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ON VALIDITY OF THE ASYMPTOTIC EXPANSION APPROACH
IN CONTINGENT CLAIM ANALYSIS

By NAOTO KUNITOMO AND AKIHIKO TAKAHASHI

University of Tokyo

Kunitomo and Takahashi (1995, 2001) have proposed a new methodology,
called small disturbance asymptotics, for the valuation problem of financial
contingent claims when the underlying asset prices follow a general class
of continuous Itd processes. It can be applicable to a wide range of
valuation problems, including complicated contingent claims associated with
the Black—Scholes model and the term structure model of interest rates in the
Heath—Jarrow—Morton framework. Our approach can be rigorously justified
by an infinite-dimensional analysis called the Watanabe—Yoshida theory on
the Malliavin calculus recently developed in stochastic analysis.

1. Introduction. In the past decades various contingent claims including
futures, options, swaps and other derivative securities have been introduced and
actively traded in financial markets. Except some simple cases such as the
original Black—Scholes model in which the underlying assets follow the geometric
Brownian motions and the risk free rate is constant, however, it has been difficult
to derive the explicit formulas for the fair market values of financial contingent
claims. Meanwhile, Kunitomo and Takahashi (1995, 2001), and Takahashi (1999)
have presented a new methodology called the small disturbance asymptotic theory
which is widely applicable to the valuation problem of financial contingent claims
when the underlying asset prices follow the general class of continuous It6
processes. They have given rather simple formulas which are useful for various
valuation problems of contingent claims in financial economics.

For the Black—Scholes economy, Takahashi (1999) has systematically investi-
gated the valuation problem of various contingent claims when the vector of d asset
prices S; = (S,i) (i=1,...,d;0<t<T < +0o0) follows the stochastic differen-
tial equation

. . ro. n ro. .
(1.1) S§:S(‘)+/ M;<Sv,v)du+2/ o (Sy, v)dw/,
0 ; 0
j=1

where d x 1 vector ©.(Sy,v) = (,ufk(SU,v)) and d x m matrix o0.(Sy,,v) =

(o4’ (Sy, v)) are the instantaneous mean and the volatility functions, respectively,
and {w}} are Brownian motions. In this Black—Scholes economy, we have to
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change the underlying measure because of the no-arbitrage theory in finance [see,
e.g., Chapter 6 of Duffie (1996) on the standard theory]. Then we can consider the
situation when S,(g) satisfies

(1.2) s =5, +/ st (S)dv—i-s/ o (S, v)dw,,
0

where S,(S) [= (S,(S)i)] is a d x 1 vector with the parameter ¢ (0 < ¢ < 1),
o (Sy (&) ,v)(d X m) is the volatility term, r (-, -) is the risk free (positive) interest rate,
and w, [= (w})] is an m x 1 vector. The small disturbance asymptotic theory under
the no-arbitrage theory can be constructed by considering the situation when ¢ — 0
and we can develop the valuation method of contingent claims based on {St(g)}.

NOTE. The limit of stochastic process St(g) is the solution of an ordinary
differential equation when ¢ — 0 in this formulation. There can be an alternative
formulation such that the limit is the solution of a stochastic differential equation.
See Kim and Kunitomo (1999), Kunitomo and Kim (2001), Sgrensen and
Yoshida (2000) or Takahashi and Yoshida (2001) on this formulation and some
applications in financial problems. However, it requires a set of different arguments
including the partial Malliavin covariances.

For the term structure model of interest rates in the HIM framework [Heath,
Jarrow, and Morton (1992)], let P (s, ¢) denote the price of the discount bond at s
with maturity date 7 (0 < s <t < T < +00). When it is continuously differentiable
with respect to ¢ and P(s,?) > 0 for 0 <s <t < T, the instantaneous forward
rate at s for future date 1 (0 <s <t <T) is given by f(s,?) = —aloga#. The
no-arbitrage condition requires the drift restrictions on a family of forward rates
processes { f (s, 1)} for 0 <s <t < T to follow the stochastic integral equation

fs.0)=£(0,1)

t
v, 1), v, t o (f(v,y),v,y)dy|dv
(1.3) / [ .0, )/u (3. v.) y}
+Z/ (f,0),v, 1) dw
where f(0,7) are nonrandom. initial forward rates, {wf);i =1,...,m} are
m Brownian motions and {o/(f(v,f),v,t);i = 1,...,m} are the volatility

functions. When f (s, t) is continuous at s = ¢ for 0 <s <t < T, the instantaneous
spot interest rate process can be defined by r(¢) = lims—; f(s,#). In this
framework of stochastic interest rate economy, Kunitomo and Takahashi (1995,
2001) have investigated the valuation of contingent claims when a family of
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forward rate processes obey

FOs,0 = £0,0
s m t
2 i (&) i (e)
e o iz:l[a (FOwn.0.0) [ o (F 9w )0 5)dy | av

m s . .
+8Z/0 a’(f(g)(v, 1),v,t)dw,
i=1

where 0 < ¢ < 1. The volatility functions {ai(f(g)(s, t),s,t);i=1,...,m} de-
pend not only on s and ¢, but also on £ (s, ¢) in the general case. The instanta-
neous spot interest rate process can be defined by r® (1) = lim,_,; f© (s, r). Then
the small disturbance asymptotic theory can be constructed by considering the sit-
uation when ¢ — 0 and we can develop the valuation method of contingent claims
based on { (s, t)} and the discount bond prices

(1.5) PO, T) =exp[—/lT f(g)(t,u)du}.

The main purpose of this paper is to give the validity of the asymptotic
expansion approach along the line called the Watanabe—Yoshida theory on the
Malliavin calculus recently developed in stochastic analysis. The Malliavin
calculus has been developed as an infinite-dimensional analysis of Wiener
functionals by several probablists in the last two decades. We intend to apply this
powerful calculus on continuous stochastic processes to the valuation problem
of financial contingent claims along the line developed by Watanabe (1987)
and subsequently by Yoshida (1992). However, the continuous-time stochastic
processes appearing in financial economics are not necessarily time-homogeneous
Markovian in the usual sense while the existing asymptotic expansion methods
initiated by Watanabe (1987) and refined by Yoshida (1992) have been developed
for time-homogeneous Markovian processes. Hence we need to extend some of
the existing results on the validity of the asymptotic expansion approach. Also the
mathematical devices used in the Watanabe—Yoshida theory have not been standard
for finance as well as in many applied fields due to the recent mathematical
developments involved. In this paper we intend to give a rigorous discussion on
the validity of the asymptotic expansion approach in a unified way. Although
some of the following derivations have been already reported in Kunitomo and
Takahashi (1995, 2001) and Takahashi (1999), these papers did not give many
important proofs on the validity of the asymptotic expansion approach.

In this paper we shall also illustrate the usefulness of the asymptotic expansion
approach by showing some numerical examples. Since several related papers have
already appeared [Kunitomo and Takahashi (2001) and Takahashi (1999), e.g.],
we shall only discuss simple examples with analytical difficulties from other
approaches.
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In Section 2, we give some preliminary mathematical devices, that will be
needed in the following derivations. Section 3 is on the validity of our approach
for the continuous Markovian setting, while Section 4 is on the validity of our
approach for the HIM setting of the interest rates model. We give some numerical
examples in Section 5 and concluding remarks in Section 6. Some mathematical
details will be given in the Appendix.

2. Preliminary mathematics. We shall first prepare the fundamental results,
including Theorem 2.2 of Yoshida (1992), which is in turn a truncated version of
Theorem 2.3 of Watanabe (1987). The theory by Watanabe (1987) on the Malliavin
calculus and Theorem 2.2 of Yoshida (1992) are the fundamental ingredients to
show the validity of our asymptotic expansion method. This is the reason why we
call it the Watanabe—Yoshida theory on the Malliavin calculus. For our purpose, we
shall freely use the notation by Ikeda and Watanabe (1989) as a standard textbook.
The interested reader should see Watanabe (1984, 1987), Ikeda and Watanabe
(1989), Yoshida (1992, 1997), Shigekawa (1998) or Nualart (1995).

2.1. Some notation and definitions. Let W be the m-dimensional Wiener
space, which is a Banach space consisting of the totality of continuous functions
w:[0,T] - R™[w(0) = 0] with the topology induced by the norm |w| =
maxo<;<7 |w(t)|. Let also H be the Cameron—Martin subspace of W, where
h(t) = (h/(t)) € H is in W and is absolutely continuous on [0, '] with square
integrable derivative /(r) endowed with the inner product defined by

moo.T .
2.1 (h1, ho) g = Z/O I (s)h3 (s) ds.
j=1

We shall use the notation of the H-norm as |h|12q = (h,h)yg for any h € H.
A function f:W — R is called a polynomial functional if there exist n € N,
hi,hs,...,h, € H and a real polynomial p(x, x2, .. .,xn) of n-variables such

that f(w) = p([h11(w), [A2](w), ..., [h,](w)) for h; = (h{) € H, where
2.2) [hi 1(w) = i /TIH dw’.
F=tC

are defined in the sense of Itd’s stochastic integrals.

