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AIMD ALGORITHMS AND EXPONENTIAL FUNCTIONALS
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The behavior of a connection transmitting packets into a network
according to a general additive-increase multiplicative-decrease (AIMD)
algorithm is investigated. It is assumed that loss of packets occurs in clumps.
When a packet is lost, a certain number of subsequent packets are also lost
(correlated losses). The stationary behavior of this algorithm is analyzed
when the rate of occurrence of clumps becomes arbitrarily small. From a
probabilistic point of view, it is shown that exponential functionals associated
to compound Poisson processes play a key role. A formula for the fractional
moments and some density functions are derived. Analytically, to get the
explicit expression of the distributions involved, the natural framework of this
study turns out to be the q-calculus. Different loss models are then compared
using concave ordering. Quite surprisingly, it is shown that, for a fixed loss
rate, the correlated loss model has a higher throughput than an uncorrelated
loss model.

1. Introduction. TCP (Transmission Control Protocol) is the main data
transmission protocol of the Internet. It is designed to adapt to the various traffic
conditions of the present network: a TCP connection between a source and a
destination progressively increases its transmission rate until it receives some
indication that the capacity along its path in the network is almost fully utilized. On
the other hand, when the capacity of the network cannot accommodate the traffic
(when delays and timeouts affect the connection), the data rate of the connection
is drastically reduced. More specifically, a given connection has a variable W

which gives the maximum number of packets that can be transmitted without
receiving any acknowledgement from the destination. The variable W is called the
congestion window size. If all the W + 1 packets are successfully transmitted, then
W is increased by 1 (progressive test of the available capacity of the network),
so that W packets can be sent for the next round. Otherwise W is divided by 2
(detection of congestion). TCP uses an additive-increase multiplicative-decrease
(AIMD) algorithm with additive increment 1 and multiplicative decay δ = 1/2.
An AIMD algorithm can be described as follows:

W →
{

W + 1, if no loss among the W packets,
�δW�, otherwise,
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where �x� is the integer part of x ∈ R.
The emergence of TCP as the ubiquitous data transmission protocol has

motivated over the past ten years a huge amount of research for modeling a
TCP connection experiencing packet loss. Since the initial work by Floyd [12],
who derived via simulation an asymptotic estimate for the throughput of a TCP
connection experiencing a constant loss rate α (the c/

√
α formula), several

studies have refined the results obtained by Floyd. The paper by Padhye, Firoiu,
Towsley and Kurose [21] gives an asymptotic estimate for the throughput of a
TCP connection experiencing independent losses of packets. This result has been
obtained via an approximation of a finite state Markov chain when the loss rate
is small. Ott, Kemperman and Mathis [20] give an analysis of the evolution of
the congestion window size via a differential equation perturbed by a Poisson
process. Dumas, Guillemin and Robert [8] provide rigorous convergence results
and explicit expressions of the stationary distributions for the congestion avoidance
regime when packet losses are independent and the loss rate tends to 0.

In this paper the behavior of a persistent TCP connection experiencing packet
losses is investigated. Instead of assuming that packet losses are independent from
one packet to another, the case when packet losses occur in clumps is investigated.
This model can be explained by the fact that a loss of a packet is due to the overflow
of some buffer somewhere in the network. In this situation, very likely, losses will
continue to occur for some time (until the TCP connections involved decrease
their transmission rate). This model for packet losses has been validated by recent
measurements made by Paxson [22] on the loss process affecting TCP connections
in the Internet. (See also [6] and [25].) Some papers considered analytical models
describing the case of bursts of losses for TCP connections. Misra, Gong and
Towsley [18] analyzed, in a setting similar to [20], a representation of the sequence
of the congestion window sizes as an M/G/1 queue. This M/G/1 representation
is also used in [2] to study grouped packet losses. In these papers the probability
of a loss of a packet in a congestion window of size W is independent of W ; this
is not the case for the model considered here. The more it is sent into the network,
the more likely a packet loss occurs.

On the probabilistic side, it is shown that the so-called exponential functionals
of Lévy processes describe the asymptotic behavior of AIMD algorithms.
Exponential functionals have received much attention recently, motivated by
applications in mathematical finance (the Lévy process is a Brownian motion with
drift in this setting) or in statistical physics. See Yor’s book [28] on this subject.
In the case of TCP, the corresponding Lévy processes are compound Poisson
processes. The calculation of the density function of these random variables turns
out to be quite intricate. Analytically, the natural framework is the q-calculus (the
Appendix gives a brief presentation of this topic). In this setting, the distributions
of some of these exponential functionals are related to q-hypergeometric functions.

The paper studies the asymptotic behavior of the TCP connection when the loss
rate converges to 0. It is organized as follows.
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In Section 2 the basic convergence results are established, they are straightfor-
ward generalizations of analogous results proved in the case of independent losses
in [8]. The main results of the paper, in Sections 3 and 4, concern the asymptotic
distributions which are more delicate to investigate than for the independent loss
model. In Section 3 the asymptotic invariant distribution of the congestion window
size is analyzed and the exponential functionals are introduced. The density func-
tion of these random variables is expressed in terms of a functional of a random
walk and, in some cases, as q-hypergeometric function. An explicit expression for
their fractional moments is given. In Section 4 the asymptotic throughput is in-
vestigated. The fractional moment of order 1/2 of the corresponding exponential
functional obtained in Section 3 is used to get an explicit expression of the asymp-
totic throughput. The rest of the section is devoted to the impact of correlations on
the throughput. It is shown that, for concave ordering, the throughput is a nonin-
creasing function of the distribution of the number of losses in a clump (a group of
local losses). In particular the model of independent packet losses turns out to be a
pessimistic model since it underestimates the real performances of TCP. Section 5
concludes the paper by a discussion of some additional features of TCP which are
not represented in the stochastic model.

2. A model with correlated losses. It is assumed that a data connection
transmits packets into a network by means of an AIMD algorithm with additive
increase factor 1 and multiplicative decrease equal to δ < 1. Let Wα

n denote the
congestion window size over the nth RTT (Round Trip Time) interval, that is,
the total number of packets sent during this time interval. The evolution of the
process (Wα

n ) is given by

Wα
n+1 =

{
Wα

n + 1, when none of the Wα
n packets is lost,

max(�δWα
n �,1), otherwise.

(2.1)

To complete the presentation of the model, the loss process of the packets has
to be described. In the noncorrelated case considered in [8], each packet has a
probability 1 − exp(−α) of being lost. For n ≥ 1, if tαn denotes the index of nth
which is lost, the independence assumption implies that the sequence (tαn+1 − tαn )

is i.i.d. having a geometric distribution with parameter exp(−α). Hence, when
α is small, then tαn+1 − tαn ∼ En/α, where En is exponentially distributed with
parameter 1. Asymptotically, the loss process can thus be described as a Poisson
process.

