an
integer-valued random variable y;* that correspond to the ith cycle. Specifi-
cally, if the ith busy period has at least x arrivals, then the x;"th arrival is
exceptional and the duration of the latter is taken to be ¢”. There are no
exceptional arrivals if the busy period has fewer than y," arrivals. We
assume that there exists a family of sequences {{"(r), i > 1}, r >0, of
identically distributed nonnegative random variables such that

1
—{M(r) »p 0 asn >»,r>0,
‘/; gl ( ) P
(3.3) .
lim limsup Y, P(&" > ¢"(r))=0, t>0,

r—o n—o i=1
and that the joint distribution of the ¢,"(r), the normal interarrival times and
the service times in the ith cycle does not depend on i. We also assume that
the time of the first arrival, which we denote by &', may have a distribution
different from that of the generic interarrival time and that
24
Vn
Introduce X"(¢) = Q"(nt)/ Vn , t > 0, where Q"(¢) is the queue length at
¢, and assume that X™(0) = 0.

HP O-

THEOREM 3.1. Let f(x), x € R, denote a bounded continuous function. If
conditions (3.1)-(3.3) hold, then for any T > 0,

fOTf(X"(t)) dt —p T]:f(au) du asn — .

ProoF. The proof consists of suitably applying the law of large numbers
given by Lemma 2.4. This would be almost straightforward if the cycles were

" identically distributed and we could apply the identically distributed version
of Lemma 2.4. However, since the threshold queue being considered does not
follow exactly the same probabilistic law during each cycle (because of
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exceptional interarrival times), we have to apply Lemma 2.4 in all its
generality, and this creates quite a few technical difficulties.
Define the times illustrated in Figure 2:

Yo =0,

a =inf(t >y~ : Q"(nt) = 1), ix>1,
Bl = inf(t > vy 11 Q™(nt) > k"),  i>1,
v =inf(¢ > B": Q"*(nt) =0), ix>1.

Note that the B start and the y* terminate busy periods.
We prove that

(3.4)

1 1
(3.5) Yl ~p a(x + M—)\)t asn — o,
and
Vi 1 1\ e
(36) [TVUF(X"(s))ds »p t| < + [Fw)du asn -,
0 A mw—A)Y

which immediately give the assertion of the theorem.

For i > 2, denote by £" the time between vy, and the first arrival after
vl 1, that is, " = o — v/ ,, and denote by {¢%' k> 1} and {¢§M2, k> 1)
the ii.d. sequences, with generic random variable ¢”, from which normal
interarrival times on [ o, B"] and [ B/, & 1], respectively, are taken. Simi-
larly, let {n/*,, £ > 1}, i > 1, be service times on [ 87, y"*]. Note that by the

0!
R = |VAar) 4
| :
1 1
1 [
1 1
1 ]
1 1
1 1
1 1
1 ]
1 1
1 1
1 1
1 1
1 ]
1 1
1 ]
1 1
| |
0 f 1 U T T
at B M af 8y R/
t—
I uf 3 | ; Uf > I < u{»' _»I*'_ vy —),
¥ =0

Fic. 2. Notation for Theorem 3.1 (sample paths shown are rough sketches).
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conditions of the theorem, the distribution of {{,"(r), §i’,';el M l=1,2,k =1}

does not depend on i = 1,2,... .
Define, for i > 1,

(3.72)  AM#)=1(&"<t)+ f 1

(3.7b)

o k
(3.7)  SHt) = ¥ 1( ) m’ijt)-
k= j=1

1

Note that A? = (AX¢), t > 0) is the arrival process on [y, B"], B} =
(B(t), t = 0) is the arrival process on [ B/, y*] and S} = (S}(¢), t > 0) is the
service process on [ B, y1.

In a sense, the Ei", i > 2, also represent exceptional interarrival times,
since they are distributed differently from ¢". We prove that they satisfy
conditions similar to those imposed on &".

LEmMMA 3.1. Forr > 0, let

Zin(r) = max 5[512,1@: i>2.
1<k<lrym]
Then, as n — o,
7 n
z‘/(Er) 0, is2,
and
Lty ]

lim limsup ), P(Ei” > Zi"(r)) =0, t>0.

roow n— o i=2

Proor. The first limit follows by (3.1). For the second, note that if
£" > Z(r), then the number of arrivals in [ B ;, y"] is at least | #Vn |, which
can only happen if the time needed for B/ ,(¢) to reach |r/n | is not greater
than the time taken by S ,(¢) to become equal to |7Vn | + A" + 1. Therefore,
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accounting for the possibility of an exceptional arrival in [ B , ¥*], we have

lemr eyl (Lryl—1 Lrym I+ A+ 1
)y P(gi" > 4’"(")) < L Pl X &< )y nin—l,k)
i=2 i=2 k=1 k=1
l"\/;l_]—l P -1 + ny—1
<t/n|P| ¥ 51’",35( ) (") rn
R=1 2
[r‘/F]+h"+1 An -1 + ny—1
[T s O 2(u) ﬁ)]
k=1

On centering the sums in the events on the right-hand side and applying
Chebyshev’s inequality, we get that, for r large enough,

leyn] B _ 5
Zp(gi">§in("))5t‘/;l_ ) PN
(O =) )T

(A= (s
( _

1
5 rvn Var ¢'2
n )

-2

NZ—(wq*mn+n)

X(r/n + h" + 1)Varn},

and that the latter tends to 0 as n — © and r — « by (3.1), (3.2) and A" =
Vna"] O

For homogeneity of notation, we further set {/)(r) = £'. We now return to
the proof of the theorem. Introduce the event

ltyn |
r(ry= N {& < ¢™(r), & <L)}

i=1
Since by (3.3) and Lemma 3.1, P(I'"(r)) > 1 as n —» © and r — «, it is

enough to prove (3.5) and (3.6) on I'"(r).
Define the interval lengths (see Figure 2)

ul =B" — v 1, vt =" - B", i>1,
so that by (3.4) and (3.7),
u} = inf(t > 0: A}(nt) > h"),

(3.8) -

v = inf(¢ > 0: S}*(nt) — B(nt) > h")
and ]
(3.9) v = v =up ol

Limit (8.5) on I'"(r) is proved by reduction to the identically distributed case
of Lemma 2.4. Since (y/ — ¥, i > 1) are not generally identically dis-
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tributed, we first construct suitable upper and lower bounds. Informally, the
lower-bound process results from taking £" =0 and &" = {"(r), and the

- i

upper-bound process results from taking £” = {"(r) and £ = 0.
In analogy with (3.7a, b), formally define (since r is fixed, it is omitted in
the new notation below)

w k
A(t) =1(gn(r) <t) + kZ I(Zi"(r) + Y gmt < t),
=1 j=1

ES] k
A(t) =1+ ) 1( Yt < t),
k=1 \j=1
(3.10) B \
BMt)=1+ ) 1( Y P < t),
k=1 \j=1

% k
BI(1) = kzll(z,-"m T t),

and define as in (3.8) and (3.9),
@} = inf(t > 0: A}(nt) > h"),
u? = inf(¢ > 0: A?(nt) > h"),
o = inf(¢ > 0: S}(nt) — B!'(nt) > h"),
v! = inf(¢ > 0: S}(nt) — B (nt) > k"),

(3.11)

and

i i
=L@ +), y=L(wty) izl
(3.12) j=1( Fren) B J‘=1( Frep)

Since &" < [M(r), " < {™(r), 1 <i < tVn, on T"(r), we have by (3.7) and
(38.10) that, on I'"(),

Aj(t) <Aj(t) <AN1),

B(t) < BM(t) < B'(¢),

and hence by (3.8) and (3.11), for 1 <i < tVn,

(3.14) u <ul <u?, v;<v'<v’ onI*(r),

and then by (3.9) and (3.12), for 1 < i < tVn,

(3.13)

" (3.15) YA Sy Y <Y Y, on IT(r).