The standard L ,-norm of the R-valued Wiener functional F is defined by
I1Fll, = (Jw |F|PP(dw))/?. Also a sequence of the norms of the R-valued
Wiener functional F for any s € R, and p € (1, 00) is defined by

(2.3) IF|lps =T —L£)2F|,,

where £ is the Ornstein—Uhlenbeck operator and ||-||, is the L,-norm in the
stochastic analysis. The O-U operator in (2.3) means that (I — £)/?F =
noo(l + n)*/2J,F, where J, are the projection operators in the Wiener
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homogeneous chaos decomposition in Ly(R). They are constructed by the totality
of R-valued polynomials of degree at most n, denoted by P,,.

Let P(R) denote the totality of R-valued polynomials on the Wiener space
(W, P). Then P(R) is dense in L,(R) and can be extended to the totality of
smooth functionals S (the C* functions with derivatives of polynomial growth
orders). Then we can construct the Banach space D‘;,(R) as the completion of
P (R) with respectto || - || 5. The dual space of D‘;,(R) is D;“(R), where s € R,
p>1land 1/p+1/q =1.The space D®(R) = ;=01 <p<+too D} (R) is the
set of Wiener functionals and i)_oo(R) = Us=0Ni<p<too D,° (R) is a space of
generalized Wiener functionals. For F € P(R) and h € H, the derivative of F in
the direction of 4 is defined by

(2.4) DyF (w) = lim é{F(w +eh) — F(w)}.

Thenfor F € P(R) and h € H thereexists DF € P(H ® R) such that D, F(w) =
(DF (w), h)g, where (-)g is the inner product of H and DF is called the
H -derivative of F. Also for F € S(R) there exists a unique DF € S(H ® R).

More generally, for a separable Hilbert space E, a function f:W — E is
called a polynomial functional if there exist n € N, hy, ho, ..., h, € H and real
polynomials p;(x1, x2, ..., x,) of n-variables such that

d
fw) =" pi(lhi)(w), [hal(w), ..., [hal(w))e;

i=1
for some d € N, where eyq,...,e4 € E. The totality of E-valued polynomial
functions and the totality of E-valued smooth functionals are denoted by P(E)
and S(E), respectively. By extending the above construction for P(R) to S(E),
there exists DF € S(H ® E) such that Dy F(w) = (DF(w), h) g, where (-)g 1s
the inner product of H.

By repeating this procedure, we can sequentially define the kth order H -deriva-
tive D¥F € S(H® ® E) for k > 1, and it is known that the norm || - lp,s 18
equivalent to the norm ) ; | D¥ - | p- In particular, for F = (F') e D},(Rd), we
define the Malliavin covariance by

(2.5) omc(F) = ((DF'(w), DF/ (w))n), i, j=1,....d.

2.2. Asymptotic expansions. Let X©(w) = (X'©(w)) (i =1,....d; ¢ €
(0,1]) be a Wiener functional with a parameter €. Then we need to define the
asymptotic expansion of X ) (w) with respect to ¢ in the proper mathematical
sense. For k > 0, X© (w) = O(&") in D‘;(E) as ¢ | 0 means that

. IXE| s
(2.6) limsup ————— < 400

£l0 ek
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Ifforall p>1,s >0andeveryk=1,2,...,
2.7) XOw) — (g1 +eg2+ -+ g) = 0(")

in D},(E) as ¢ | 0, then we say that X ®) (w) has an asymptotic expansion

(2.8) X (w) ~ g1+ 62+ -+
in D®°(E) as ¢ | 0 with g1, g2, ... € D®(E).
Also if for every k = 1,2,..., there exists s > 0 such that, for all p > 1,

X (w), g1, 2. ... € D;*(E) and
(2.9) XOw) — (g1 +eg2+---+ e o) = 0(")

in D;S(E) as ¢ | 0, then we say that X (w) e D_OO(E) has an asymptotic
expansion

(2.10) X©w)~g) +egr+--

inD (E)ase | 0withgi,g,...c D " (E).

Let 8 (R?) be the totality of C rapidly decreasing functions on R¢ and 8’(R?)
be its dual. Also let n° € D*°(R) and ¥ (y) be a smooth function such that
O0<vy@y)<lforyeR, y(y)=1for |y|<1/2 and v =0 for |y| > 1. It is
known that if for any p > 1 the Malliavin covariance of X ©) ¢ D®(RY) satisfies

2.11) sup E|[1(je(1) (detlomc (X)) 77 | < o0,
£€(0,1]

the composite functional G = Y(n®)G o X© ¢ i)_oo(Rd) is well defined with
any G € 8'(R?). Then the coupling

(2.12) b—oo(G, ‘I>Doo = b—oo(G(X(E))’ W(’lg)J)DOO’
for any J € D>®(R?), is well defined and we can use the notation of the
expectation E[v¥(n°)G(X ©)] by taking J = 1. With these formulations and
notation we are ready to state a simplified version of Theorem 2.2 of Yoshida
(1992), which is a truncated version of Theorem 2.3 of Watanabe (1987). The
validity of the asymptotic expansion is obtained by showing that the conditions of
the next theorem are met in our situations.

THEOREM 2.1 [Yoshida (1992)]. Suppose the following set of sufficient
conditions are satisfied:

(1) {X®(w); e € (0, 1]} € D®(R?) with X© (w) = (X'© (w)).
(i) X©(w) has the asymptotic expansion X© (w) ~ g + egr + -+ in
D>®(R¥) as e | 0 with g1, g2, ... € D®(RY).
(iii) {n°(w); e € (0,11} € D*°(R) and it is O(1) in D*°(R) as ¢ |, 0.
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(iv) Forany p > 1,
(2.13) sup E| 16 <1) (detlomc (X)) 77 | < o0,
e€(0,1]
(v) Foranyk > 1,
(2.14) lime ™ P{|n°| > 1} =0.
e—0

(vi) Let ¢(8)(x) be a smooth function in (x,¢&) on R x 0, 1] with all
derivatives of polynomial growth order in x uniformly in ¢.
Then v (n°) 9@ (X @) I1g(X®) has an asymptotic expansion,

(2.15) V()P (X Ig(X @) ~ Do+ edy + -

in D_OO(R) as € | 0, where Ig is the indicator function for any Borel set B and
&g, Py, ... are determined by the formal Taylor expansion with respect to X©
in (2.10).

REMARK. We have to mention an intuitive meaning of the asymptotic
expansion in the above theorem. If we truncate the random variable under the
condition of (2.13), then the asymptotic expansion in (2.15) implies

_ 1
lim sup| — B[y (1)¢) (X‘9) I5(X"*)
el0

— (@ + D1 + -+ + 1D )]| < +oo

for any integer k > 1 if we use the expectation operation in the proper
mathematical sense. The calculations of the generalized expectation operations
for the generalized Wiener functionals will be discussed in Section 3.

3. Validity in the Black—Scholes economy. Let (2, ¥, O, {¥;}:c[0,7]) be the
filtered probability space with T < 4-o00. For ¢ € (0, 1] and 0 < ¢ < T, the vector
of d security prices follow a sequence of stochastic differential equations

t t
3.1) S =85+ / w(S®,s)ds + / o (S, 5) dws,
0 0

where M(S§S), s) = r(S§S), s)SS(S) and a(Ss(g), s) = (oif(S§8), s)) are R4 x
[0, T] — R and R? x [0, T]— R ® R™ Borel measurable functions in (Ss(g), s),
respectively, and wy [= (wé)] are the vector of m x 1 Brownian motions with re-
spect to {F;}. We further assume that the drift and the volatility functions are con-
tinuous and C* for s € [0, T'] with bounded derivatives of any order in the first
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argument. That is, for the first argument there exist positive constants M1 (k) and
M>(k) (k> 1) such thatforanyi =1,...,dand j=1,...,m,

ak i S(S),
(3.2) sup — )( s f)(g) < My (b),
SeRrd 0<s<T| 0S5 - A8
ak ij S(é‘)’
(3.3) sup iz)( s is)(g) < Ma(h),
SeRd 0<s<T! 08" -+ 38K

where M(S§S), s) = (ui(SS(S), s)), and we shall denote the partial derivatives as

.....

case that there exists a positve M3 such that

3.4 sup [Ix(0, )|+ |0 (0,9)|] < M3,

0<s<T

where the notation |A| = /3, ;|a'/|? for any matrix A = (@) and |a| =

V> lal|? for any vector a = (a') are used. These conditions imply that there
exists some positive K; > 0 (i = 1, 2) such that for all s, € [0, T],

G- (S, 5)| + o (). 5)] < Ki(1+ 15,
G6) [(Sf 5) = (S5 )] + 1o (51 5) = o (55 )| < Kalsiy) - 5.