This noncorrelated loss process is not completely realistic since it does not
take into account the fact that a loss is due to an overflow of some buffer in
the network. Therefore, after a loss, subsequent losses are more likely. On the
other hand, since the state of the network changes quite rapidly, the network
“forgets” the past quickly; the i.i.d. assumption for (tαn+1 − tαn ) can be plausible
provided that these quantities are not too small. Paxson [22] and Zhang, Paxson
and Shenker [29] showed through measurements that the loss process can in fact
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FIG. 1. Evolution of the congestion window size between two groups of losses.

be described as follows: when a packet loss occurs, several packets are also lost
during the following RTT intervals. After this clump of losses, the next packet loss
will occur as in the independent model. Mathematically, this can be described as
follows: the indexes of the packets involved in the nth clump are given by the set
tαn + Cn (see Figure 1), where:

(a) (tαn ) is the sequence considered in the noncorrelated case.
(b) The set Cn is a finite subset of N containing 0 and the sequence (Cn) is i.i.d.

Therefore, the quantity tαn is the index of the first packet lost in the nth group
of losses. If x ∈ Cn, the packet with index (tαn + x) belongs to the nth group of
losses. It is assumed that the distribution of the Cn’s does not depend on α. When
α is small, the distance between two group of losses is large since E(tαn+1 − tαn ) =
O(1/α). This represents the fact, observed by Paxson, that multiple losses may
occur locally. The i.i.d. assumption of the sequence (Cn) is a consequence of the
rapid changes of the network between two groups of losses. In particular, if the
cardinality of Cn is denoted by Xn, the sequence (Xn) is i.i.d. As we shall see later
this sequence (Xn) gives a measure of the correlation of packet losses. The packet
loss rate of this stochastic model is thus equivalent to αE(X1) as α gets small.

Asymptotically, at the packet level, the loss process can thus be described as
a Poisson process with clumps, that is, a standard Poisson process with “clouds”
around each of its points. This representation of the occurrences of rare events is
quite universal in probability theory. Aldous’ book [1] illustrates, through a large
collection of examples, the generality of this description.
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REMARKS.

1. The case C1 ≡ {0} corresponds to the uncorrelated case. One packet is lost in
each group of losses.

2. The i.i.d. assumption (Cn) is a consequence of the fact that the network forgets;
at “time” tαn+1 the events tαn + Cn have been forgotten, in particular, Cn+1 is
independent of Cn.

3. The set Cn could depend on α, provided that the location of its last element
is negligible compared to 1/α. (Recall that the set tαn + Cn has to be far way
from tαn+1.) For simplicity the independence with respect to α is assumed, it is
easily checked that this is not really restrictive.

With such a loss process the sequence (Wα
n ) does not necessarily have the

Markov property. The i.i.d. property of the sequence (Cn) shows nevertheless
that, if ln is the largest element of Cn, the embedded chain (V α

n ) = (Wα
tαn +ln

)

(the sequence of congestion window sizes at the end of groups of losses) is still
Markov. The next proposition shows that, properly renormalized, the transitions of
this Markov chain converge.

For m ≥ 1, the variable Gα
m is defined as

Gα
m = inf

{
k :Wk+1 = max(�δWα

k �,1)
}
,

with W0 = m. When the initial window size is m, Gα
m is the number of successful

RTT intervals until the next packet loss. Thus, for n ≥ 0, if Wtαn +ln = m, then

Wtαn+1

dist.= max
(�δ(m + Gα

m)�,1
)
.

PROPOSITION 1. For x > 0, as α goes to 0, the random variable
√

α Gα
�x/

√
α�

converges in distribution to a nonnegative random variable Gx such that for y ≥ 0,

P(Gx ≥ y) = exp(−xy − y2/2).(2.2)

If V α
0 = �x/

√
α� then, as α tends to 0, the random variable

√
αV α

1 converges in
distribution to V 1 with

V 1 = δX1(x + Gx),(2.3)

where X1 and Gx are independent random variables.

PROOF. The first part of the proposition is easily seen; it has been proved
in [8]. If V α

0 = �x/
√

α� at tα0 + l0, where l0 is the last element of C0, then at tα1 , one
has Wα

tα1
= �δ(V α

0 + Gα
V α

0
)�. Hence

√
αWα

tα1
converges in distribution to δ(x + Gx)

as α tends to 0.
The factor δX1 in (2.3) is a consequence of the X1 losses occurring in the clump

of losses tα1 +C1, with the underlying property that the window size does not grow
significantly (with respect to 1/α) during that period.



AIMD ALGORITHMS AND EXPONENTIAL FUNCTIONALS 95

More rigorously, if r1 is the second point of tα1 + C1, then

Wα
r1

= ⌊
δ
(
Wα

tα1
+ r1 − tα1

)⌋
.

Since r1 − tα1 ≤ l1 and l1 does not depend on α, the following convergence in
distribution holds

lim
α→0

√
αWα

r1
= δ lim

α→0

√
αWα

tα1

dist.= δ2(x + Gx).

By induction on the number of points of tα1 + C1, one finally gets

lim
α→0

√
αV α

1
dist.= δX1(x + Gx).

The proposition is proved. �

The model considered here does not distinguish between the different kinds of
losses: losses due to a timeout or losses detected by reception a triple dupliquate
acknowledgment. (See [23].) In the present implementations of TCP, when a
timeout occurs, the congestion window size is set to 1 and the slow start procedure
is used instead of the AIMD algorithm. For the moment this part of TCP is
not considered, we shall see that it can be included without any problem (see
Section 5.2).

The above proposition shows that, if V α
0 = �x/

√
α�, the Markov chain (

√
αV α

n )

converges to the continuous state space Markov chain (V n) with V 0 = x and

V n+1 = δXn
(
V n + GV n

)
(2.4)

for n ∈ N.
This result established, the convergence results are stated without proof. Proofs

are exactly the same as in the uncorrelated case investigated in [8]. The major
difference, this is the main point of the paper, is the fact that closed form
expressions of the limiting distributions are much more difficult to derive as it
will be seen in the following sections.

THEOREM 2. When α tends to 0, the invariant distribution of the Markov
chain (

√
αV α

n ) converges in distribution to the invariant distribution V ∞ of the
Markov chain (V n).

With a slight abuse of notation, the expression “the invariant distribution V ∞”
means “a random variable V ∞ whose distribution is invariant for the Markov
chain.”

PROPOSITION 3. The invariant distribution V ∞ of the continuous state space
Markov chain (V n) satisfies the following identities:

V
2
∞

dist.= δ2X1
(
V

2
∞ + 2E1

)
,(2.5)

where X1, E1 and V ∞ are independent random variables, E1 being exponentially
distributed with parameter 1.
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This proposition is a simple consequence of the elementary identity in
distribution, for x ≥ 0,

(x + Gx)
2 dist.= x2 + 2E1.(2.6)

(See [8].)
Similarly, convergence results can also be obtained for the original sequence

(Wα
n ).