Now we prove (3.5) for ¥, and y['z,; this will imply (8.5) for ') on
I'"(r). Consider the lower-bound process. The proof for Yt is similar.
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First note that, by (3.10) and (3.7¢),

Al(t) = inf| : Z§L"1>t

* k+1
B (t) = infl k: £2(r) + 2§n2>t)

k+1

j=1
Since {§l w, B >1},1=1,2 arei.i.d., we have by (3.1) and (3.2) that
v : i t
Wl Z fi’,l}al —p X’ I = 1’2’ Wl Z ni',lk -
nog=1 nop=1

and hence, with the use of the first relation in (3.3), Lemma 2.1 and (3.11)
yield

1
f (‘/_t) ﬁgi"(‘/;l_t) —p AL,
a
(3.16) f Fnt) op e, Vrul op o
a
\/;l_l_)in —p , 1> 1,
mw—A
and then, by (3.12),
1 1
(317) ‘/;1_(_'Yin — '_Yin—l) —p a(x + m‘), 1> 1.
Since
1 lyntl

]ﬁ/ﬁt] Z ‘/_(’Yk 2’1?—1)

and since ('yl — Y, 12 1) are 1dent1cally distributed by construction, we
would have, in view of Lemma 2.4,

1 1
(3.18) Yy ~p a(x + " )\)t
provided
(3.19) lim limsupyn P(Vr (vf' — ¥§) > &) = 0.
n—w

By (3.12), this would follow from -
I}lm lim sup \/_P(\/_ > k) =0,

n—oow

(3.20) hm hmsup\/_P(\/_v >k)=0.

—)00 n—oow
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We prove only the second of these limits; the proof of the other is similar and
somewhat easier. By (3.11) we have

P(fwot > k) = P sup (S1 (V') — Bi (Vo)) = w)

(3.21) " <P(S{(Vnk) - Bi(Vnk) <h")
<P(Bp(Vnk) > 3(A\" + u")Vnk)
+ P(Sp(Vnk) < k™ + (A" + p")nk).
Since by (3.10),
LA™+ u™)/2)nk]
Y £l < \/Ek),

Jj=1

P(By(Vnk) > 5(X\* + p")Vnk) <P

and by (3.7¢),
A"+ u™)/2)yrk|+Rh™+1

> nf,j>¢7z‘k),

Jj=1

P(Sp(Vnk) <h" + 3(A" + p")Vnk) < P

we have by (3.21), in analogy with the proof of Lemma 3.1, that for some
C>0, k>4a/(pu— M) and n large enough, yn P(Ynuv} > k) < C/k, thus
proving (3.20) and hence (3.18). This ends the proof of (3.5). Note that the
proof for " /] also invokes Lemma 3.1 to get analogues of (3.16).

To prove (3.6) on I'"(r), we apply the part of Lemma 2.4 dealing with
nonidentically distributed summands. That is, we prove that

1 lyn't
lim I ZP({

n—w

1 1
(322) —(X-l- /.L—)\)

\/_j"" f(X"(s)) ds

>8}ﬂl"”(r)) =0 ife>0,

X ]0 f(u) du
and

lynt]
(3.23) hm limsup Y P({\/E >k} ﬂI‘"(r)) -

n—x i=1

[7 1(x(5)) ds

Note that (3.23) is easy: by the right inequality in (3.15) and the boundedness
of f, we have, letting | - || denote the sup norm,

lynt]
limsup ) P({\/;z_

n-o% =1

> k} N F”(r))

jy ff(X"(S)) ds

el
< limsup Y, P(\/E(?,-” =¥ )IFlI > k),
now =1
which tends to 0 as £ — « by an analogue of (3.19) for 3 and by the fact that
the (% — % 1), i > 2, are identically distributed.
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By (3.9), (3.22) would follow if

(s +7v"1))ds

lyntl
lim ‘/1_ ZP({

n—ox

—Xfoaf(u)du >g} mr"(r)) =
and
lim — m vn [ CA(X"
(3.24) grw— ({‘ ff( (o + B0)) s
—M_Aj;)f(u)du >a}ﬂF”(r))=

These limits have similar proofs; we prove only (3.24).
First, by the second set of inequalities in (3.14) and the fact that {7;", i > 1}
and {v}, i > 1} each consist of identically distributed random variables, for

§>0,1<i<t/n,
a
_A‘>8}0F"(r))

il

P 2 5| +P 4 )
< > >
: = =
and hence
‘ 1 lmtl a
lim su P >86yNITY(r
n—>°°p ‘/_ Z ({ - A‘ } ( ))
. p n
(3.25) s tlll’fl_)sol;lp ( Y > 8
a
+tlimsupP( Vnup — ‘>6
n—o M A

=0,

where the last equality follows since Vn v} —p a/(pu — A) [see (3.16)] and
Vno? —»p a/(u — M. [The latter is proved analogously to (3.16).] Next,

7

> s} N F"(r))

1 a
(s + Br)) ds = —— [/ f(w) du

_P({foﬁv,’ma/(u—)\) f(X”(—‘/% N Bi"))
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—fla—(pn—Mu)

P({ i)\ > g} nr"(r)).

By (3.25), 1/Vn times the sum from 1 to |#V/n | of the second term on the
right tends to 0 in probability as n — , so the proof of (3.24) will be finished

du > g} N F”(r))

by proving
o el -]
(3.26) “fa = (m— V) du>§}
nr"(r)) -

We prove first that, for n > 0,

1 lyn't] u
hmsup Z p { sup X"('— + Bin)
‘/_ u<ynvlfAa/(u—2A) ‘/;1’_
(3.27) ~(a-(n-Nu)|> n}
ﬂF"(r)) =
By construction,
h"+1  Bl(nu) — S!'(nu)
X"(u+B) = + u € [0,v7],

Vn Vn ’

and so, since A" = |Vn a"|,

p > n} N F”(r))

Xn(% + Bi") —(a—(pn—MNu)

{ sup
usynvlna/(p—A)

B}(Vnu
<P sup M—Au > 2 NnIre*((r)
u<a/(p—2A) ‘/;L_ 3
Sr(Vnu
+P sup ( ) - pul| > 1
u<a/(p—2A) ‘/; 3
1 l\/h_a"] +1 ) ]
v 73

Since the distributions of (B(t), t > 0), (B(t), t > 0) and (S*(¢), t > 0) do
not depend on i, we conclude from (3.2) and (3.13) that the left-hand side of
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(3.27) is not greater than