Then the standard argument in stochastic analysis shows the existence of the
unique strong solution which has continuous sample paths and is in L p(Rd) for
any 1 < p < oco. In the remainder of this section, we will mainly discuss the
validity of the asymptotic expansion of ¢(X§§ ))I Q(X;f: )) for any Borel set 8B,

where X ;f ) is defined by
1
(3.7) Xy = (87~ 57))
and S;O) is the solution of the ordinary differential equation

0 _ T o
(3.3) Sy’ =80+ A w(Ss”, s)ds.

For illustrations in this section, we only mention simple examples. When we take
d=m=1,¢(x)=(x+y)and Ig(x) = {x > —y} fora constant y, it corresponds
to the valuation problem of European options in mathematical finance. We shall
give another example for the Asian options, which was considered by Kunitomo
and Takahashi (1992).

First, we shall show that S;f ) is a smooth Wiener functional in the sense
of Malliavin. A more detailed proof when d = m = 1 has been discussed by
Kunitomo and Takahashi (1998) and Takahashi (1999).
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THEOREM 3.1. Under the assumptions in (3.1)—(3.3), S(g) isin Doo(Rd) and
has an asymptotic expansion

(3.9) SO~ 8O 4 eerr +elgr 4
as e | O with g1, go1, ... € D®(RY).

PROOF. (i) The first part of our proof is to show that S;f) is in D®°(RY).

But it is well known that S;f ) e D°°(Rd) when S;f ) follows a time-homogeneous

Markovian process. Since any time-dependent Markovian process can be repre-
sented as a time-homogeneous Markovian process, we can immediately apply
the general result to our case. [See Chapter V of Ikeda and Watanabe (1989), or
Kusuoka and Strook (1982).]

(il) We shall prove the second part of Theorem 3.1. The coefficients
appearing in the asymptotic expansion of S;f ) are given by the formal Taylor

formula. By expanding Xf) as Xf) =gi7 +egor +€2g37 + - - - with respect to ¢,
we can determine the coefficients {g ;7 (j > 1)} recursively. The ith component of
the leading term (i =1, 2, ..., d) is given by

I
=3 [ (s, s 30 [ oV (5051w
L=l
Then it can be written as
=33 [ o (5. sy awd

j=1j=1

where Y; = Y,(O) is the solution of the ordinary differential equation Y/ =
Zzzl Ok /,Li(S,(O), nY kl dt. This equation can be solved and its solution is written
as Y, = exp(fé(aju'(S © ,8)) ds) with the initial condition Yy = 1.

For n > 2, we recursively define the ith component of each term g by

gfll% - Z / |:k| Z al[ lk S§0) ) gm Vi| dS

..... j=1
m1+ +mk n
- an d - k (0) )
— J
SRR Y M FS S sRPECICER s Py
k=1 I1,... k=1 j'=1
mi+--+mr=n—1
where m (j =1, ..., k) are positive integers.

By the boundedness of Y7, Ys_l, O’(S‘EO), s) on [0, T], we have E[|g5]P] < o0,
s €[0,T] forany 1 < p < oo. Given g5 € Lp(Rd), we have E[|g2s|”] < oo for
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any 1 < p < oco. By the same token, the relation gi; € L p(Rd) can be obtainable
recursively given gj; € L,,(Rd) (j=1,2,...k—1) and we have g1, g21, ... €

1, pd
m1<p<oo Dp(R ).
Next, we note that

Dygly = Z Z/ YrY Yol (5O, s)hi' ds.
j=1j=1
For higher order derivatives we use an induction argument and we assume
gnr € ﬂ1<p<oo D’;(Rd) (k > 1) for any n > 1. Then we need to show that

gnT € Ni<p<oo D’;,H(Rd). Actually, we can show the L ,-boundedness of any
order H-derivatives of g, (n > 1) recursively. In our evaluations of higher order
H-derivatives, we need a version of Burkholder’s inequality for Hilbert space
valued stochastic integrals proved by Lemma 2.1 of Kusuoka and Strook (1982).
Given gy € D>®(R?) for any s € [0, T], we can recursively show that g, €
D>®(RY).

(iii) Finally, forany n (n > 1) and s € [0, T'] let

1 _
Zr(ti) = g_n[X‘gs) —81s — €825 — '+ — " 1gns]-

By using (3.1) repeatedly and applying the standard arguments, we can show that
Zﬁ) el p(Rd) for any p > 1 uniformly with respect to €. Again, by applying
recursive arguments and using induction with respect to n, we can show that

Z,(,i) and their H-derivatives are in L, uniformly with respect to ¢ after tedious
arguments, which were omitted. [

We now return to the original problem on the normalized random variable X ;f )
in (3.7). Using Theorem 3.1, we see Xf) is in D°°(Rd) and has a proper
asymptotic expansion

X$)~glr +egor + -

in D®(RY) with gi7, go7, ... € D®(R?). By using the Fubini-type result in our
setting for any & € H, the first-order H-derivative Dj, S;S ) satisfies

DS = ZZ / £0k0 ' (S, 5) D SE* dw (s)

j=lk=1

+Z/ ' (S, s DhS<€>"ds+Z/ e (SE), 5)hi ds.

Then it can be represented as

(3.10) D S¥" = ZZ Y(S)Y(g) NWeall'(8©) s)h] ds,
J=1j'=1
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where Y(e) is the solution of the stochastic differential equation

@11 ay = Z ' (S, )Y M dr 4 ¢ Z Z o (8, 1)y aw]
k=1 j=lk=1

and Y, ) — =1;. Then the Malliavin covariance of the normalized random variable

UMC(X(g) ) = (ore (X)) is given by

ovc(X{) = Z / [V17Y O o (s, ) 1Y o (510, 5)) ds.

We shall cons1der the uniform nondegeneracy of the Malliavin covariance, which
is the most important step in the application of Theorem 2.1. For this purpose, we
need the following assumption.

ASSUMPTION 1. For any T > 0 the d x d matrix Xy = (Zg) is positive
definite, where Eéjl is given by

(3.12) ’J—Z/ [YrY o (SO, ) * [y Yo (SO, 5)]* ds.

This assumption assures the nondegeneracy of the limiting distribution of the
random variable, which can be easily checked in applications. We define n’ as

T
(3.13) no = c/ ]Y}g)(Ys(g))_la(Ss(g), s) — YTYS_IG(SS(O), s)\zds
0

for any ¢ > 0. Let éf‘? = Y(g)(Yg) 15(S¥ s) and sy = Y;YS_IO'(SS(O),S) and

we note an inequality |£\9£)" — & 7&7 1| < 16,5 — &. 717 + 21& 71167 — & 71,
where the notation A* is used for the transpose of any matrix A = (a;;). Then

S(‘?)

condition |nC| <1 is equivalent to fo | SS,T|2ds < 1/c and we have

1 1
’GMC(ng)) - Egl‘ = - + z‘zgl ‘\/g

for [nZ| < 1. Thus we can take co such that for any ¢ > c9 > 0, 0 < Zg, +

(O’Mc(X;a)) —Xg) = O’Mc(X;f:)) holds uniformly for ¢ € (0, 1]. Hence we have
the next result on the uniform nondegeneracy of the Malliavin covariance.

THEOREM 3.2. Under the assumptions in (3.1)—(3.3) and Assumption 1, the

Malliavin covariance onc(X ;8 )) is uniformly nondegenerate. That is, there exists
co > 0 such that for ¢ > ¢y and any p > 1,

(3.14) sup E| 1 <1 {det(ome(X§))} 7] < oo.
1

ee(0,1]



CONTINGENT CLAIM ANALYSIS 925

By using the results in Theorem 3.1, Theorem 3.2 and Lemma A.2 in the
Appendix, we have shown that the conditions of Theorem 2.1 are satisfied. Then
we immediately obtain the next result.

THEOREM 3.3. Under the assumptions in (3.1)—(3.3) and Assumption 1,
for a smooth function ¢© (x) with all derivatives of polynomial growth orders,

1//(775)(1)(8) (X;E))Ijg (ng)) has an asymptotic expansion
(3.15) Ve X Ig(XP) ~ @o+ ey + 20y + -

in i)_OO(R) as € | 0, where 8B is a Borel set, ¥ (x) is a smooth function such
that 0 <Y (x) <1 for x e R, ¥v(x) =1 for |x| < 1/2, v =0 for |x|] > 1,
and ®g, @1, ... are determined by the formal Taylor expansion with respect to
X (~gir +egor 4+ ).

T

Then we obtain an asymptotic expansion of the expectation of (3.15), which is
the direct consequence of Theorem 2.1 and Theorem 3.3.