PROPOSITION 4. If limα→0
√

αWα
0 = w, then

(Wα(t)) = (√
αWα

�t/√α�
)

converges in distribution to the Markov process (W(t)) such that W(0) = w and
with the infinitesimal generator given by

�(f )(x) = f ′(x) + x

∫
R+

(
f (δux) − f (x)

)
X1(du)(2.7)

for any C1-function f on R+, where X1(dx) denotes the distribution of X1 on N.

3. The exponential functional of a compound Poisson process. In this
section the distribution of the random variable I , solution to the equation

I
dist.= βX1I + E0,(3.1)

is investigated, where β ∈ [0,1[, the variables E0, I and X1 are independent, E0 is
an exponentially distributed random variable with parameter 1 and X1 is some non-
negative random variable (not necessarily integer valued) such that P(X1 > 0) = 1.

In view of (2.5), if β is δ2, it is easily seen that I and V
2
∞/2 +E0 have the same

distribution. By iterating (3.1), the variable I can be represented as

I =
+∞∑
n=0

βSnEn,(3.2)

where (En) is an i.i.d. sequence of exponentially distributed random variables with
parameter 1 and (Sn) = (X1 + · · ·+Xn) is the random walk associated to the i.i.d.
sequence (Xn). If (N(t)) is a Poisson process with parameter 1 such that, for n ≥ 0,
the distance between the (n + 1)st point and the nth point is En+1 and if (ξ(t)) is
the compound Poisson process

ξ(t) = log(1/β)

N(t)∑
k=1

Xk,

it is easily seen that (3.2) of I can be written as

I =
∫ +∞

0
e−ξ(t) dt.(3.3)
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The variable I is the exponential functional associated to the Lévy pro-
cess (ξ(t)). It occurs naturally in mathematical finance (Asian options) and in
many other fields; the Lévy process ξ is generally a Brownian motion with drift. In
this setting, when the variable I is introduced by (3.3), Carmona, Petit and Yor [7]
proved, that the density of I is the solution to an integro-differential equation.
In other words, they showed that the distribution of the random variable I is the
invariant distribution of some Markov process. Notice we followed the reverse path
in our analysis. Finally, let us mention that a lot of work has been done when the
Lévy process is related to a continuous diffusion. Yor [28] surveys these questions;
see also [26], Chapter 8 and [27], Section 15.4 for a more theoretical point of view.

PROPOSITION 5. For λ ≥ 0, the Laplace transform of the variable I defined
by (3.2) is given by

E(e−λI ) = E

( +∞∏
n=0

1

1 + λβSn

)
,(3.4)

where (Sn) = (X1 + · · · + Xn) is the random walk associated to the i.i.d.
sequence (Xn).

If there exists some ε > 0 such that P(X1 ≥ ε) = 1, the density h of I is given
by, for x ≥ 0,

h(x) = C

+∞∑
n=0

E

(
n∏

k=1

1

1 − β−Sk
β−Sne−β−Snx

)
,(3.5)

with C = E(1/
∏+∞

n=1(1 − βSn)).

PROOF. Representation (3.4) of the Laplace transform of I is obtained directly
from (3.2). The random variable

H(λ) =
+∞∏
n=0

1

1 + λβSn

is a (random) meromorphic function of λ on C. The assumption P(X1 ≥ ε) = 1
implies that the function H has only simple poles located in {−β−Sn :n ≥ 0}. For
n ≥ 0, its residue at −β−Sn is given by

n−1∏
k=0

1

1 − βSk−Sn
β−Sn

∞∏
k=n+1

1

1 − βSk−Sn
,

therefore H(λ) = ∑
n≥0 Rn(λ), with

Rn(λ) = 1

1 + λβSn

n−1∏
k=0

1

1 − βSk−Sn

∞∏
k=n+1

1

1 − βSk−Sn
.
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The i.i.d. property of the sequence (Xn) shows that

E(Rn(λ)) = E

(
1

1 + λβSn

n−1∏
k=0

1

1 − βSk−Sn

)
E

( ∞∏
k=n+1

1

1 − βSk−Sn

)

(3.6)

= E

(
1

1 + λβSn

n∏
k=1

1

1 − β−Sk

)
E

( ∞∏
k=1

1

1 − βSk

)
.

Due to the assumption on the distribution of X1, for λ ≥ 0, one gets the inequality

|Rn(λ)| ≤
n−1∏
k=1

βSn−Sk

1 − βSn−Sk

∞∏
k=n+1

1

1 − βSk−Sn
≤

n−1∏
k=1

βkε

1 − βkε

∞∏
k=1

1

1 − βkε
.

Fubini’s theorem therefore shows that

E(exp(−λI)) = E(H(λ)) = ∑
n≥0

E(Rn(λ)).

Identity (3.6) gives that E(Rn(λ)) is the Laplace transform of the density rn(x),
with

rn(x) = E

(
β−Sne−β−Snx

n∏
k=1

1

1 − β−Sk

)
E

( ∞∏
k=1

1

1 − βSk

)
,

the density of I can be thus expressed as the sum of the rn’s. The proposition is
proved. �

Representation (3.5) can be used to obtain explicit expressions for the density
of I only when the distributions of some functionals of the random walk (Sn) are
known. In general, this is not the case (see the examples below). Formula (3.5)
is nevertheless useful to get numerical expressions since the general term of the
series converges rapidly.

EXAMPLES.

1. The case X1 ≡ 1. This is the situation considered in [7] and [8] (with β = δ2).
Since in this case Sn = n for all n ≥ 0, (3.5) gives

h(x) = 1∏+∞
n=1(1 − βn)

+∞∑
n=0

1∏n
k=1(1 − β−k)

β−ne−β−nx.(3.7)

2. The distribution of X1 is exponential with parameter µ. According to (3.4), the
Laplace transform of I at λ ≥ 0 is given by

E(e−λI ) = 1

1 + λ
E

(
exp

(
−

+∞∑
n=1

log(1 + λβSn)

))
.
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Clearly enough (Sn) is a Poisson point process on R+ with parameter µ,
using the expression of the Laplace transform of a Poisson point process (see
[19] or [16] for example). The expected value in the right-hand side of the last
equation is thus given by

exp
(
−

∫ +∞
0

(
1 − 1

1 + λβx

)
µdx

)

= exp
(
µ/ log(β)

∫ 1

0

λ

1 + λu
du

)
=

(
1

1 + λ

)−µ/ log(β)

,

hence,

E(e−λI ) =
(

1

1 + λ

)1−µ/ log(β)

.

The density of I is therefore the Gamma density function with parameter
(1 − µ/ log(β)),

h(x) = x−µ/ log(β)

�(1 − µ/ log(β))
e−x, x ≥ 0.

See [14].