1 _
tlimsupP( sup |——=B!(Vnu) - Au|> —11)
nos \uza/(u-n|Vn 3

o 1 n

+ tlimsup P sup |—=Br(Vnu) - du|> -
n—ox u<a/(p—»A) \/; 3
) St(Vnu) n

+ tlimsup P sup —_— = uu| > =/,
nos \usa/u-nl V0 3

which is zero by (8.16) (the same relation obviously holds for both B} and
u
Xt v ) - (= (w - 2w)

B); (3.27) is proved.
Now on the event
sup <7y,
{us‘/ﬁvi"/\a/(p‘—)\) ‘/;1'_ }
we have that X™(u/Vn +B") <a+mn, uel0,Vnv? Aa/(n—MN] and,
therefore, for u € [0, \/ﬁ_v{’ Aa/(u— N,

xe( )] -t (w0

where w:(8,T) is the modulus of continuity of f on [0, T] for partitions of
diameter 8. This implies by the continuity of f that, for all n small enough

and for all i,
sﬁ

dx%§%+ﬁﬂ)—ﬂa—<u—nw

< wf(’?,a + 77),

Xn(—\/% + .Bi") —(a=(r—-Mu)

{ sup
u<ynvlra/(pu—»X)
c {f‘/ﬁv{'/\a/(p‘—)\)
0

so for n small enough

ynvlaa/(p—2A)
el

d -
<
u =< 2 ’

fol )

—fla—(p—Mu)

du > g} n l"”(r))

u
<P X(_\/T-'-Bl)

—(a = (n—=2Mu)

{ sup

usynvlrna/(p—A)
> 77} N F”(r))

and (3.26) follows by (3.27). Thus (3.24), (3.22) and (3.6) are proved. This
completes the proof of the theorem. O
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REMARK. As can be seen from the proof, it is not necessary that two
interarrival times be independent when one is taken from an accumulation
and the other from a busy period. The only thing that matters is that
interarrival times within each busy period and each accumulation period be
independent (except, perhaps, for exceptional interarrival times). The theo-
rem still holds under this milder condition. This observation will be exploited
in the proof of Theorem 2.1.

The limiting behavior of virtual waiting times W"(¢) in the threshold
queue is given as follows. [Note that W *(¢) is not the unfinished work at time
¢t unless the server is switched on at that time.]

THEOREM 3.2. Under the conditions of Theorem 3.1,

T [ W*(nt) 1 [au
00 gy {2
[ o (5
PrOOF. For a proof similar to that of Theorem 3.1, one uses the relations
W(t +ny) = (nu} —t) + inf(u: SP(u) > A}(t)), O0<t<nu},

W(t +np) =inf(u: S'(u) = A" + 1+ B'(t)) —t, 0<t<nv

By the above and Lemma 2.1,

Wr(Vn't + ny) a A a
—Sp — —t+ —t, 0<t<—,
Vn A M A
W"(\/;t + nBi”) At +a a
—p —-t, O0<tx< .
Vn n m—A

Continuing as in the proof of Theorem 3.1, we get

e NI

Changes of variables on the right-hand side then yield the theorem. O

4. Proof of Theorem 2.1. For convenience, we consider the first queue
(I = 1) throughout. Also, we assume initially that f is bounded and nonnega-
tive. The general case will be handled by a localization argument after the
result is shown for bounded f. Our first observation is that it is sufficient to
prove that, for all §, K, with 0 < § < K,

[TF(X()) - 18 < X7(t) <K) dt
@D 0 7 1
> [ (fof(ltX(t))du)-l(SsX(t) < K) dt.
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To see this, note that

JTT1(0 < X7(t) < 8) + L(X"(2) > K)] dt
0
(4.2)

T

-4 [T[1(0 <X(t) < 8) + 1(X(¢) > K)] dt,

0
since X" -, X and since the right-hand side of (4.2) is continuous in D[0, %)
almost everywhere with respect to the measure induced by RBM. Since

JIRE0) 15 < X7(6) < K i~ [TFXE(0)) |

< Hfll[[T[l(O <X"(t) <8) + 1(X"(¢) >K)] dt],
0
we thus obtain, for any constant n > 0,

fon(Xln(t)) ‘(8 <X"(t) <K)dt

lim lim supP(
5-0 n— o

(4.3) K=o
—fOTf(XI"(t))dt‘ >n|=0
and
lim P /T(flf(uX(t)) du) dt — fT(fif(uX(t)) du)
(44) o 0 0 0 0
‘1(6<X(t) <K)dt]|>n|=0.

By Theorem 4.2 in Billingsley (1968), the assertion of Theorem 2.1 follows
from (4.1), (4.3) and (4.4).

It remains to prove (4.1). We follow the approach outlined at the beginning
of Section 3. The heart of the argument below uses the threshold queue of
Section 3 to construct bounds for individual queue lengths.

Let £, 0 < £ < §/2, be such that N = (K — 8)/¢ is an integer and let
r(e) < e/2. We specify r(¢) later in Lemma 4.1. Let a,(¢) =8 +ie, 0 <i <
N, and denote, for 0 <i < N,

B,.(¢,i) = (a(e) —r(e),a;(e) +r(¢)),
C.o)(&,i) =(0,a,(e) —e+r(e)) U(a;(e) +e&—r(s),>).
Introduce the times
(i (e,1) =0, 0<i<N,
(e, i) = inf(_t > 4 (e,i): X™(t) € B, (&,1)),
(4.5) k>1,0<i<N,
e, i) = inf(t > 1p(e,i): X*(t) € Cp,(&,1)),
k>1,0<i<N,
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and for the limit process
{o(e,i) =0, O0<i<N,
T(&,1) = inf(t > {oq1(e,0): X(t) € B,(g)(e,i)),
(4.6) E>1,0<i<N,
L (&,1) =inf(t > 7,(¢,i): X(t) € C,(,(&,1)),
k>1,0<i<N.
Note that

@7 [70(e, 0, 8 (e, ) Nltile, i), & (e,i) =3, (k,D)#(R',i'),
and

(48) (6 <X"(t) <K) — k; é 1(t € [11(e,0), L8, 0)))

<1(6-—e<X™(t)<8)+ H(K<X"(t) <K+e¢),

and that these properties hold for the limit process X(¢) as well, that is, with
77 (e, i) and {*(¢, i) replaced by 7,(¢,i) and {,(&,1) in (4.7) and (4.8).

LEMMA 4.1. (i) With probability 1,

m(&,1) < G(e,i) on{r(e,i) < =},

and

lim P i ) <T)=0.
{0 <)

(i) The parameter r(&) can be chosen so that
(Xn’ (TI;L(‘?’ i) A T’ gkn(g’ i) A T)kzl,OsisN)
= (X, (1 (£,8) AT, 5(&,0) AT)pav.0<i<n)s

where convergence is in D[0,©) X R”.