COROLLARY 3.1. Under the assumptions in (3.1)—(3.3) and Assumption 1, an
asymptotic expansion 0fE[¢(8)(X5§))I£ (X;E))] is given by
B¢ ()1 (X)) ~ B[ 01008 () L (X))
~ E[®0] + eE[®] + £’E[®2] + - -
as € | 0, where ¢ (), VY (), ®;(j =0) and B are defined as in Theorem 3.3.

(3.16)

Our next objective is to show that the resulting formulas of asymptotic
expansions are equivalent to those from the method based on the simple inversion
technique for the characteristic function, which have been used by Kunitomo and
Takahashi (1995, 2001), and Takahashi (1999). It is possible to explicitly derive the
formulas of the asymptotic distribution function and the density function, and also
those of the expectations of the random variables involving X gf ) in certain ranges.
We start with the explicit evaluation of each terms appearing in Theorem 3.3. We
observe that the first term in Theorem 3.3 is given by

(3.17) @0 =" (g1r) 15 (g17).
Then by applying the Taylor expansion, for any n > 1, we have

my+---+mp=m+2k

m +..,+m;(/:m’+2k/ d | % (l/)
’ .
CI) = _ k I J
n > > k’!ali ..... 3 8(g171) 1_[ g7
(3.18) ko Lm k' m'=0 [l = j=t

k+l+m—+k'+m'=n

d k
Ik [ 40 )
X ([ Z 1k!l!all ..... lkas¢( )(ng)l_[gmi‘T ’
1

j=1
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where mj > 2 and m’; > 2.
When d =m =1 in particular, we have relatively simple and useful forms. For
instance, the first two terms are given by

56
b= [%(gn) + 8¢(0)(g17)g2]13(gn) +9 P (q11)318(g17) 827,

3¢(0) ©
b, = ?(ng)Jra(ﬁ (g17)82r |918(81T) 82T

326V (x)

1920
+[ ¢
0x de

EW(&T) + {

}82T

X=81T

1
+ 30 (g1 837 + 532¢(O)(81T)g%T]I£(g1T)

0) 1., 2
+ ¢ (g17) 53 Ig(g17)81 +318(g17)83T (-

In the above expressions the differentiations of the indicator function /g(-) have
proper mathematical meanings as the generalized Wiener functionals. As we
have indicated at the end of Section 2, the rigorous mathematical foundation of
differentiation and the integration by parts formula have been given in Chapter V
of Ikeda and Watanabe (1989) and Yoshida (1992, 1997). The next result summa-
rizes the explicit expressions for the asymptotic expansion of expectations of the
above random variables based on the Gaussian density function up to third-order
terms.

THEOREM 3.4. In the asymptotic expansion of (3.16) terms E[®,](n =
0, 1,2) are given by

E[®g] = /:8 ¢(0)(x)n[x 10, Z¢,]dx,

E[®]= /;?{3@(0)()6)”[)5 10, Zg, ]

d .
— 0 Y %{E[gy | g1 =x]n[x | 0. 2y, ]}  dx.
i=1

d .
E[®;] = fﬁ (—agqs“’)(x) > 8 {E[gy g1 = x]n[x |0, B¢, ]}

i=1

+ 1820 (0n[x 10, 2]
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d
—%Z ¢ )97 (E[gY gy 181 = x]n[x | 0, =, ]}

36 (o0, (B[ g1 =l [0, zgl]}) dx.
i=1

where we denote g,(,l = g,(ll% (i=1,....,d;n > 1), 8€¢(0) = a¢< 0 le=0(x),
Elz|g1 = x] as the conditional expectation of z given g1 = x, and n[x | 0, X]
as the density function of the d-dimensional Gaussian distribution with zero mean
and the variance-covariance matrix X.

PROOF. Without loss of generality, we only give the proof for the case when
d = m = 1. The essential part of the present proof is in the fact that we can use the
integration by parts operation repeatedly. First, the formula for E [®¢] is the direct
result of calculation. Second, the expectation of the first term of @ is given by

S

it

As for the expectation of »© (g1)01g(g1)g2, we notice that »© (g1)g2 € D*°(R).
Then by using the integration by parts formula for Wiener functionals, we have

E[¢©(g1)d18(g1)g2] = E[G(w)Ig(g1)]
=E[E[G(w)|g1 = x1I5(g1)]

= /QE[G(w)Igl =X]n[x |0, Egl]dx

(g1) + 3¢(81)82}1£(81)]

0+ 0Bl =x]}n[x 10, 2, ] dox.

= '/i? p1(x)dx

for a smooth Wiener functional G (w). In order to obtain an explicit representation
of p1(x), we set B, = (—o00, x]. Then we have

E[¢p©(g1)dls, (g1)g2] = /_ o (V) Elglg1 = y13Is, (V)n[y |0, X, ]dy

= —/_ o () Elg21g1 = y18:(y)n[y | 0, ¢, ] dy

= ¢ ) Elglg1 =xIn[x |0, Zg,],

where §x (y) denotes the delta function of y at x. By differentiating the above term
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with respect to x, we have
LN
pi(x) = o [ (x)E[g21g1 = xIn[x | 0, T, ]]-

By adding two terms, we have the explicit formula for E[®]. Third, we shall
derive an explicit representation for E[®,], which is more complicated. For this
purpose, we write it as

E[®,] = f£ p21(¥) dx + f£ P dx + fﬁ pr3(x) dx,

where py; (i =1, 2,3) corresponds to each line of ®;. The first term py;(x) can
be calculated directly as E[® ] by using the integration by parts formula and is
given by

3¢(8)
0e

(x)E[g2lg1 = x]

e=0

. 0
le(x)—a[—{

+ 3¢ (0)E[g31g1 :x]}n[x |0, zgl]}.
For the second term, we only need the standard differentiation, and it is given by

329 (x)
0x 0¢e

102

p2n(x) = [EW

(X)+{

}E[gzlgl =x]
=0

e=0
1
+0¢” (0)Elgslg1 = x1+ 0%V (E[g3]51 = x]]”[x 0. 2]

In order to derive py3(x), first we need an expresswn of the second order
generalized derivatives of Wiener functional E[5 Lo ©(g1)3%1g(g1) g5 2]. By taking
B = By = (—oo, x] and using the 1ntegrat10n by parts formulas for Wiener
functionals, we have

B 30001, (ee3]
= /_o; 91, (y){%«ﬁ(o)(y)E[g%Igl =yln[y 10, Egl]} dy
- ai f_ s, <y>{1¢(°><y>E[g%|g1 =yla[y 10, Egl]} dy
! { S¢© ()E[g5]g1 = x]n[x |0, Egl]}

= ax
1 0) 2
/ {Ed) (")E[g31g1 = y]n[y 10, Egl]}dy.
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For the term of E[¢© (g1)918(g1)g3], we obtain

* o9
E[¢p©(21)d13, 3] = f 3y { ~¢” (»)Elgs|g1 = yln[y |0, Egl]}dy-

Hence, p>3(x) is given by
0% (1 5
p23(x) = 2212% (0)E[g5]g1 = x]n[x |0, Zg, ]

ad
+ 5= P WElgslg = xln[x 0. 5y, 1}

Finally, by collecting and rearranging each term of p>1(x), p22(x), and p23(x), we
have the result. [

If we take a particular function ¢®(x), we can derive the corresponding
formulas in the asymptotic expansion. Here we give simple examples when d =
m = 1 for the illustration. When we take ¢©)(x) = 1 and 8 = (—o00, x], then we
have an asymptotic expansion of the distribution function, which is given by

X

PXE <x))~ [ nly10.5,]dy

—00

x 0
+8/ [—a—E[gzlgl_)’]n[ |0’2g1]]dy

+e / [282 (63181 = ]n[y 10, Z¢,]}

0
+ —

5 {—Elgslg1 = yln[y |0, Egl]}} dy+---.

Also, for the the pay-off function of European call options, we set ¢ (x) =x +y
for a constant y and 8 = [—y, 00). Then we have

E[(x+ "] N/ (y+x)n[x 10, g ]dx
-y

00 0
—I—s/ x[——E[gz|81 =x]n[x | 0, Egl]} dx
—y ox

®© Ta
+82/ x[—{—E[g3|g1 =x]n[x |0, Z,,]}
-y 0x

Ll 3
2 9x?
These results we have obtained are equivalent to the formulas for the European
call options previously reported by Takahashi (1999). In fact, the formulae in

{E [g%|81 =x]n[x |0, Egl]}} dx +---.
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Theorem 3.4 are equivalent to those obtained by the characteristic functions
and their the Fourier inversions originally obtained by Fujikoshi, Morimune,
Kunitomo and Taniguchi (1982). They have been extensively used in Kunitomo
and Takahashi (1995, 2001) and Takahashi (1999).