3.1. The fractional moments. In general, a useful explicit expression of the
distribution of I is not easy to derive. It turns out that the moments of I can be
expressed quite easily, including the fractional moments of I . This is clearly useful
since the stationary window size V ∞ can be expressed with the square root of the
random variable I ; indeed, (2.5) shows that

V
2
∞/2

dist.= δ2X1
(
V

2
∞/2 + E1

) dist.= δ2X1I.

Section 4 uses a fractional moment of I to derive an explicit expression of the
throughput of the AIMD algorithm.

PROPOSITION 6 (A recursive formula for the moments of I ). For any s ∈ R,

E(I s−1) = 1 − E(βsX1)

s
E(I s),(3.8)

the moment of order s of I is finite if E(β(s+1)X1) < +∞.

For s ≥ 0, relationship (3.8) is due to Carmona, Petit and Yor [7]. Notice that
the condition

E
(
β(s+1)X1

)
< +∞

is dummy for s > −1 since β < 1.
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PROOF OF PROPOSITION 6. For λ ≥ 0, denote by ψ(λ) the Laplace transform
of I at λ, (3.1) gives

ψ(λ) = 1

1 + λ
E

(
ψ(λβX1)

)
,(3.9)

the Mellin transform of ψ is

ψ∗(s) =
∫ +∞

0
ψ(λ)λs−1 dλ.

Since ψ is bounded, ψ∗ is defined for 
(s) > 0. (See [11] for a survey on Mellin
transform methods.) By using the definition of ψ ,

ψ∗(s) = E

(∫ +∞
0

e−λIλs−1 dλ

)
(3.10)

= E

(
1

I s

)∫ +∞
0

e−λλs−1 dλ = E

(
1

I s

)
�(s).

On the other hand, (3.9),

(1 + λ)ψ(λ) = E
(
ψ(λβX1)

)
,

becomes, via Mellin transform,

ψ∗(s) + ψ∗(s + 1) = E(β−sX1)ψ∗(s),

and, by (3.10),

E

(
1

I s+1

)
= E(β−sX1) − 1

s
E

(
1

I s

)
.(3.11)

This relationship extends on R− formula (3.8) obtained by Carmona, Petit and
Yor [7] for s ∈ R+. If I has a finite, moment of order −s and E(β−sX1) is finite,
then I has a finite moment of order −s − 1. Since all the positive moments of I

are finite (see [7] for example), by induction one gets that E(1/I s) is finite when
E(β−(s−1)X1) is finite. The proposition is then proved. �

PROPOSITION 7. For any s ∈ R, −s /∈ N \ {0}, if E(β(s+1)X1) < +∞ and

E

(
1

1 − βX1

)
< +∞,

then the moment of order s of the variable I can be expressed as

E(I s) = �(s + 1)

+∞∏
k=1

φ(s + k)

φ(k)
,(3.12)

where φ(u) = 1 − E(βuX1) for u ≥ min(s,0).
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When s ∈ N, (3.12) gives that

E(I s) = s!∏s
k=1(1 − E(βkX1))

(3.13)

and when −s ∈ N \ {0}, (3.12) can be continued by using the fact that the Gamma
function has a simple pole at s + 1 whose residue is (−1)−s/(−s)! so that

E

(
1

I s

)
=

∏−1
k=s(E(βkX1) − 1)

s! E(X1).(3.14)

Relationships (3.13) and (3.14) have already been remarked in [7] and [5].
Identity (3.12) has been obtained independently by Bertoin, Biane and Yor [4]
when X1 ≡ 1.

For a general Lévy process (ξ(t)), φ is the Lévy–Khintchine exponent defined
by

E
(
e−sξ(1)

) = e−φ(s),

for s ≥ 0. Under mild assumptions on φ (see the proof of Proposition 7),
(3.12) should hold for the corresponding exponential functional I .

PROOF OF PROPOSITION 7. First note that, for N sufficiently large

+∞∑
i=N

| log(φ(k))| =
+∞∑
i=N

∣∣ log
(
1 − E(βkX1)

)∣∣

≤ 2
+∞∑
i=1

E(βkX1) ≤ 2E

(
1

1 − βX1

)
< +∞,

hence, the right-hand side of (3.12) is well defined. Denote by ψ the function

ψ(s) = E(I s−1)

+∞∏
k=1

φ(k)

φ(s + k − 1)
,

according to (3.8) the function ψ satisfies the functional equation

ψ(s + 1) = sψ(s),

for any s > 0. This relationship is also satisfied by the classical Gamma function.
Since ψ(1) = 1, to prove that ψ is indeed �, Bohr–Mollerup’s theorem (see [3])
shows that it is sufficient to prove that ψ is log-convex, that is, that log(ψ) is a
convex function on R∗+ = R+ \ {0}. For s > 0,

log(ψ(s)) = log

(+∞∏
k=1

φ(k)

)
+ logE(I s−1) +

+∞∑
k=1

− log
(
1 − E

(
β(s+k−1)X1

))
,
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since Iu is integrable for any u > −1, it is easily seen that for s > 0, the variables
I s−1 log I and I s−1(log I )2 are integrable. The function s → logE(I s−1) is thus
twice differentiable and its second derivative is given by

E(I s−1(log I )2)

E(I s−1)
−

(
E(I s−1 log I )

E(I s−1)

)2

;

it is nonnegative by Cauchy–Schwarz’s inequality. Similarly, for k ≥ 1 the function

s → − log
(
1 − E

(
β(s+k−1)X1

))
is also convex on R∗+. The function ψ is therefore log-convex, hence ψ = � on R∗+.
Relationship (3.12) holds on R∗+ and it is partially extended on R− by using (3.8).
The proposition is proved. �

3.2. The density function as a q-hypergeometric function. The integer mo-
ments of the variable I can be naturally used to get a representation of the Laplace
transform of I .

PROPOSITION 8. The Laplace transform of the random variable I is given by,
for λ ∈ [0,1),

E(e−λI ) =
+∞∑
n=0

(−λ)n∏n
k=1(1 − E(βkX1))

.(3.15)

PROOF. See also [5]. The representation

E(e−λI ) =
+∞∑
n=0

E(I n)
(−λ)n

n!
is valid when the above series converge and Carleman’s criterion is verified
(see [9]), that is, if

+∞∑
n=0

E(I 2n)−1/2n = +∞,

which is easily checked by using (3.13). �

If the random variable X1 has a rational generating function, that is, there
exist two polynomials P and Q such that E(zX1) = P (z)/Q(z), then for some
a1, . . . , aM , b1, . . . , bN ∈ C,

1 − E(zX1) = (1 − z)
∏N

j=1(1 − bj z)∏M
i=1(1 − aiz)

.
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A direct consequence of (3.15) is the following representation for the Laplace
transform of random variable I :

E(e−λI ) =
+∞∑
n=0

(a1β;β)n · · · (aMβ;β)n

(b1β;β)n · · · (bNβ;β)n

(−λ)n

(β;β)n
,(3.16)

where, for x ∈ C, q ∈ [0,1[, (x;q)n is defined by

(x;q)n = (1 − x)(1 − xq)(1 − xq2) · · · (1 − xqn−1)

for k ≥ 1 and (a;q)0 = 1. Expression (3.16) for the Laplace transform can be
transformed so that it can be expressed as a q-hypergeometric functions. See
definition (A.1) and some basic identities in the Appendix. This suggests that
q-calculus is the natural setting to study the density of exponential functionals
for discontinuous Lévy processes. See [4] for some developments in this setting
when the process is purely Poisson. Different cases are now analyzed.