ProOF. The first part follows by the continuity of X.
For the second part, note that, in the notation of Lemma 2.5,

T (&,1) = Tk(Xn’ Br(a)(87 i))7 gkn(g’ i) = gk(Xn’Cr(e)(g’ i))7
Tk(a’ i) = Tk(X7 Br(e)(£7 i))’ {k({;‘, i) = -Z;k(X’Cr(a)(g’ l))
Therefore, by the continuous mapping theorem, since the X" converge in
distribution to X, the desired result would follow if the maps x —

(x, B, (&,i) AT and x — {(x,C,,(&,i) AT, x € D[0,=), were contin-
uous almost surely with respect to the distribution of X. Since X is continu-
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ai(€) + € +

ai(e) T

a,(€) — e T

X7 ()

1

1
1
|
|
!
|
1
1
]
|
1
|
[
|
T

T
or ¢f KT ¥

Ny —-———————=—=——==

!
|
|
|
|
1
1
!
|
|
1
|
[
|
T
n
1

w3
D -
N3
S

Kg P

Fic. 3. First passage times.

ous, by Lemma 2.5 this is implied by
P(lim 70(X, Bysysn(£,8)) AT = 7,(X, B, (&, 1)) A T) -1,
nl0 .

P(lim{k(X,C,(e)M(s,i)) AT = G(X,Cp (2, 1)) A T) -1,
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and the existence of r(¢) satisfying the latter follows by the fact that if ¢(7),
r > 0, is an increasing process, then the number of different r’s such that
P(A&(r) > 0) > 0, where A¢(r) is the jump of ¢ at r, is at most countable;
the argument is standard [see, e.g., Billingsley (1968), Section 15, and Jacod

and Shiryaev (1987), Section VI.3.12]. O

In the sequel, we assume that r(¢) is chosen as required by Lemma 4.1.
Our next step is to construct approximations of X on each interval
[78(e, D), {*(e, 1)) that are derived from the threshold queue of Section 3; one
will serve as a lower bound and one as an upper bound. Fixing i, k£ and ¢, we

define the first passage times (see Figure 3):

inf(¢ > 7(e,i): X{'(t) = 0),
inf(¢ > k12 X3(¢) =0), j=1,

Ko

D
3
Il

(4.9) «/ inf(t > 6/*: X7(t) =0), Jj=1,

g =-inf(¢ > k10 X7(t) > a,(€) — g), Jj=1,
¢p = inflt > 67 vy XP(¢) <ae) —e+1/Vn),  j=1
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Note that nk is a service completion time for the first queue, n6/ is a
service completion time for the second queue and if ;" < ¢ »(e,1) < o, then
ny’ is an arrival time for the first queue, n¢;" is a service completion time
for the first queue and Xl”(c//j”) = Xl”(qu”) = [h/z(ai(e) -al+1l/ Vn. We
also set

v" =min(j: k},; > (e,i) A T);

v* =0 ifk}> (e, i) AT.
_ Let the arrivals on [n kg, ) be numbered successively starting from 1. Let
£l denote the time period between nk§ and the first arrival. Denote by -fl",
I > 2, the times between the (I — 1)st and /th of these arrivals. Obviously,
(&1, 1 > 2} is a set of ii.d. random variables with the distribution of the
generic interarrival time for the first queue.

Let y ! be the index of the arrival occurring at or just before ny’, j=1,
and let ,(/j”’z be the index of the arrival occurring at or just after n¢/", j > 1.
For j =1, let v be the time period between n¢; and the )"(j”’zth arrival.
Denote by {1?7]{‘1, 1>1}, j=1,2,..., independent copies of the sequence of
service times, which are also independent of {£*, [ > 1}. Again by the ii.d.
assumptions, we may assume that, for each 1 <j < v", the service times for
completions in (¢, '] are 7"}, 75, ... .

Now consider the threshold queue with the threshold 2" = [Vn (a,(¢) — &)
which has the sequence

(4.10)

Fn £n Fn n £n &n n &n
{§1a§2""9 i{'yl’vl,é\?l"'2+1’“" g;»l,vz,'f;;»?n,u-}

of interarrival times; service times in the jth busy period of this queue are
7', 1 =1,2,... . Denote by X['(¢) the length of this queue, normalized and
scaled as in Theorem 3.1. Also let B3 and % be defined for this queue as in
3.9).

Then the construction above yields

Xp(t =%y +«ly), telyrn Bl 1<i<vr,

(4.11) Xi(e) = xp(t-fr+op), ey 1<isen,

J
o= Ll - k) + (e =P, 1<j<v", ¥ =0,
=1

(4.12)
Br=9" 1+ (W — k), l<j<v", =0

The exceptional interarrival times for this queue are v{, vj,.... That is, these
are the interarrival times of the first arrivals in busy periods.
Equalities (4.11) and (4.12) and the assumption f > 0 show that

§gn S n e, AT n
(4.13) [O" f(Xp(t))dt < ffﬁwm A(XP(t))dt,

where 4" = y%, that is, X’l" represents a lower-bound process.
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Now we construct an upper-bound process X’f. Whereas we truncated the
original process X7 at the level a;(¢) — & on [7)(e,i) AT, {(e,i) A T] to
obtain the lower-bound process, here we will extend X on that interval to
level a,(¢) + & to obtain an upper-bound process (see Figure 4). Introduce

1ndependent replicas {§J ,1>1}, j>1, m = 1,2, of the interarrival-time
sequence and independent rephcas {07, 1= 1}, j =1, of the service-time
sequence.

Let

o =inf(t > k11 X[(t) > a,(e) + &) A O, j=1,

19j”=inft>0j”:X1”(t)$ai(€)+e+% , J=1
Note that Q{‘(nqoj = Q(n9") and if X(6]") < a,(¢) + &, then ¢ = J" =
6. Let %, j = 1, index the arrlval in the orlglnal queue occurring at or just
after nqo] (recall that the numbering starts from the arrival after nxg) and
let 07, j =1, denote the time between n¢/ and the j/th arrival. By
deﬁmtlon Ut < f” Also v/ = 0 if ¢ < 6"

Construct as follows a threshold queue mth the threshold A" = [Vn (a;(¢)
+ £)l. In the first cycle the 1nterarr1val tlmes 1n the accumulation period are
taken from the sequence {ér, .. fl L, €1, ...} [note that if @7 (ne?)
=h" + 1, then fl L €y, ... are not used] Denotmg the threshold queue
length at ¢ by Q(2), define

By = inf(t > 0: Q1(nt) > h").

Then nél” ends the accumulation period. If @(n¢}) < A", which happens if

ai(e) +€ +

ai(e) T

)

Fic. 4. The upper-bound process.
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Q1 (no) < h", then after nBl" the service times are %7, ) 2,..., and the
initial 1nterarr1val times are taken from {§1 21> 1} until time nBl", where

B = inf{t > Bp: Q7 (nt) = Q1(ndf")).