As a more complicated application, we consider the problem arising in the
valuation of the Asian options mainly because it illustrates a wide applicability
of our approach in mathematical finance. The explicit formulas have been derived
in Section 3.2 of Takahashi (1999). The terminal pay-off for the Asian options is
dependent on

( T
(3.19) A :/ F(8®)ds,
0

where f(-) is a smooth function, which is in C®(R? > R) and Ss(g) satisfies
(3.1)—(3.3). In this case we take AY — fOT f (SS(O)) ds and we need to derive the
asymptotic expansion of the random variable F;S) =1/ 8)[Ag~8 ) A(TO)]. By using

a formal Taylor expansion, an asymptotic expansion of the random variable F}g)
can be written as

Fi ~ g17(A) + egar (A) + g3 (A) + - -,
where g, 7(A) (n > 1) are defined by g,7 (n > 1) in Theorem 3.1 as

T o T L
gnr(A) = /0 3 [E Moo lkf(SAEO),s)Hgmg,s}ds
1, 4 i

andm; (j =1, ..., k) are positive integers.
By using the smoothness condition of f(-), S;e) € D°°(Rd), and g5, 825,

235, ... € D®(R?), we see that F}S) has an asymptotic expansion, which is in
D> (R) as ¢ |, 0 with gz (A) € D*(R) (k =1, 2, ...). The Malliavin covariance
of F;g), which is denoted as O'Mc(F;E)), is given by

T T 2
(3.20)  omc(F) =/ {/ af (S©)y® ds}Yu(g)—lo(S;@),u) du.
0 u
If we define n?(A) as before by
T T
ng(A):c/O / Af (SN YO dsy O~ 1o (S, u)
u
T 2
—/ Af (SNY,dsY, o (SO, u)| du,
u

then we have the corresponding results as for 12 (A) instead of 1 exactly in the
same way. As before, we need to make use of Lemma A.2 in the Appendix.
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Consequently, we can apply Theorem 2.1 to (¢ (A))qb(F}g))I £(F7(~8)), and the

same results as in Theorem 3.3 and Corollary 3.1 can be obtainable for F}g) if we
use the next assumption instead of Assumption I.

ASSUMPTION I'.  Forany T > 0,

a 2
{/ af (), ds}Yu_lo(SIEO), u)| du>0.
u

T
(3.21) g (A) :/0

THEOREM 3.5. Under the assumptions in (3.1)—(3.3), the smoothness of
f() in C* and Assumption 1/, W(ng(A))¢(8)(F}8))I£(F}8)) has an asymptotic
expansion

(3.22) ¥ (nE(A))p @ (FIIg(F) ~ D+ 6Dy + - --

in D_OO(R) as € | 0, where ®q, ®1,... are determined by the formal Taylor
expansion with respect to F}g) (~g17(A) +egor (A +--4), and ¢© (), ¥ (-) and
13 (-) are defined as in Theorem 3.3.

COROLLARY 3.2. Under the assumptions in (3.1)—(3.3), the smoothness of
f () in C* and Assumptionl', an asymptotic expansion ofE[qb(g) (F;g))lgg (F}g))]
is given by

Bl (F;”)15(Fi)] ~ Bl (1(2))9 ) (F ) 15 (F)]
~E[®o] + cE[®(] + - -
as e | 0, where ¢(8)(-), Y (), ®;(j =0) and B are defined as in Theorem 3.3.

(3.23)

REMARK. The general valuation problem of financial contingent claims
including the European options and the Asian options in the Black—Scholes
economy can be simply defined as finding its “fair” value at financial markets. Let
V(T) be the pay-off of a contingent claim at terminal period 7. Then the standard
martingale theory in financial economics predicts that the fair price of V(T') at
time 7 (0 <t < T) should be given by

T
Vi(T)=E; [exp[—/ r(Sl(f), v)dv} V(T)},
t

where E;[-] stands for the conditional expectation operator given the information
available at ¢ with respect to the equivalent martingale measure Q. Then we can
expand the expected value with respect to the parameter ¢ and use the formulas
in Theorem 3.4. Takahashi (1995, 1999) has already given many asymptotic
expansion formulas for the examples we have mentioned in this section including
the Asian options and others when r is a positive constant. In this case, the
conditions in (3.2) on the drift terms are automatically satisfied.
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4. Validity in the term structure model of interest rates. Let (22, ¥, Q,
{Ft}ie(0,77) be the filtered probability space with T < +00 and {wi; i=1,...,m}
are independent Brownian motions with respect to {#;}. LetalsoI'r = {(s,7) | 0 <
s <t < T} be a compact set in R?. We shall consider a class of random
fields f© (s, t): 7 — R which are adapted with respect to {%;} and satisfy the
stochastic integral equation

fO60=r10,0+ sZ/OS[ZGiu“)w, 1), v, 1)
i=1 .
@.1) x/ o’(f(g)(v,y),v,y)dy:| dv

s Mmoo .
—I-S/ Y ol (f@w, 1), v, 1) dwi.
0 iz

We note that there are integrals with respect to the maturity parameter in the drift
term involving {ai(f(g)(v, yv),v,y)(i=1,...,m), (v,y) € I'r}. We can construct
such integrals recursively by considering the discretized versions with respect to
the maturity argument as

r
/U &1 (£O (0, Y (). v, Y () dy

for 0<v<s<y<t<T, where ¥y(s) = (k + DT/2" if s € (kT /2",
(k + 1)T/2”/] k = 0,...,2”/ — 1;n’ > 1). Then we can make the solution
f(g)(s, Y (t)) of (4.1) to be adapted with respectto F5 (0 <s <t <T). Actually,
by using the standard argument in stochastic analysis, we can further discretize the
volatility functions as o (f© (¢, (v), Y (¥)), P (V), Yoy (¥)) for 0 <v <y < T,
where ¢,(v) = kT /2" if v € [kT/2",(k + 1)T/2") (k=0,...,2" — 1;n >
n’ > 1). Then by using a real polynomial function pj(xy,x3,...,xzn), the first
part of the solution of the discretized version can be written as

£ (s, 7)) = pr ([l (w), [hal W), ..., [Agssy+1] (W), -)

for 0 < s < t(n'), where t(n) = T/2”/ and ¢} (s) = ¢u(s)/t(n). Also by
using real polynomial functions pg(-) (k = 2,...,2”/), we have a recursive
representation as

O (s, kr () = pr(thilW), - ., [hgr 411 W), - Pr—1 (), -, p1())

fork=2,..., 2" and 0 < s <kt (n'). Hence the solution of the discretized version
of (4.1) can be represented as polynomial functions of [h1](w), [A2](w), ...,
[ ] (w).

Returning to (4.1), we make the following assumptions on the volatility
functions in this section.
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ASSUMPTION II. The volatility functions ai(f(g)(s,t),s,t) i=1,....,m
are nonnegative, measurable, bounded, and smooth in the first argument, and all
derivatives are bounded uniformly in e. The initial forward rates f(0, ¢) are also
Lipschitz continuous with respect to ¢.

ASSUMPTION III.  ForanyO<s <t <T,

4.2) S(s.1) = /0 S [0 @ w,n]2dv >0,

i=1
where 0 Vi (v, 1) =o' (f© (v, 1), v, 1) |e—0.

The conditions stated in Assumption II exclude the possibility of explosions for
the solution of (4.1). Assumption III ensures the key condition of nondegeneracy of
the Malliavin covariance in our problem, which is essential for the validity
of the asymptotic expansion approach for the forward rate processes. Under
Assumption II we can get the stochastic expansions of the forward rates and spot
interest rates processes. The starting point of our discussion is a simplified version
of the result by Morton (1989) on the existence of the solution of the stochastic
integral equation (4.1) for forward rate processes.

THEOREM 4.1 [Morton (1989)]. Under Assumption 11, there exists a jointly
continuous process {f(g)(s, 1),0 <s <t <T} satisfying (4.1) with ¢ = 1. There
exists only one solution of (4.1) withe = 1.

In the rest of this section we often refer to the case of m = 1 whenever we
can avoid complicated notation and the proofs are as if it is the general case
without loss of generality. For that purpose we use the convention w, = wll)
and o (f©(s,1),s,1) =o' (f©(s,1),s,1) when m = 1. We construct the com-
pletion of the polynomial functions of pi([A1](w), [h2]l(w), ..., [hx](w)) (k =
1,...,2"). With a fixed n’ we will abuse the notation slightly and denote the re-
sulting totality of polynomials and the totality of smooth functionals as P (R) and
S(R), respectively, in this section. If we denote the resulting forward processes as

f”/(s) (s, ¥,y (1)), then for any p > 1 we have

(4.3) E[ sup | fOs, 1) — f7 s, 1//n/(t))|p] -0
O<s=<t<T
as n’ — 400 by using the standard arguments in stochastic analysis. [See Chapters
IV and V of Ikeda and Watanabe (1989).] Hence in the rest of this section we
consider the sequence of { f ”/(8)(s, V(1)) as if they were {f©) (s, 1)} to avoid
the resulting tedious arguments. The kth order H -derivative (k > 1) of the forward
rate process f”/(‘g) (s, Y (1)) € S(R) is denoted as D f©) (s, 1) € S(H®* @ R).
We summarize the first major result in this section on the sequence of forward
processes {f ©)(s,1)} as the next theorem. The proof is the result of lengthy
arguments on the higher order H -derivatives of { f®)(s, 1)} given in the Appendix.