(1) The shifted geometric distribution. First, let us consider the case when
X1 has a shifted geometric distribution, that is, for a < 1 and n ≥ 1,

P(X1 = n) = an−1(1 − a).

If a is not a power of β , that is, a /∈ {βp :p ≥ 1}. For |z| ≤ 1,

1 − E(zX) = 1 − z

1 − az
,

and from (3.16) one gets the relationship

E(e−λI ) =
+∞∑
n=0

(aβ;β)n

(β;β)n
(−λ)n.

The q-Binomial theorem (Theorem 18 recalled in the Appendix) gives

E(e−λI ) = (−λaβ;β)∞
(−λ;β)∞

,

therefore, Laplace transform I has simple poles at points −β−n, n ≥ 0, and the
residue at point −β−n is

β−n(aβ−n+1;β)∞
(β;β)∞

∏n
k=1(1 − β−k)

= β−n(aβ−n+1;β)∞
(β;β)∞(1/β; 1/β)n

.

The density h of the distribution of the random variable I is thus given by, for
x ≥ 0,

h(x) = 1

(β;β)∞

+∞∑
n=0

(aβ−n+1;β)∞
(1/β; 1/β)n

β−ne−β−nx.(3.17)
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For a = 0, X = 1 a.s. and the two probability distributions defined by (3.17)
and (3.7) coincide.

Second, if a = βp for some p ≥ 1, the Laplace transform of I is a rational
function given by

E(e−λI ) = 1

(−λ;β)p
,

thus

h(x) =
p∑

n=0

1

(1/β; 1/β)n(β,β)p−n

β−ne−β−nx.

(2) A two-valued random variable X1. Here, P(X1 = 1) = p and P(X1 = 2) =
1 − p, then 1 − E(zX1) = (1 − z)(1 + (1 − p)z). The Laplace transform of the
random variable I is thus given by

E(e−λI ) =
+∞∑
n=0

(−λ)n

(β;β)n(−β(1 − p);β)n
.

The elementary relationship

(z;q)n = (z;q)∞
(qnz;q)∞

gives

E(e−λI ) = 1

(−(1 − p)β;β)∞

+∞∑
n=0

(−(1 − p)βn+1;β)∞
(β;β)n

(−λ)n.

From the first Euler’s identity (A.3) in the Appendix, one gets

E(e−λI ) = 1

(−(1 − p)β;β)∞

+∞∑
n=0

+∞∑
m=0

βm(m−1)/2 (1 − p)mβ(n+1)m

(β;β)m

(−λ)n

(β;β)n

= 1

(−(1 − p)β;β)∞

+∞∑
m=0

βm(m−1)/2 (1 − p)mβm

(β;β)m

+∞∑
n=0

(−λβm)n

(β;β)n
,

and then, using the second Euler identity (A.4),

E(e−λI ) = 1

(−(1 − p)β;β)∞

+∞∑
m=0

βm(m−1)/2 (1 − p)mβm

(β;β)m(−λβm;β)∞

= 1

(−(1 − p)β;β)∞(−λ;β)∞

+∞∑
m=0

βm(m+1)/2 (−λ;β)m

(β;β)m
(1 − p)m.
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It follows that the Laplace transform of the random variable I has simple poles at
the points −β−n, n ≥ 0. The residue of the Laplace transform at −β−n is equal
to rnβ

−n, with

rn = 1

(−(1 − p)β;β)∞(β;β)∞

n∑
m=0

(−1)m(1 − p)m

(1/β; 1/β)m(1/β; 1/β)n−m

.

The density h of the random variable I is thus given by, for x ≥ 0,

h(x) =
+∞∑
n=0

rnβ
−ne−β−nx.(3.18)

(3) A random variable X1 with a rational generating function. The above
examples can be generalized in the following manner.

PROPOSITION 9. If for a ∈ C and b1, . . . , bN ∈ C such that, for |z| ≤ 1, the
generating function of X1 is given by

1 − E(zX1) = (1 − z)
∏N

i=1(1 − biz)

(1 − az)
,

then the density h of the exponential functional I for the compound Poisson
process associated to X1 is given by

h(x) =
+∞∑
n=0

rnβ
−ne−β−nx, x ≥ 0,

with, for m, n ∈ N,

Cm = ∑
m1+···+mN=m

N∏
i=1

(−1)miβmi(mi+1)/2 b
mi

i

(β;β)mi

,

and

rn = 1∏N
k=1(bk;β)∞

×




n∑
m=0

Cm

(aβm−n+1;β)∞
(β,β)∞(1/β; 1/β)n−m

, a /∈ {βp :p ≥ 1},
n∑

m=max(n−p,0)

Cm

1

(1/β; 1/β)n−m(β;β)m+p−n

, a = βp.
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PROOF. The method is similar to the one used in the last example, (3.16) gives
the relationship

N∏
k=1

(bkβ;β)∞E(e−λI )

=
+∞∑
n=0

(aβ;β)n
(−λ)n

(β;β)n

N∏
i=1

(biβ
n+1;β)∞

=
+∞∑
n=0

(aβ;β)n
(−λ)n

(β;β)n

∑
(mi)∈NN

N∏
i=1

(−1)miβmi(mi−1)/2 b
mi

i β(n+1)mi

(β;β)mi

,

then
N∏

k=1

(bkβ;β)∞E(e−λI )

=
+∞∑
n=0

(aβ;β)n
(−λ)n

(β;β)n

+∞∑
m=0

Cmβnm

=
+∞∑
m=0

Cm

+∞∑
n=0

(aβ;β)n
(−βmλ)n

(β;β)n
=

+∞∑
m=0

Cm

(−aβm+1λ;β)∞
(−βmλ;β)∞

by the q-Binomial theorem. For n ∈ N the expression of the residue of the Laplace
transform of I at −β−n is then easy to obtain. The proposition is proved. �

4. The throughput of the AIMD algorithm. In this section the study of the
AIMD algorithm is completed. The variable X1 is assumed to be integer valued
and greater than 1. In the model considered in this paper the loss rate of packets
is of the order αE(X1). Recall the definition of the throughput of an AIMD
algorithm.