We then take §1 z» to be the last random variable in the sequence
{51 1y &1 2 yeun} that was actually realized as an interarrival time in
[nB1 , nB7]. In the case that @(ne?) = A" + 1, which happens if QX(n67}) >
h", we define Bl” = ﬁl" and set x;' = §1 = 0. In both cases, the first arrival
after n 3} is made to occur at time n 3} + 57, so that its interarrival time 07}
always satisfies 0] < él’"2 pe1 t op < él’"?n +1 + &% The subsequent interar-
rival times are éx?z - , and the service tlmes after nB' are the same
as for Q after ndy. The arrlval terminating the interarrival time § §

corresponds to the arrival in the original queue occurring at or after n<p2
After that arrival, the interarrival times are again taken to be §2 T 2”21, cee
untll the threshold has been exceeded [these times are not used if QMne}) =

+ 1]. After this has happened at nB2 , where
— inf{t > B Qp(nt) > k"),
and until n 3}, where

— inf(t > B7: Q7 (nt) = QF(n95)),

the service times are 93 ;, 73 o, ... and the interarrival times are §2 1 2" 2.,

[as above, these are not used if @{(n¢;) = A" + 1 and hence Br = Bl After
n By, the next arrival occurs at time n By + 4 [in both cases, 1(ne; ) =h"
+ 1 and Q7(n¢;) < h"], so that 1ts interarrival time satisfies 0§ < §2 pp1 T

vy < 2”72 noq T §X , Where § is the last random var1able * from
{«_:,92 2 £n “7,...} that is realized as an interarrival time in [nB2, nBs] lagain
é 2 0 if @(ney) =h"+ 1 and hence B2 = B2]. The subsequent

1nterarr1val times are éx’; FETURR ;’g, and the service times replicate those
after ndy. After the last of the above arrivals the cycle resumes.

That this is indeed a threshold queue with generic interarrival and service
times distributed as in the original queue follows by the next lemma; the
proof is routine and left to the reader.

LEMMA 4.2. Let {&1,i > 1) and {£2, i > 1) be identically distributed i.i.d.
sequences. Let £&!,1=1,2,. be measurable with respect to a o-field &, the
latter being independent of §i1+1, Lo ..., andof{&2,i>1).If x=0,1,.

a stopping time with respect to the flow (%, i> O), then the sequence
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{¢l,.. ,§X,§1,§2, .} has the same distribution as {¢}, i > 1}, where by
deﬁnltlon{§1: o,fx,fl,'fz, = {512, 'fzz"--}’ if x=0.

It is readily seen, as an application of the lemma, that {52”, ceey

~

fl L E, ...} and {§1 s fl")-(z{, s &prts gp e} are iid. sequences,
and that the service times in each busy period form an i.i.d. sequence. This
proves that the interarrival and service times follow the same laws as in the
original queue, except for the interarrival periods &%, 07, 05,... . Note, how-
ever, that the two interarrival sequences above are generally dependent. Still,
this will not prevent us from applying Theorem 3.1 in view of the remark
after its proof.

Define X(t) = Q(nt)/ Vn to be the normahzed and scaled queue length
in the above threshold queue, and let BL and " be defined for this queue as
in (3.4) (which agrees with the earlier deﬁmtlon of A and BJ). By construc-
tion,

O
(e, DAT

(4.14) < (O f(Xp(e)) dt

e, DAT
e, i)NT n gn -
R CHONL S A (C A QI

where 97 = 2.
We now check that X7 and X} satisfy the conditions of Theorem 3.1. We
need focus only on the parts related to exceptional interarrival times and the

times of the first arrivals. Define

fj”(r)= max §n1+l, Jj=1,r>0.
1<i<|ynr]

Noting that {f g L2 1} is distributed as {£”, I > 1} and that vl < § 2,
one can prove in analogy with Lemma 3.1 that {v], § "(r), j = 1} satlsﬁes the
conditions of Theorem 3.1. Similarly, £/ Vn -, 0 Thus, the conditions of
Theorem 3.1 hold for the lower-bound process.

For the exceptional interarrival times {0], j > 1} in the upper-bound
process, the argument uses the random variables

fj"(r)= max §~X + T max .A~”’2’
1<i<lynr] 1<l<l‘/nrJ

»where ;" indexes the ﬁrst arrival in the original queue after ;" ;, and the
inequality 0 < § + fl T Again a formal proof is worked out as in
Lemma 3.1. The ﬁrst 1nterarr1val time is again &{'. We conclude that Theo-
rem 3.1 holds for X} and X7.
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Next, by (4.13) and (4.14) we have the bounds
fo“’ f(X7(t)) dt

e, DAT
< F(X](t))dt
(4.15) [T,:(g,nm (X7(®))

< foénf(X'l"(t)) dt + k¢ AT = 12(e,i) A T]IIf]
+[ & (e,i) AT — k5 A T]IFIL
Define
" = min(j: 774, > {(e,i) AT = 17(5,i) A T),
Pt =min(j: %/, > (e, i) AT — 10(&,i) A T),
and let U'(¢, i) and V;"(&, i) denote, respectively, the lower bound in (4.15)

with 3" changed to @" = %% and the upper bound in (4.15) with 4" changed
to @™ = %%. Since obviously 7" < »" < »", we have that

(4.16) Up(e,i) < [F" T r(X7(0)) db < Vi(e, ).
e, AT

We now show that

Ui(,1) =4 Up(£,1),  Vi(£,0) =4 Vile,i),

(4.17) E>1,0<i<N
where ST T
N a,(¢) — ¢ . .

Uyle,i) = m(gk(a,z) AT —1,(e,i) AT)

Xj;)lf(u(ai(e) —¢))du,
(4.18) a(e) + e
Vi(&,i) = m(gk(g’i) AT - 1,(e,i) AT)

Xj;)lf(u(ai(e) + ¢))du.

Let #"(¢) = min(j > 0: %7, > ¢) and »"(t) = min(j > 0: ¥%1>t). In the
course of proving Theorem 3.1 we established (3.5). Since X and X} meet

the conditions of Theorem 3.1, we can write for these processes, in analogy
with (3.5),

1 1
vy — t(a,; - — + ,
Yyt ~p (az(g) 8)( /\1 w— )‘1)

1 1
Yime ~p t(a;(e) + 3)(;; + " — )\1)'
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Then Lemma 2.1 yields

() t 1 1\t
— — + s
Vn Pa(e) e\ N = Ay
pr(¢ t 1 1 7!
() 1, ) |
%) m— A

n F a;(e) + ¢
whence (by Lemma 2.2, for example),
-n a;(e) — ¢ n a;,(e) +e¢
Yirey P mta Yire) m"__e .
Then by Theorem 3.1,

](‘)ﬂ"“’f()ff(s)) ds —p il — tf f(u(a;(¢) — &)) du,

ai(¢e) -
(4.19) E ;
/%""’f()f{‘(s)) ds —p i t/ f(u(a;(€) + &)) du.
0
Since 7" = p™({(e, i) AT — Tk(s, z) AT) and »" = p™({Me, i) AT —
77(&,i) A T), Lemmas 2.2 and 4.1 show that (4.19) implies
[ F(Ei(s)) ds

a;(e) — ¢

“a(e) +e
j;)wnf()fl"(s)) ds

agzi (é"k(s i) AT — 7(e, L)/\T)f f(u(a;(e) + ¢)) du.

Since |k AT — 18(e,i) A T| =p 0 and | (&,i) AT — k= A T| —>p 0 obvi-
ously hold, (4.17) is proved. Moreover, the same argument shows that

(4.20) (Xn’(Ukn(*‘:’i))kzLoSisN) _)d(X’(Uk(‘g’i))kzl,OsisN)’
(Xn’(an(g’i))kzl,OsisN) —d (X’(Vk(s’i))kzl,OSisN)‘
Next, defining
o N o N
(421) U'(e)= ¥ L UMNs,0), V(e)= X L V(e i),
k=1i=0 k=1i=0
we need to prove that
(422) (X", U"(e)) »a(X,U(e)), (X", V"(e)) =a(X,V(s)),
where

o N © N
(423)  U(e)= ¥ L Ule,i), V(e)= ¥ Y Vi(s,0).

k=1i=0 k=1i=0

(&(,80) AT = 7(8,0) A T)folf(u(ai(s) - ¢))du,
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We prove the first convergence result in (4.22); the proof of the second uses
the same reasoning.