934 N. KUNITOMO AND A. TAKAHASHI

THEOREM 4.2. Suppose Assumption 11 hold for the forward rate processes
following (4.1). Then for any € € (0, 1] and (s, t) € T, f© (s, 1) € D®(R).

Next we consider the asymptotic behavior of a functional,
(4.4) F®(s,0) = é[ FEes, 0 — f0,n]
as ¢ — 0. Then the H-derivative of F©)(s, ) can be represented as
(4.5) DyF® (s, 1) = /0 YO (s, )Y O (0, 0C® (v, 1) dv,

where the stochastic process {Y ©)(s,1),0 <s <t < T} is defined as the solution
of the stochastic integral equations

YO(s. )= 1+ &2 S[a © (0. 1. v,
(s, 1) +e& '/0 o (9w, 0),v,1)
t
(4.6) x/ a(f(g)(v,y),v,y)dy]Y(g)(v,t)dv

)
+ s/ 3o (£, 1), v,1)Y @ (v, 1) dw,
0
and

COWw, ) =0(fw,1),v,1)h,
t
+80(f(8)(v, 1), v, t)/ aa(f(g)(v, y), v, y)th(g)(v, y)dy.

We notice that the coefficients of Y ®)(s, ) on the right-hand side of (4.6) are
bounded under Assumption II. Hence for any 1 < p < 400, 0 <& <1, we have
E[|Y©) (s, 1)|P1+E[|Y© (s, 7)|P] < +00. The proof of this result has been given
in Kunitomo and Takahashi (2001). By rearranging terms in the integrands of (4.5),
we have the representation

4.7 DyF© (s, 1) = / D uyhy du,
0

where

vE @) = YO s, nY O w, o (£ u, 1), u, 1)

+e / YO, YO, 00 (@, 1), v, 1)

(/U aa(f(g)(v y), v, y)é(8 1)(u)dy>dv
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and {£\5" ()} are defined by {£\5" (u)} of (A.8) in the Appendix by replacing
(1, 1) with (g, 1). Hence the Malliavin covariance of F© (s, 1), omc(F© (s, 1)),
is obtained by

(4.8) (DF® DF®)y /]v(g D) du.

Let

)
(s, 1) =6/
0

8(/S YO, YO w, o (F @, 1),v,1)

2

/ 3o (f© v, y), v, y)é(g 1)(u)dydv) du

N
+ c/ YO s, )Y O, o (£, 1), u, 1)
0

— G(f(o)(u, 0, u, t)\zdu,

for a positive constant ¢ > 0. We notice that the condition in Assumption III
is equivalent to the nondegeneracy condition of (4.8) because Y O (v, 1) =1 for
(v, t) € I'r. Again by using the similar arguments as Lemma A.2 in the Appendix,
for (s,t) e I'r and any k > 1,

4.9) 1in3)e—kp{|ngf><s,z>| > 11=o.
£—

Then by a similar argument as Theorem 3.2 in Section 3, we shall obtain a
truncated version of the nondegeneracy condition of the Malliavin covariance for
the spot interest rates and forward rates processes, which is the key step to show
the validity of the asymptotic expansion approach.

THEOREM 4.3. Under Assumptions 11 and 1ll, the Malliavin covariance
o (F®(s,1)) of F @) (s, 1) is uniformly nondegenerate in the sense that there exists
co > 0 such that for any ¢ > co and any p > 1,

(4.10) sup E[1(1n®] < 1)(omc(F®(s,0)) "] < +o0,

O<e<l1

where I (-) is the indicator function.

Hence the validity of the asymptotic expansions of the distribution function or
the density function of instantaneous spot rate, and forward rates can be obtained
under Assumption II and Assumption III because we have proved that a set of
conditions in Theorem 2.1 are satisfied.

We now return to the general case where m > 1. By expanding the Wiener
functional F© (s, t), we can write

F@(s,6) ~Ai(s, 1) +8Ar(s, 1) +---.
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The coefficients in the asymptotic expansion can be obtained by applying a formal
Taylor expansion and A, (s, t) (n > 1) are given by

m s . '
.11 Al(s,t)=2/ o (0.1, v, 1) dwi,
—Jo
i=1
and for n > 2,
S je=k+l
mo g [ SR .
k_i 0
Ay(s, 1) = Z/ Z ma o (fOw,0),v,1) ]_[ Aj.(v,1)
i'=1 kK 1.1'>0 i*—1
kA-k/ 141 F2=n
to, k
4.12) X/ Kot (FOwy).v.y) []Aj . y)dy | dv
v i=1
m o | Skt | .
k i £(0) ) Y
+ Z~/O Z Ea OJ (f (Uat)a v, t) l_[ AJI.*(”U, t) dwi},
i'=1 k,1>0 i*=1
k+I+1=n

Some of these formulas have been previously obtained by Kunitomo and Takahashi
(1995, 2001). By applying similar arguments, which are actually quite tedious, we
can show that the L ,-boundedness of any order H -derivatives of A, (s, t) for any
0 <s <t < T and integers n > 1. Then we conclude that A, (s,t) € D*(R) for
any n > 1 and summarize the result as the next theorem.

THEOREM 4.4. Under Assumption 1l, F@ (s, 1) is in D®(R) and has an
asymptotic expansion,
(4.13) FO(s,0) ~ Ay(s, 1) +eAn(s,0) + - --
ase ) 0and Ai(s, 1), Ay(s, 1), ... € D®(R).

We notice that the Malliavin covariance is nondegenerate because X (s, t) is
nondegenerate, which is in turn the variance of Ai(s,?). Then we have the
Gaussian random variable as the leading term in (4.13) and we can use the same
method as in Section 3 to derive the asymptotic expansion of the expected values of
random variables. By applying the corresponding one as Theorem 2.1 for D*°(R),

it has a proper asymptotic expansion as € — 0 in i)_oo(R). Hence we obtain the
next result.

THEOREM 4.5. Under Assumptions 11 and 111, an asymptotic expansion of
E[¢p© (F©)Ig(F®)] is given by

E[¢p® (FO)Ig(F©)] ~E[y (n%)p® (FO)Ig(F®)]
~E[®¢] + ¢E[®1] + - -

4.14)
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as & |, 0, where ®; (j > 0) are obtained by a formal Taylor expansion of the left-

hand side in the expectation operator with respect to F ©) (s, 1) and v (ng), ¢)(8)(')’
and 1g(-) are defined as in Theorem 3.3.

Also it is straightforward to obtain the similar nondegeneracy conditions of
the Malliavin covariance for the discounted coupon bond price process and the
average interest rate process. We note that the discount bond price process is given
by (1.5). Then using (4.1) and It6’s lemma, we can consider the stochastic process
GO (t, T, p) =[P®(t, T)]? for any integer p > 1, which is the solution of the
stochastic integral equation

GO, T, p)
=G0, T, p)
t
+/ |:pr(8)(v)
0
PP o~ (T 2
+ > 822(/1 Gl(f(€)(v, y), v, y) dy) :|G(8)(v, T, p)dv
i=1

+§:/I(—p8)[/Tai(f(8)(v y),v y)dy]G(g)(v T, p)dw'.
i=170 t U o ’

Hence by using the fact that E[|Ir®)|?] < +o0 for any p>land0<s<t<T
under Assumption II, we have E[| P ) (s, 1)|P] < +00. Then we can investigate the
properties of the H-derivatives on the set of discount bond price processes as for
the forward rate and spot rate processes we have discussed. Because the essential
arguments are the same, we only report the result.

THEOREM 4.6. Under Assumption 1l for the forward rate processes, for any
ee0,1land0<t<T, P® (t, T) is in D*°(R) and has an asymptotic expansion

(4.15) PEOG T~ P, T)+eBi(t,T)+&By(t,T) + -+~

as € | 0 and By(t,T), By(t,T),... € D*®(R), where P(t,T) (= PO(t,T)),
B;(t,T)(j = 1) are obtained by a formal Taylor expansion of PE ¢, T) through
(1.5), (4.4) and (4.13).

More generally, the valuation problem of many interest rates based contingent
claims in the complete market can be simply defined as to find the “fair” value of a
function of a series of bond prices at financial markets. Then the fair price of V (T')
at time ¢ (0 <t < T) should be given by

Vi(T)=E, [exp[— /lT r@(s) ds} V(T)],



938 N. KUNITOMO AND A. TAKAHASHI

where V (T) is the pay-off of a contingent claim at the terminal period T and E;[ - ]
stands for the conditional expectation operator given the information available at ¢
with respect to the equivalent martingale measure Q. Because we can derive an
asymptotic expansion of the spot interest rate r¢) (s), it is straightforward to obtain
the fair value of interest rates-based contingent claims.