DEFINITION 10. The throughput of the algorithm is defined as the limit

ρα = lim
n→+∞

1

n

n∑
k=1

Wα
k = E(Wα∞).

This definition assumes that the round trip time (RTT) is taken equal to 1. Recall
that basically, RTT is the time interval between the transmission of two windows.
Due to the fact that the occupancy of the buffers of the routers vary, the packets
experience variable delays along their path. This implies, in particular, that the RTT
will vary too, as it will be seen in a following discussion (Section 5), assuming that
the RTT constant is by no means restrictive.
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Using the embedded Markov chain (V α
n ), the throughput can also be written as

ρα = E
(∑Gα

V α∞−1

k=0 (V α∞ + k)
)

E(Gα
V α∞)

= E(2Gα
V α∞V α∞ + (Gα

V α∞)2)

2E(Gα
V α∞)

− 1

2
,

by multiplying this identity by the square root of the loss rate of packets, that is,
by

√
αE(X1), Theorem 2 shows that the convergence

ρX1

def.= lim
α→0

√
αE(X1)ρ

α = √
E(X1)

E(2GV ∞V ∞ + G
2
V ∞)

2E(GV ∞)
(4.1)

holds. Since, by (2.6), (
V ∞ + GV ∞

)2 dist.= V
2
∞ + 2E1,

one gets the relationship

E
(
2GV ∞V ∞ + G

2
V ∞

) = E
((

V ∞ + GV ∞
)2 − V

2
∞

) = 2.

Equation (2.4) at equilibrium gives directly

E
(
GV ∞

) = 1 − E(δX1)

E(δX1)
E(V ∞).

These last identities show that (4.1) can be rewritten as

ρX1
=

√
E(X1)E(δX1)

(1 − E(δX1))E(V ∞)
.(4.2)

The next proposition gives an explicit formula for the asymptotic throughput.

THEOREM 11. The asymptotic throughput of an AIMD algorithm with
multiplicative decrease factor δ in a correlated loss model associated to the
random variable X1 is given by

ρX1
= lim

α→0

√
αE(X1)ρ

α =
√

2E(X1)

π

+∞∏
n=1

1 − E(δ2nX1)

1 − E(δ(2n−1)X1)
.(4.3)

PROOF. According to the remark at the beginning of Section 3, the variable I ,

solution of (3.1) with β = δ2, and the variable V
2
∞/2 + E1 (E1 is exponentially

distributed with parameter 1 and independent of V ∞) have the same distribution.
Equation (2.5) gives the identity in distribution

V
2
∞/2 dist.= δ2X1

(
V

2
∞/2 + E1

) dist.= δ2X1I,

therefore E(V ∞) = √
2E(δX1)E(

√
I ). Formula (3.12) yields

E
(√

I
) = �(3/2)

+∞∏
n=1

1 − E(δ(1+2n)X1)

1 − E(δ2nX1)
.

Since �(3/2) = √
π/2, (4.2) gives the desired formula. �
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The impact of the correlation of the loss process. The sensitivity of ρX with
respect to the variance of X is now investigated. The goal is to compare models
with the same loss rate [αE(X1) for the model considered up to now]. For this
purpose the definitions of stochastic order and concave order are recalled. See [24]
for the basic definitions and results on stochastic orderings.

DEFINITION 12. The order relationships ≤st and ≤cv are defined as follows,
for two random variables X and Y on R:

1. The inequality X ≤st Y holds when

E(f (X)) ≤ E(f (Y ))

is true for any nondecreasing function on R. Equivalently, X ≤st Y if and only
if the inequality P(X ≥ a) ≤ P(Y ≥ a) holds for any a ∈ R.

2. The inequality X ≤cv Y holds when

E(f (X)) ≤ E(f (Y ))

is true for any nondecreasing concave function on R. Equivalently, X ≤cv Y if
and only if the inequality E((a − Y )+) ≤ E((a − X)+) holds for any a ∈ R.

If X and X′ (resp. Y and Y ′) are independent real random variables such that
X ≤cv Y and X′ ≤cv Y ′, then X + X′ ≤cv Y + Y ′. Indeed, for a ∈ R,

E
((

a − (Y + Y ′)
)+)

=
∫

R

E
(
(a − y − Y ′)+

)
P(Y ∈ dy)

=
∫

R

E
(
(a − y − X′)+

)
P(Y ∈ dy) =

∫
R

E
(
(a − x′ − Y )+

)
P(X′ ∈ dx′)

≤
∫

R

E
(
(a − x′ − X)+

)
P(X′ ∈ dx′) = E

(
(a − (X + X′))+

)
.

In the same way, under the same independence assumptions if X, X′, Y and Y ′ are
such that X ≤st Y and X′ ≤st Y ′, then X + X′ ≤st Y + Y ′.

If X and Y are random variables such that X ≤st Y , it is possible to construct a
common probability space for two random variables X′ and Y ′ having respectively
the same distribution as X and Y , and such that the inequality X′ ≤st Y ′ holds
almost surely. For the nonrenormalized loss rate ρZ/

√
E(Z), the inequality

ρX√
E(X)

≥ ρY√
E(Y )

should hold since the model with X experiences less losses than the model with Y .
From (4.3), this is not obvious at all. In this part the expression for the throughput
is rewritten in a more convenient form to compare several loss processes.
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PROPOSITION 13. The asymptotic throughput ρX1
can be written as

ρX1
=

√
2E(X1)

π
exp

(+∞∑
k=1

1

k
E

(
1

1 + δ−Sk

))
,(4.4)

where (Sn) = (X1 + · · · + Xn) is the random walk associated to the i.i.d.
sequence (Xn).

PROOF. From (4.3), one gets (recall that X1 ≥ 1),

log

(√
π

2E(X1)
ρX1

)
=

+∞∑
n=1

(−1)n log
(
1 − E(δnX1)

)

= −
+∞∑
n=1

+∞∑
k=1

(−1)n
1

k

(
E(δnX1)

)k = −
+∞∑
k=1

+∞∑
n=1

1

k
(−1)nE(δnSk )

=
+∞∑
k=1

1

k
E

(
δSk

1 + δSk

)
,

and (4.4) is established. �

If X ≤st Y , the same property holds for the associated random walks
(SX

n ) and (SY
n ), that is, for any n ≥ 1, SX

n ≤st SY
n , thus (4.4) shows directly that

ρX/
√

E(X) ≥ ρY /
√

E(Y ) as expected. The following proposition gives a stronger
result in this domain.

PROPOSITION 14. The asymptotic throughput Z → ρZ/
√

E(Z) is a non-
increasing function for the concave order, that is, if X and Y are random variables

X ≤cv Y implies
ρX√
E(X)

≥ ρY√
E(Y )

.(4.5)

In particular, when E(X) = E(Y ), X ≤cv Y implies ρX ≥ ρY .