Since U(¢&,i) = 0 if 77(&,i) > T, in view of (4.21) we have by Lemma 4.1,
for n > 0,

" M N
lim sup limsupP( Y Y UrMe, i) —U™e)| > n)
M-«  n-ow E=1i=0
(4.24) < limsup limsup P( min i(s,i) A (T+1) < T)
Mox n—oo 0<i<N
< limsupP( min g (s,i) A (T+1) < T) - o.
Mo 0<i<N
Analogously,
M N
(4.25) Y Y Ule,i) »p U(s), M-
k=1i=0

Next, by (4.20), we have

M N M N
(4.26) (X", ¥ Uk"(a,i)) -4 (X, Y Y U(s,0)]-
k=1i=0 k=1i=0
The convergence (X", U"(&)) —, (X,U(¢)) then follows from (4.23)-(4.26)
and Theorem 4.2 in Billingsley (1968).
Now by (4.7) and (4.8),

/OTf(Xl"(t)) L1(8 < X(t) < K) dt

- T T [TAW) 2t € [ e, D, 8000, 10)
< IIfIIf()T[}(s — e <X"(t) <8) + (K <X"(t) <K+ ¢)]dt,
s0 by (4.16), we obtain from (4.21),
U(e) — IIfIIfOT[l('o‘ ~ e <X"(t) < 8)
+1(K<X"(t)<K+¢)]|dt
(4.27) < fOTf(Xl"(t))'l(SsX”(t) <K)dt
<Vr(e) + IIfIifOT[l(‘o‘ — s <X"(t) < 8)

+1(K <X"(t) <K + &)] dt.
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Therefore, if we prove that, as £ — 0,
U(e) >, fT(/lf(uX(t)) du)1(6 < X(t) < K) dt,
0o \“o
(4.28)
V(s) =y fT(/lf(uX(t)) du)1(8 <X(¢) <K)dt,
0o \“o
then by applylng Lemma 2.3 to (4.27) and taking into account (4.22) and the
fact that [ 1(X(¢) =a)dt = 0 P-as., a > 0, we will then obtain (4.1) and
hence the assertion of Theorem 2.1. As before, we prove only the first of the
results in (4.28); the proof of the second is similar.

In fact, we prove convergence with probability 1. Since a,(¢) > §, we have
from (4.18) and (4 23),

U(e) - Z Z [6(e,i) AT — 7,(e,i) /\T]f f(u(a;(e) — €)) du

k=1i=0
s— T.
5 IIfII

This tends to 0 as £ — 0, so we prove that, with probability 1,

hm Z Z [4.(8,0) AT — 7,(e,i) AT]

0r-1i-0

(4.29) xfo f(u(a;(s) — ¢)) du

= [OT([Olf( uX(t)) du)1(8 <X(t) <K)dt.

We can write

2 2 [G(e,i) AT = 74(s,0) /\T]/f(u(a(s) - &))du

k=1i=0
(4.30) . i %/T(/lf(u(ai(a) ) du)
, k=1;=0"0 \"0
X 1(7,(e,i) <t < {(e,i))dt
=C,.
Note that if x,y > 8/2, |x — y| < 2¢, then

‘/Olf(ux) du — j(;lf(uy) du| = l/xf(u) du — l/yf(u) du

1——’] f(u)du + — l] f(u) du

?Ilfll.
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Since X(¢) € [a,(e) — ¢, ae) + el if t € [7,(e,1), {,(e,1)), we then have
[ lutae) - o)) du1(t < [, ), (o))
. _folf(uX(t)) du-1(t € [7,(&,1), gk(g,i)))’

8¢ .
< —6'||f||‘ 1(¢ € [7(&,1), &(e,1))),
so by (4.30),

o

c.-L X

k=1i=0"0

T

(/Olf(uX(t)) du) “1(t € [14( &, 1), L(e,1))) de

< — ‘Z
) ’

whence, by (4.8) expressed in terms of the limit process (X(¢), t > 0),

c, - fOT(fOlf(uX(t)) du) -1(8 < X(t) <K) dt'

T 8¢
< ||f||f0 [1(6<X(t) <8 &) + UK <X(t) <K+ ¢)]di + —IfIT.

Since the right-hand side of this inequality tends to 0 with probability 1 as
e — 0, we have proved (4.29). This completes the proof of Theorem 2.1 for
bounded nonnegative, continuous f. The claim for bounded, continuous f
follows since f(x) — inf, f(y) is nonnegative.

Finally, the case of unbounded, continuous f is treated via a localization
argument. Define, for A > 0,

o = inf(z > 0: X7'(¢) > A).

Since
supX7'(s) < supX"(s)
s<t s<t
and
supX"(s) =4 supY(s),
s<t s<t
we have
(4.31) f}im limsupP (o <T) =0..

n—w

Let f,(x) = f(x A A), x > 0. Since f, is bounded as a consequence of the
" continuity of f,

[ @) de = [T [ FaCux(0)) du) at
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by the case already proved. Further,

[ [T de = [TF(xr () de

= [IFEHO)-10X7(0)] > 4) de

T
< X(t))lde,
Sy, TCERD)]
and, by (4.31),

= 0.

T T
li li P nit — n
tim timsup (| ["70(X2(0)) e~ [ TR (0)) de| > 0
Noting also that, as A — oo,

f:(folfA(uX(t))du)dt - fOT(fOlf(uX(t))du) dt, Pas,

we conclude by Theorem 4.2 in Billingsley (1968) that
T T( 1
j F(Xp(¢))dt —>dj (j f(uX(t))du) dt. O
0 o \Jo

REMARKS. 1. Arguments similar to those used in the proof of Theorem 2.1
also show that finite-dimensional convergence holds. That is,

(4.32) >, (ftl(folf(uX(s)) du) ds,...,

0

[()’*"([Olf( uX(s)) du) ds).

Therefore, since the sequence Y;” = (/¢ f(X*(s)) ds, ¢ > 0) is seen to be tight,
we have the functional convergence in C[0,»), Y* -, Y, where Y =
(JE(Js f(uX(s)) du)ds, t = 0).

2. In the course of proving Theorem 2.1, we showed that in fact, for all
0 < 8 < K and bounded, nonnegative and continuous f,

jOTf(X,n(t)) L1(8 < X"(t) <K) dt

Sy /OT(/Olf(uX(t)) du) +1(8 < X(¢) <K) dt.