For instance, most interest rates-based contingent claims can be regarded as

functionals of bond prices with different maturities. Let {c;, j = 1,...,k} be a
sequence of nonnegative coupon payments and {7, j =1, ..., k} be a sequence
of payment periods satisfying the condition 0 <t < T} <.-- < Ty < T < 4o00.
Then the price of the coupon bond with coupon payments {c;, j =1,...,k}atzis
given by

(&) £

&
(4.16) Pl ey (D = X;c]-P(S)(t, T)),

]:

where {P(g)(t,Tj),j =1,...,k} are the prices of zero coupon bonds with

different maturities. The normalized random variable for the call options on the
discounted coupon bond at the initial period ¢ = 0 is given by

(&)
Rii1).1e @)

1 t
1 _ (e) ©) —
=- {exp[ /0 r (S)ds][Pk,{Tj},{c;}(’) K]

k
- {Z ¢;jP0,T;) — KP(O, z)“,

j=1

where 0 <t < T; <--- <T; and K is a fixed real constant. This random variable
has an intuitive interpretation in financial applications. Its meaning and the related
additional assumptions for practical applications have been discussed in Section 3
of Kunitomo and Takahashi (2001). By using (1.5) and (4.16), the first order

H -derivative of R,E?Tj}’ e} (t) can be represented as
(&)
Di[ R 7,116

t t
— () (&) ()
- —exp[—/(; re (s)ds][Pk’{Tj}’{Cj}(t) - K]fo Dy[F® (s, 5)]ds

" ®© S ® T ©
—eXp[—/or (s)ds}[;ch (t,Tj)/T Du[F (t,u)]du:|,

where F® (¢, u) is defined by (4.4).
From this expression we can obtain a simplified representation of the first-order
H -derivative in this case as before. Hence we can obtain the asymptotic expansion
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of the expected pay-oft value of a coupon bond if we use the condition ensuring
the nondegeneracy of the Malliavin covariance. The proof of the next theorem is
similar to those in the previous results.

ASSUMPTION IV. ForanyO<t<T; <--- <Tj,
t /
4.17) g, (k) =/0 ‘7§1(v>‘7§1(v>d‘) >0,

where 0% (v) = —[XX_ ¢; P(0.T) — KP(0.0]e}” (v) — Y¥_, ¢;P(0.T)) x
(0) (v) and o 0)(11) and 0(0) (v) are 1 x m vectors such that o 0)(11) =

[fv ai(o)(v, y)dy] and 0(0) (v) = [ft ] oi(o)(v, u)dul.

THEOREM 4.7. Under Assumptions Il and 1V, an asymptotic expansion of
El© (R (1) 10 OV B8R \1) ()] s given by

[¢(€)(RIE€)T} (’))IJG’(Rk ATj)e)) (f))]

(4.18) NE[W(UC)‘ﬁ(S)(R(S) {Cj}(t))lﬁ(R/f?Tj}a{Cj}(t)):l
~E[®j]+ cE[®]]+ - -

as ¢ | 0, where CDjf (j = 0) are obtained by a formal Taylor expansion of the left-

hand side in the expectation operator, and ¥ (1), ¢>(8)(~) and 13 (-) are defined as
in Theorem 3.3.

We briefly mention two examples of interest rates-based contingent claims.
The pay-off function of the call bond options with coupon payments {cj, j =

.,k}at{T-,j:1,...,k}canbewrittenasV(l)(T) [Pk C}(T)— K1T,

where K is a fixed strike price. In this case we can take ¢(8)(x) =x 4+ y for
a constant y and 8 = [—y, 00). As another example we should mention the
pay-off function of the call options on average interest rates, which is given
by ve(T) = [% fOT L%(t)dt — K]*, where the yield of a zero coupon bond
at ¢ with time to maturity of 7 (0 <t <t + v < T) years is given by L*(¢) =
[1/P®(t,t + t) — 1]/7. Then we can apply the asymptotic expansion method
with some additional assumptions. For these two examples and others, Kunitomo
and Takahashi (1995, 2001) have derived more explicit formulas of the asymptotic
expansions in details.

REMARK. We should mention that we can use the equivalence between the
formulas by the expected values of the generalized Wiener functionals and those
derived by using the simple inversion technique for the characteristic functions of
random variables as we have discussed in Section 3.
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5. Numerical examples. In this section we will present numerical examples
in order to illustrate the usefulness of approximations obtained by the asymptotic
expansion method we have discussed. There have been many examples and
some of them have been already reported by Kunitomo and Takahashi (1995,
2001) and Takahashi (1999). As an example of the Black—Scholes economy,
we give some numerical results on the average call options for the square
root process and the log-normal process for the underlying asset prices. Under
the equivalent martingale measure, we assume that the processes of the one-
dimensional underlying asset are given by

(5.1) dS'€) = (r — ) SV dt + g1 (STEN V2 quy,,
(5.2) dS¥) = (r — q)S¥2 dt + £,8*) duy,

where €1, &>, 0 are parameters, and r and g denote the risk-free interest rate
and a dividend yield (we assume both are positive constants), respectively, and
w; denotes the one-dimensional Brownian motion. The theoretical value of the
average (or Asian) call options at time 0O should be given by

1 (T
(5.3) Eo[exp(—rT)max{?/ S;(S")du - K, OH i=1,2,
0

where K is the strike price. The terminal pay-off in this example is a special case
of (3.19) and then we can apply Corollary 3.2 to this case.

NOTE. In this example the volatility function is not smooth at the origin and
we need to use a smoothed version of the square root process at the origin for
the mathmatical point of view. It is possible to show that the smoothing and the
truncation by a large threshold value do not make significant differences and the
effects are negligible in the small disturbance asymptotic theory.

In Tables 1-5 we have calculated the differences between the Monte Carlo value
and the second-order approximations based on asymptotic expansions. The values
in Tables 4 and 5 are calculated in terms of the basis points except the percentage
points (%). Difference (bp) and difference rate (%) are calculated by the deviations
from the Monte Carlo results in (1). The values in the last columns were calculated
by setting &1 = &5 = 0.0 (or € = 0.0), which could be regarded as the zeroth order
approximations.

Table 1 shows the numerical values of the average call options for the square
root processes of the underlying asset which represents an equity index with
no dividend. We take the spot price So = 40.00, the risk-free rate r = 5%, the
parameter o = 10.00 and the six month maturity date. The parameters £; and &;
were set so that the instantaneous volatility is equivalent to the corresponding
volatility of the 30% log-normal process (i.e., €1 = 0.189737 and &, = 0.3).
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TABLE 1
Average call options on equity square root processes

Strike price 45 40 35
(1) Monte Carlo 0.5221 2.1758 5.6468
(2) Stochastic expansion  0.5228 2.1788 5.6516
Difference 0.00078  0.00301  0.00482
Difference rate, % 0.15 0.14 0.09
Value when £1 =0.0 0.0 0.4917 5.3683

Tables 2 and 3 are the numerical values of the average call options on the foreign
exchange rate example when the underlying assets follow square root processes
and the log-normal process, respectively. In this example we take the spot price
So = 100.00 and regard r as the risk-free interest rate in Japan and ¢ as the risk-
free interest rate in the U.S., and we set 3% and 5%, respectively. In Tables 2 and 3
the spot price, the six month maturity date and the parameters €; and &, were set
so that the instantaneous variance at time O are equivalent to 10% volatility of the
log-normal process (i.e., 1 = 0.158114 and ¢, = 0.1).

For the purpose of comparison, the values by the Monte Carlo simulations
are also given, which are based on 500,000 trials implemented in each case.
We also report the value based on the PDE numerical method developed
by He and Takahashi (2000) for Table 3. The approximations given by the
asymptotic expansion are those from the approximations up to the second order
for Tables 1-3 where they are based on the total approximations consisting of the
basic deterministic terms, the first-order terms based on the Gaussian distribution
and the additional second-order terms based on the non-Gaussian adjustments. In
Tables 1-3 it is apparent that we have enough accuracy of approximations for
financial applications by the asymptotic expansion approach. More details of this
example and other examples in the Black—Scholes economy have been discussed
by Takahashi (1999).