PROOF. If (SX
n ) and (SY

n ) are random walks associated to the variables
X and Y , by induction, with the help remark below Definition 12, it is easily seen
that for n ≥ 1, SX

n ≤cv SY
n .

The function a → 1/(δa +1) being nondecreasing and concave on R+, one gets
that for n ≥ 1,

E

(
1

δSX
n + 1

)
≤ E

(
1

δSY
n + 1

)
, E

(
1

δ−SX
n + 1

)
≥ E

(
1

δ−SY
n + 1

)
.

By (4.4), the last inequality implies that ρX/
√

E(X) ≥ ρY /
√

E(Y ). This com-
pletes the proof. �
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The above proposition suggests the greater is the variance of X, the better is the
asymptotic throughput. Jensen’s inequality gives that for any concave function f

on R+,

E(f (X)) ≤ f (E(X)),

hence E(X) ≥cv X. This implies, in particular, that ρX ≥ ρE(X) where, for t > 0,
ρt denotes the asymptotic throughput for the random variable constant equal to t .
In other words, the asymptotic throughput with the loss process associated to X

is greater than the throughput of an uncorrelated model but with a multiplicative
decay δE(X).

PROPOSITION 15. For any integer valued random variable X,

ρX ≥ ρE(X) =
√

2E(X)

π

+∞∏
n=1

1 − δ2nE(X)

1 − δ(2n−1)E(X)
.(4.6)

The function t → ρt is nondecreasing, in particular, for any random variable
X ≥ 1,

ρX ≥ ρ1.(4.7)

According to (4.7), (4.3) with X1 ≡ 1 proved in [8] is thus a lower bound for
the real throughput when the packet losses are correlated. Equation (4.7) of the
above proposition shows that choosing an uncorrelated loss process underestimates
the real performance. A possible intuitive explanation of this phenomenon is the
following: when there are x losses in some small time interval, the congestion
window size is basically reduced by a factor δx . If x is not too small then, due to
the exponential decay, for any y ≥ x the quantities δx or δy are both very small.
Hence it is better to have a very large variability in the loss process: large number
of losses locally but very rare.

PROOF OF PROPOSITION 15. Only the nondecreasing property of t → ρt has
to be proved. Taking g(t) = logρt − log(2/π)/2 and using (4.4),

g(x) = 1

2
log(x) +

+∞∑
n=1

1

n

1

1 + δ−nx
,

g′(x) = 1

2x
+

+∞∑
n=1

log(δ)
δnx

(1 + δnx)2
.

A glance at the right-hand side of the last inequality reveals that to prove the
property it is sufficient to show that the relationship

x

+∞∑
n=1

e−nx

(1 + e−nx)2
≤ 1

2
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holds for x ≥ 0. Since
+∞∑
n=1

e−nx

(1 + e−nx)2
≤

∫ +∞
0

e−xy

(1 + e−xy)2
dy = 1

2x
,

this is clearly true. The proposition is therefore proved. �

As a consequence of Proposition 14 the asymptotic throughput is a nondecreas-
ing functional, with respect to the concave order, for random variables X with the
same mean value. When the mean values are different, the comparison turns out
to be more difficult. Relationship (4.7) is an example of such a comparison for
deterministic variables. This part is concluded with a simple example, when X is
geometrically distributed, where this comparison is also possible. This kind of dis-
tribution also has another advantage: Since the number of local losses is believed
to be sharply concentrated near small values (see [22]), the geometric distribution
is a good candidate to describe the loss process.

PROPOSITION 16. If, for p ∈ [0,1[, Gp is a shifted geometrically distributed
random variable with parameter p, that is, P(Gp = n) = pn−1(1 − p) for n ≥ 1,
the function

p → ρGp
=

√
2

π(1 − p)

+∞∏
n=1

1 − pδ2n−1

1 − pδ2n

1 − δ2n

1 − δ2n−1

is convex and nondecreasing.

The case p = 0 corresponds to the uncorrelated case considered in [8]. Notice
this is still the worst case for the asymptotic throughput. Recall that all these
models have the same loss rate but with a variability increasing with p. In this
case the mean value E(Gp) is no constant with p.

PROOF OF PROPOSITION 16. Equation (4.3) gives the relationship√
π

2
ρGp

= 1√
1 − p

+∞∏
n=1

1 − pδ2n−1

1 − pδ2n

+∞∏
n=1

1 − δ2n

1 − δ2n−1
,

thus,

log
(ρGp

ρG0

)
= −1

2
log(1 − p) −

+∞∑
n=1

(−1)n log(1 − pδn)

=
+∞∑
k=1

1

2k
pk +

+∞∑
n=1

+∞∑
k=1

(−1)n
pk

k
δnk =

+∞∑
k=1

pk

k

(
1

2
− δk

1 + δk

)

=
+∞∑
k=1

pk

k

1 − δk

2(1 + δk)
.



112 F. GUILLEMIN, P. ROBERT AND B. ZWART

The proposition is proved. �

5. On the accuracy of the stochastic model describing a TCP connection.
In this section several aspects of the TCP protocol not explicitly considered in the
stochastic model analyzed in this paper are discussed.

5.1. Finite maximal congestion window size. For the moment it has been
assumed that the sequence (Wα

n ) can be increased without any bound. In practice,
the congestion window size is blocked as soon it has reached a maximal
value wα

max. In [8] for independent packet losses, the stationary behavior of the
asymptotic sequence (V n) is described when

wα
max ∼ wmax/

√
α.

For the present loss model, a similar analysis can also be done. The corresponding
asymptotic sequence (V n) satisfies the relation

V
2
n+1

dist.= δ2Xn min(V
2
n + 2En,wmax), n ≥ 1,

where (Xn) and (En) are i.i.d. independent sequences and E1 is exponentially
distributed with parameter 1. This sequence converges in distribution to a random
variable V ∞ such that

V ∞ =
√√√√ inf

n≥0

(
δ2Snwmax + 2

n∑
i=1

δ2SiEi

)
,

where (Sn) is the random walk associated to (Xn).

5.2. Timeouts. In the model considered here only losses that can be handled
by the Fast Recovery Algorithm have been considered (see [15]). When three
consecutive packets are lost or when the timeout for a packet has elapsed, the
congestion window size W is set to 1. In our limiting process this amounts to
set W to 0. Thus, the evolution equation

V
2
1

dist.= δ2X1
(
V

2
0 + 2E1

)
is still valid provided that the value +∞ is allowed for X1.

The quantity P(X1 = +∞) is then interpreted as the probability of a timeout or
of three consecutive losses. Formula (4.3) for the asymptotic throughput becomes

ρX1
=

√
2(qE(X1|X1 < +∞) + (1 − q))

π

+∞∏
n=1

1 − qE(δ2nX1|X1 < +∞)

1 − qE(δ(2n−1)X1|X1 < +∞)
,

where q = P(X1 < +∞) the probability of a timeout is 1 − q . In the simple
uncorrelated case, P(X1 = 1) = q = 1 − P(X1 = +∞), the above formula is

ρ1 =
√

2

π

+∞∏
n=1

1 − qδ2n

1 − qδ2n−1
=

√
2

π
exp

( +∞∑
k=1

qk

k

δk

1 + δk

)
,
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where the last identity is proved by using the same arguments as in the proof
of Proposition 16. For TCP (δ = 1/2), as q varies from 1 to 0, ρ1 decreases
from 1.309 to 0.798.