From this it easily follows that, for any function g(x, y) continuous in both
" variables, we have

[l (x(0), X () dt > [ Lo (X(0),ux(0)) du a.
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[To verify this result, introduce b > 0 and 0 < a; < a, and use
N

g(x7y) - Zg(al + 3i’y)
i=1

lim sup sup
N-o2ycba<x<a,

X1(x € [a; + e(i — 1), a; + &i))| =0,

where ¢ = (a, — a;)/N.] Since XJ(t) = X"(¢) — X'(¢t), we then obtain, tak-
ing (4.32) into account as well, that

1
Je(xi(e), X)) dt =, f(['e(ux(0), (1= w X(0)) du) at,
the convergence being functional convergence in C[0, «).

We can now formalize the waiting-time averaging arguments illustrated in
the Introduction. Let W,*(¢) denote the virtual waiting time, that is, the
waiting time that a customer arriving at time ¢ would have, and define
ZMt) =1/ V)W M(nt), 1 = 1,2, n > 1, t > 0. From Theorem 2.1, in analogy
with Theorem 3.2, we have the following averaging principle for virtual
waiting times.

THEOREM 4.1. Under the conditions of Theorem 2.1,

fOTf(Zl"(t))dt >, /OTfolf(uX(t)//\l)dudt, 1=1,2,

asn — o,

With V(¢) = X(¢)/u and U a uniform random variable on [0, 1] indepen-
dent of V(¢), the integral over u in the limit of Theorem 4.1 can be written as
the conditional expectation

(4.33) E[FUV(1)/p)IV(1)] = [*f(uV(2)/p1) .

If we take the symmetric case p; = p, = 1/2 and set f(x) = x, then (4.33)
agrees with (1.1). Theorem 4.1 and (4.33) also show that, if f is bounded,

(4.34) fOTEf(Zl"(t))dt N [OTEf(UV(t)/p,)dt, 1=1,2.

As a final comment, we note that, as is common in heavy-traffic limit
theorems, if the actual waiting time precess is defined appropriately, then it
converges together with the virtual waiting-time process. In particular, if we
let W;(¢) denote the actual waiting (or sojourn) time of the first customer to
arrive at queue [ after time ¢, then for any T, 0 < T < o,

1 .
sup —|Wl"(nt) - Wl"(nt)l -5 0, n — o,
o<t<T VI
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5. Extensions. To this point, it has been convenient to have the same
service-time distribution at both queues, but this assumption is not essential.
The results are readily adapted to a fully asymmetric system with queue-
dependent service times; however, the “conserved” process is the total unfin-
ished work rather than the total queue length. To be more specific, we need
further notation. (Because of the heavy demand for notation in Sections 3 and
4, the remainder of the paper reuses some of the symbols for other purposes.
The conflicts should cause no difficulty, since there will be no further need to
refer to the proof details in Sections 3 and 4.)

Let (0})%, 1 =1,2, denote the arrival-time variance at queue I, with
(0} = 0 (n - »), and introduce u},(0,})?, [ =1,2, as the respective
service rate and service-time variance at queue [, with lim,_, u} = u;,
lim, ., (6;)? =02 and p} = A}/u}. Let V*(t) = (1/Vn)Li(nt), 1 =1,2,
and V(¢) = V*(¢) + V«(¢), where (L}(¢), ¢ > 0) is the unfinished work pro-
cess at queue /. In analogy with the queue-length process, (V"(¢), ¢ > 0)
converges in distribution to an RBM (V(¢), ¢ > 0) as n — «, in this case with
drift and diffusion coefficient

(5.1) ¢, = limvn(p" 1), p"=pl+0i,
(52) sz = /\1(0:9% + pfo-a%) + /\2(0-322 + pgaaZZ .

With the obvious extensions to conditions (2.1)-(2.4), Theorem 2.1 carries
over to the unfinished work process in the general system:

(5.3) jOTf(V,"(t))dt -, fOT(folf(uV(t)) du) dt, 1=1,2,n-w

In terms of p, = A;/p;, I = 1,2, and the unfinished work, Theorem 4.1 on
virtual waiting times becomes

(5.4) fOTf(Z,"(t))dt Sy fOTfOlf(uV(t)/p,)dudt, 1-1,2,

as n — «, Note that (4.33) and (4.34) still apply, in this case with V(¢) the
unfinished work in the general, asymmetric system and with p;, = A;/u;,
[=1,2. 4

The extension of our results to general M > 2 requires more effort. How-
ever, it is not difficult to see what the limit process for unfinished work
should be when M > 2. In the general asymmetric system, consider the
unfinished work process (V,(2), ..., V,(¢)) as the position of a particle moving
in RY. For a fixed, total unfinished work v > 0, the limit process has the
particle ,E:ching deterministically around a closed path in the hyperplane
Vi@) + -+ V() = v. Generalizing Figure 1, the path is piecewise linear
with vertices at the coordinate hyperplanes; the vertices correspond to those
times when the server has just finished emptying one queue and is starting
on the next. Moving from one vertex to the next corresponds to serving a
queue; during this time the queue being served empties at a fixed rate, while
the other queues grow at fixed rates.
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To determine the closed path, we compute its vertices as follows. Assume
that the server visits queues 1,..., M in that order. Let the [th vertex
correspond to the /th queue, 1 <[ < M, and suppose a cycle of the particle
begins at vertex 1, when service to queue 1 is about to start and queue M is
empty. Let o), 1 <1 < M, a3, = 0, be the fraction of the total unfinished work
v in queue [/ at the beginning of a cycle, and let 7, denote the time spent by
the server at queue / during a cycle. Since p; + - +p) = 1, the server
spends a fraction p, of its time at queue [, so p, = 7,/7, where 7= 1,
+ -+ + 7. At queue [, work arrives at rate p, and is completed at rate 1.
Then, since a;v is the amount of work that arrived at queue / since the
server last departed from there, we have

(5.5) qu=p X T=Tp Y P
l+1<k<M I+1<k<M

However, ¥, _;_ 12, =1, 50

T T
Z o = Z Py Z Pr = T Z pipr =1,
1<i<M-1 Ui<l<M-1 I+1<k<M Ui<i<kh<M
and hence
(5.6) T=V ) Pj Pr-

1<j<k<M
Substitution into (5.5) gives

Z < <
(5.7) a, Prijr1<ksM Pk’

lej<ksM Pj Pk

Next, define «,,; as the fraction of the total unfinished work in queue / at
the time the server starts serving queue k, 1 < k, [ < M. The kth vertex is

(agqs-- - a0, By definition of the a;’s, we have
Tj T

ay=atp Y T=at—p L o

(5.8) 1<j<k-1 U vV ko1
1<k<l,1<l<M,
and
r
(5.9) ay=-p 2 p, L+1<k<M,1<I<M.
I+1<j<k-1 .

By (5.6) and (5.7), we can rewrite (5.8) as

7-
(5.10) @ = —p Y o+ X pl, 1<k<l1<I<M.
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Together with (5.6), equations (5.9) and (5.10) determine the vertices of the
path. To illustrate, we obtain the following vertices for M = 3:

pi( P2 + p3) P2 P3
(@11, @1p, ay3)v = , , Ofv,
P1P2 T P1P3s T PaPs P1P2 T P1P3 T P2P3

(g1, gy )0 = |0 pa( Py + p3) P1 P3 v
21> 22> 3 - ’ ’ )

? p1P2 + P13+ Py Py’ P1pz t+ P1Ps T Py P
(a1, @, ag)v = P1 Py 0 ps( Py + p3) )
31 32> - sy Yy .