5.3. Slow start phase. In the present implementations of TCP, if an isolated
loss (i.e., not within a group of three consecutive losses as before) occurs when the
window size is W = w, the algorithm Slow Start is then used (see [23]); it works
as follows. A quantity called Slow Start Threshold Tss is fixed to �w/2� and the
congestion window size is set to 1. The congestion window size is then doubled
after each RTT as long as its value has not reached Tss:

W →
{

2W, if no loss occurs among the W packets,
1, otherwise,

(5.1)

when W is greater than Tss, the AIMD algorithm is then used. Ferguson [10]
analyses a related stochastic model of the slow start algorithm. In the probabilistic
model investigated here (and also in [8]), this algorithm of the TCP protocol is
taken into account.

In the setting of the paper this algorithm can be included without changing
the results obtained so far. Recall, Proposition 4, that the chain (Wα

n ) is properly
renormalized as (√

αWα
�t/√α�

)
(5.2)

to get the asymptotic Markov process (W(t)). To show that the slow start algorithm
can be neglected, it is sufficient to show that if Wα

0 = 1 and the transitions (5.1)
are used, the mean time Tx to reach the level x/

√
α is o(1/

√
α ). In other words,

the time necessary to reach a slow start threshold of the order x/
√

α is negligible
in the time scale defined by (5.2), therefore the slow start period vanishes because
of the time scale.

PROPOSITION 17. If Wα
0 = �x/

√
α�, (Wα

n ) is a TCP session starting after a
loss and T α is the first index n when the congestion avoidance algorithm is used,
then

lim
α→0

P

(
T α

− log2
√

α
≤ 1

)
= 1.

The variable T α is of the order − log2
√

α, hence the interval {0,1, . . . , T α}
(where the slow start algorithm is used) vanishes under the scaling (5.2), t →
�t/√α�, consequently so does the slow start algorithm in the stochastic model.

PROOF OF PROPOSITION 17. Since the distribution of the size of a group of
losses is independent of α, it can be assumed that the initial loss is the last loss
of a group. (Recall that time is shrunk by 1/

√
α.) The next loss will thus occur
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as in the independent loss model, where each packet has a probability exp(−α) of
being lost. If no loss occurs during the first log2�x/

√
α� steps, then necessarily

T α ≤ log2�x/
√

α�, therefore

P
(
T α ≤ log2�x/

√
α�) ≥

log2�x/
√

α�∏
i=1

exp(−α2i ) = exp
(−α(�x/

√
α� − 1)

)
.

Since this last expression is converging to 1 as α tends to 0, the proposition is
proved. �

REMARK. The slow start algorithm does not play any role in this paper
because only the transfer of an infinite file is considered. The transient periods
where the algorithm recovers from a loss are negligible from this point of view.
The problem is entirely different when “small transfers” (less than ten packets
say) are considered. For these connections, the reverse situation prevails and they
are finished before the congestion avoidance algorithm starts.

5.4. Variable RTTs. In Section 4 devoted to the asymptotic throughput of the
TCP connection, the round trip times have been assumed constant. In practice this
is not the case since packets experienced delays in the buffers of the various routers
along their paths.

If, for n ∈ N, Rn is the delay experienced by the packets of the nth round trip,
the random variables Wα

n and Rn are correlated random variables. The average
throughput after the nth round trip is

n∑
i=1

Wα
i

/
n∑

i=1

Rα
i .

If we assume that, asymptotically, the sequence (Rn) is stationary, the ergodic
theorem shows that, almost surely,

lim
n→+∞

1

n

n∑
i=1

Wα
i = E(Wα∞) and lim

n→+∞
1

n

n∑
i=1

Ri = E(R∞);

the asymptotic throughput is therefore E(W∞)/E(R∞). Notice that the depen-
dence between the two sequences (Wα

n ) and (Rn) does not play any role for this
result. Hence, up to the constant 1/E(R∞), and under a mild assumption on the
stationarity of (Rn), even when the RTT are variable, Theorem 11 gives the right
expression for the asymptotic throughput for a long TCP connection.

REMARK. In [5], it is shown that a self-similar process plays an important role
for the exponential functionals. Bertoin, Biane and Yor [4] give a nice probabilistic
representation of the distribution of this process when the Lévy process is Poisson.
In spite of the occurrence this self-similar process is quite appealing, it does not
seem that it has an interpretation in the stochastic model of TCP.
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APPENDIX

Elementary results concerning q-calculus are recalled in this section. See
[3] and [17] for a quick introduction and Gasper and Rahman [13] for a more
advanced presentation. Recall that for x ∈ C, q ∈ [0,1[ and n ∈ N ∪ {+∞},

(x;q)n = (1 − x)(1 − xq)(1 − xq2) · · · (1 − xqn−1)

for n ≥ 1 and (a;q)0 = 1. For n < +∞, the quantity (q;q)n is a generalized
factorial in the sense that

lim
q↗1

(q;q)n

(1 − q)n
= n!.

Roughly speaking, q-calculus is ordinary calculus but with factorials replaced by
these generalized factorials.

The q-hypergeometric functions rφs are defined by

rφs

(
a1, . . . , ar

b1, . . . , bs
;q, z

)
(A.1)

=
∞∑

m=0

(a1;q)m · · · (ar;q)m

(b1;q)m · · · (bs;q)m

(
(−1)mqm(m−1)/2)1+s−r zm

(q;q)m

for r and s ∈ N. The q-hypergeometric functions rφs are generalized versions of
the classical higher-order hypergeometric function rFs ,

lim
q↗1

rφs

(
a1, . . . , ar

b1, . . . , bs
;q, (q − 1)1+s−rz

)
= rFs

(
a1, . . . , ar

b1, . . . , bs
; z

)
.

THEOREM 18 (q-Binomial theorem). For |x| < 1 and |q| < 1,

1φ0(a;q, x) =
+∞∑
k=0

(a;q)k
xk

(q;q)k
= (ax;q)∞

(x;q)∞
.(A.2)

Euler’s formulas are direct consequences of (A.2),

+∞∑
k=0

(−1)kqk(k−1)/2 xk

(q;q)k
= (x;q)∞,(A.3)

+∞∑
k=0

xk

(q;q)k
= 1

(x;q)∞
.(A.4)

The first one is obtained by taking a = 0 and for the second one, a (resp. x) is
replaced by 1/a (resp. ax), and then a is set to 0.
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