2 e P1P2+ P1ps+ P2py’ 1Pyt p1pst+ Py Py

As before, in the limit n — oo, the total unfinished work converges to RBM,
but the particle speed tends to infinity. The waiting-time averaging principle
of Section 1 [cf. (1.1)] is easily generalized. A random arrival again finds the
particle positioned uniformly at random on the closed path. For convenience,
let a cycle on this path begin when the server starts work at queue . Let U, a
random variable uniform on [0, 1], denote the fraction of the current cycle
that has transpired at the instant of a random arrival at queue /. Note that
0 < U < p; means that the server i§ at queue /. With the total unfinished
work fixed at V = v, the work at queue [ when the server starts his cycle
there is p,(1 — p,)7 by (5.6) and (5.10). Then given U = u and the unfinished
work v, the conditional unfinished work at queue [/ seen by an arrival there is

Viu,v) =11 -p)(p—u) (0<u<p)
o(u—p) (p<u<l).
The arrival must always wait V;(u, v), but if the server is not at queue /, the

arrival must first wait for the current cycle to end. Then the conditional
waiting time of an arrival at queue [ is

Z;=V(u,v) O<u=<p)

=7(1-u) + Vy(u,v) (pp<uc<l).
Substitution for V,(x,v) and 7 from (5.6) and (5.11) leads to the averaging
principle

(5.11)

(5.12)

[ F(zr (1)) at
P -p
(5:18) ™ j;)Tli 0 f(V(t) lej<kle Pj Py (e = u)) e
1 — Py B
+'[sz(V(t) ):1sj<ksM pj k(1+pl u)) du]dt’ i=12

Changing variables of integration, (5.13) simplifies toA
) T, n T r1 — P
(5.14) fo f(Z;(t))dt =, fo fof(V(t)

lej<ksM Pj Pr
Note that (5.14) reduces to (5.4) when M = 2.

u) dudt.
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Sections 2-4 for the case M = 2 suggest strongly that the averaging
principle (5.14) indeed holds. We leave the proof of this as an open problem,
with the remark that a complete analysis for M > 3 must address a distinctly
new issue, namely, convergence to a unique, deterministic particle motion for
any fixed total load v. For M > 3 the particle can be off the closed path but
still on the hyperplane Vi(t) + -+ + V3, (¢) = v. [This cannot happen when
M = 2 because the hyperplane is itself the closed path Vi(t) + V,(¢) = v.]
With V fixed, it is not hard to prove that in the limit process particles in such
positions are attracted in an appropriate sense to a unique closed path, in
particular the closed path determined by (5.9) and (5.10). The main difficulty
is in constructing upper and lower bounds that allow us to handle fluctua-
tions in the unfinished work.

Finally, an extension to nonzero switchover times is of obvious importance.
A major problem is obtaining the diffusion limit for the total unfinished work,
a trivial problem in the model of this paper. After obtaining the limit, which
is a Bessel process, essentially the same program applies to give an averaging
principle. An extension of Sections 2-4 to this case is planned for a forthcom-
ing paper.

6. Waiting times. To illustrate the averaging principle in (5.14), this
section gives heavy-traffic limits of normalized waiting (or sojourn) times. As
in the usual model of stable queues in heavy traffic, we assume a negative
drift ¢, < 0. In this case, we have convergence to a stationary regime,
namely, V(t) - V, t - o, where V has the exponential distribution

(6.1) P(V>z)=e 72,

with E[V] = 1/, where y = 2|¢,|/0,? and ¢, and o, are given by (5.1) and
(5.2). We are interested in waiting times in statistical equilibrium, so for
convenience in what follows, we take (V(¢), ¢ > 0) as the stationary process.
That is, V(0) =, V. In this context, the averaging principle provides expres-
sions for quantities averaged over all customers arriving during a time
interval, as opposed to the same quantity for a single arrival.

We first calculate the moments of the stationary waiting time. We use
(5.14) with f(x) ='x*. We obtain, with r = Yicj<k<m PPy

1k
E[% [ dt] . E[% [OTfOI[V(t) - "’] > dudt]
AT
RY
:[lr”’] (kfl) o, 1s<l<M.

Thus the stationary average waiting time is (1 — p,)/2yr and the variance is
5(1 — pp?/(12y2%r2).
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We next calculate G,(z), which is the fraction of customers arriving (in
steady state) to queue [ that wait no more than z. This is a surrogate for the
sojourn time distribution. To calculate G,(z) we take f(x) = 1(x >z) in
(5.14) (Theorem 2.1 can easily be extended to cover this f). We then obtain

E[%f:l(Z[’(t) > z) dt]

(6.3) %E[%/T'[Oll(u——————(l_’:f)v(t) >z) dudt]

0
=1-G(2), 1=<Il<M.

By the assumed stationarity of V(¢), we can rewrite the right-hand side of
(6.3) as

e ol vr gy = [ ___’"i__+ -yx
j;)[j;l(u>m_—m)du]'ye dx—j;)[l x(l—pl)] ve Y dx.

A calculation then gives
yrz r o exp(—yx)
64) 1 -Gz =exp(— )— z —dx.
(6.4) 1(2) =5 ) 1o, frz/(l_m) .
In terms of the exponential integral Ei(x) = [*_ (e”!/t) dt, we have
G(z) =1 (yrz) i E( rz) 1<i<M
z)=1—exp|——| — y—=———2zEi| —y—|, <l<M.
: 1-p (1-p) (1-p)
A simpler expression, accurate for large z, is available for the tail. Change
variables in (6.4) to obtain

1 - Gl(z)
=exp(_ yrz )[l_fw exp(—y)
1-p, o 1-y/(v(r/(1-p))z
Expanding [1 — y/(y(r/(1 — p;))2)]"! and integrating term by term, we find
(1 — p)exp(—yrz/(1 — p)) [1 N 0(%)] ;

yrz

)dy], 1<l<M.

It is interesting to compare the polling server with the first come-first
served (FCFS) server. After a service completion in the latter system, the
server always goes to the queue having the customer that has waited the
longest, and serves that customer next. Waiting times in the FCFS system,
which are distributed exponentially as in (6.1), can be expected to have a
smaller variance. This is borne out by the above calculations. For example,
with M = 2 and symmetric loading p; = p, = 1/2, waiting times under
, polliglg have a variance 5/3y2, whereas under FCFS they have a variance
1/v*.

To adapt our results to exact results for the special case of Poisson
arrivals, we examine lim, , ; (1 — p)E[Z,( p)] and compare with a formula of



POLLING SYSTEMS IN HEAVY TRAFFIC 719

Sykes (1970) for M = 2. With the choice n = 1/(1 — p)?, we obtain ¢, = —1
by (5.1). (The choice of n does not actually matter: the n’s cancel out in the
final expression.) In the special case of Poisson arrivals to each queue, we
obtain ¢} = 1/A}, and for the diffusion coefficient, 0,2 = 1,56 + 1,56, where
b{") denotes the ith moment of the service times at queue /, [ = 1, 2. Then by
(6.2),

. MO + X069

E[Zl]=ll—22, 1=1,2,
4p,

which matches the result given by Sykes (1970).

Acknowledgment. Thanks to a helpful referee, the current version of
Theorem 2.1 is more general than the authors’ original version.
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