TABLE 2
Average call options on FX square root processes

Strike price 105 100 95
(1) Monte Carlo 0.1721 1.3625 4.6858
(2) Stochastic expansion  0.1730 1.3654 4.6931
Difference 0.00090 0.00286 0.00730
Difference rate, % 0.52 0.21 0.16

Value when £1 = 0.0 0.0 0.0 4.4346
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TABLE 3
Average options on FX log-normal process

Strike price 105 100 95
(1) Monte Carlo simulation method 0.1840 1.3682 4.6793
(2) Stochastic expansion 0.1830 1.3660 4.6800
Difference rate, % —0.54 —0.16 0.01
(3) Finite difference (Crank—Nicholson method) 0.1831 1.3656 4.6788
Difference rate, % —0.49 —0.19 —0.01
Value when ¢, = 0.0 0.0 0.0 4.4346

NOTE. Since the final formulas in our approximations are analytical which
are simple functions of the Gaussian distribution functions and some low-order
Hermitian polynomials, the computation running times are negligible by any
computational standards. Also at the suggestion of a referee we have added the
deterministic values in the last column by setting £; = &3 = 0.0 (¢ = 0.0 for the
interest rate based contingent claims), which could be regarded as the zeroth order
approximations.

As an example of the non-Markovian term structure model of interest rates, we
give an example of swaptions in the HIM term structure model. For simplicity of
exposition, we assume that the instantaneous forward rate processes { f © (s, 1)}
have one-factor volatility function as o (f @ (s,1),s,1) = [ f @ (s,1)]P, where
O0<p<landm=1in (4.1).

NOTE. We have used the truncated version of this forward rate process
when 0 < 8 <1 because the original process theoretically could have explosive
solutions. For the Gaussian forward rate case other numerical valuation methods
have been known, but we report the results for comparative purposes. See
Kunitomo and Takahashi (2001) for the details.

Tables 4 and 5 show the numerical values of the call options of a swap contract
(the swaption) for the case when 8 =0 and ¢ = 0.01 (100bp) and the case when

TABLE 4
Swaption (Gaussian case)

Fixed rate % 7.18 6.16 5.13 4.10 3.08
(1) Monte Carlo 774.6 518.2 315.0 170.9 81.3
(2) Stochastic expansion 774.8 518.5 315.1 171.15 81.2
Difference (bp) 0.28 0.36 0.16 0.36 0.03
Difference rate, % 0.04 0.07 0.05 0.21 0.04

Value when € = 0.0 689.1 344.5 0.0 0.0 0.0
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TABLE 5
Swaption (log-normal case)

Fixed rate % 7.18 6.16 5.13 4.10 3.08
(1) Monte Carlo 814.1 542.6 312.3 140.2 39.6
(2) Stochastic expansion 819.1 546.5 315.1 143.3 42.3
Difference (bp) 5.0 3.9 2.8 3.1 2.7
Difference rate, % 0.6 0.7 0.9 2.2 6.8
Value when ¢ = 0.0 689.1 344.5 0.0 0.0 0.0

B =1and e =0.2 (20%), respectively. In both cases we consider that the term of
the underlying interest swap is five years, the time to expiration is also five years,
and wesett =1 (year), T =5,T =6, ..., Ts =10 and k = 5. The present term
structure at = 0 is assumed to be flat at 5% per year and we took ¢; = St (j =
l,...,4),c5=1+S87,S=[PO,T)— P, T5)]/7 Z§:1 P(0,T;) =0.05171 and
K =1.00. In this example the theoretical value of swaption at time 0 should be
given by

T k
(5.4) E0|:exp[—/0 r(g)(s)ds]max{ZCJ-P(S)(T,TJ)—K,OH.

j=1

Then we can apply Theorem 4.7 to this case. We have used the approximations
based on the asymptotic expansions and examine their accuracy by Monte Carlo
results for all cases. We have given the numerical results for the out-of-the-money
case (S =5.171% x 0.8,5.171% x 0.6), at-the-money case (S =5.171%), and
in-the-money case (S =5.171% x 1.2,5.171% x 1.4). From Tables 4 and 5 we
find that the differences in the option values by the asymptotic expansion approach
for the Gaussian forward rates case are very small, and the differences of the
option values between the approximations and the Monte Carlo results for the
geometric Brownian forward rates case become slightly larger due to the non-
Gaussianity of the underlying forward rates and the spot rates. Nonetheless, we
still have enough acuracy in our approximations for financial applications since
the differences between the approximations and the corresponding Monte Carlo
results are usually within 3 bp in most cases. Kunitomo and Takahashi (2001) have
discussed more examples in the HIM term structure of the interest rates model.

6. Concluding remarks. This paper gives the mathematical validity of the
asymptotic expansion approach for the valuation problem of financial contingent
claims when the underlying forward rates follow a general class of continuous It6
processes in the HIM term structure of the interest rates model and the underlying
asset prices follow a general class of diffusion processes in the Black—Scholes
economy. Our method, called the small disturbance asymptotic theory, can be
applicable to a wide range of valuation problems of financial contingent claims.
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Some of them have been discussed by Kunitomo and Takahashi (1995, 2001) and
Takahashi (1999).

Since the asymptotic expansion approach can be justified rigorously by the
Watanabe—Yoshida theory on the Malliavin calculus in stochastic analysis, it is
not an ad hoc method to give numerical approximations. In Section 5 of this paper
and in our previous papers [Kunitomo and Takahashi (1995, 2001) and Takahashi
(1999)], we have illustrated that the approximations we have obtained via the
asymptotic expansion method can be satisfactory in many cases for practical
purposes as well.

APPENDIX

In this Appendix we give some mathematical details omitted in Sections 3 and 4.
First we present two inequalities which are useful to show that the truncation by
the random variable n? of (3.13) in Section 3 is negligible in probability under the
assumptions of (3.1)-(3.4) when we derive the asymptotic expansion of random
variables.

NOTE. The present proof of Lemma A.1, which is simpler than our original
one, is due to the referee. Actually we only need the conditions given by (3.2)—(3.3)
with k =1 for Lemma A.1.

LEMMA A.l1. There exist positive constants a; (i = 1,2) independent of ¢
such that

(A.1) P( sup [IS® — SO 417 —v,|] > a0> <ay exp(—aze™?)
0<s<T

for all ag > 0, where St(g) and Yt(g) are defined by (3.1) and (3.11), respectively.

PROOF. Let Z = (s®1, ..., s®4 y®OU y©ddy pe a g x 1 state
vector with di = d(d + 1). By using (3.1) for S and (3.11) for ¥, Z{¥ [=
(Z,(g)’ )] follows the stochastic differential equation in the form of

Z(‘”‘_ZO+/ b (2O s ds+sZ/ H(z®),s)dw],

where b(Z\,s) = (b (Z,5)) and w(Z\,5) = (07 (Z,5)) are RY x
[0, 7] — R% and R% x [0, T] — R% ® R™ Borel measurable functions which
are smooth with respect to ZAE‘Q). By using the Lipschitz continuity, there exists a
positive constant K3 such that

t
1z — 729 < k3 /0 12 — 2O ds + sup

0<s<t

N
/ ew(Z9), u)dw,
0
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Furthermore, by using the Gronwall inequality,

)
sup |2®) — 72O < sup /(; (Z$9, u) dw, |ge®3T .

0<s<T 0<s<T

If we can assume that for the d; x 1 vector 6 there exists A (> 0) such that

sup (6, a)(Z,(g), t)a)*(Zt(g), 1)6) < A < o0,
10]=1,0<t<T

we can apply the standard large deviation result given by Theorem 4.2.1 in Stroock
and Varadhan (1979). Hence for any ag > 0 we have

P({ sup |Z,(8) - Zt(o)| > ao})

0<t<T

T ao
< P({ su / Z® ) dw,| > })
N <{0§t£T 0 (Zi7 1) dw, cekKsT
2 —2KsT
ate
<2dyexpl-BC —2}
= 16Xp{ 244,T ©

When A is not bounded, let a stopping time be t = infOE,ET{lzt@) — Z,(O)| > ap}

for any ap > 0. Then

P({ sup |Z,(€) - Zt(o)| > a0}>

0<t<T

T e
/ (Z;7 1) dw,
0

< P<{r <T, sup

0<t<rt

})
>
ee 3

02€_2K3T
< 2dj exp<—078_2>
o 2Ad,\ T ’
where
(&) x (&)
sup 0, 0(Z;7, 1)0*(Z,7,1)0) < A < 00.
101=1.12"~Z{” | <aq O

LEMMA A.2. Let the random variable nt be defined by (3.13). Then for any
c>0niis O(1) in D> (R) and for co > 0O there exist some positive constants
ci (i =2,3,4), such that

(A.3) P({Ing] > co}) < crexp(—c3e™ ).
PROOF. We notice that
T
|7]§| _ C\/(; ‘Y;E)YS(8)—1G(S§8)’ S) _ YTYs_lg(Sgo), S)‘st

<cT sup |Y;€)YS(8)_IJ(S§S), s) — YTYS_IO’(SS(O), s)|2.
0<s<T
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The set {|nf| > co} is included in {supys—7 1Y YO o (8, 5) — Yryy ! x
o*(Ss(O), s)| > (co/cT)l/Z}. By setting a constant ¢; = 4/co/(9¢T), we have
{151 > co} € { sup [Y7YH[o(S€.s) —o (5%, 5)] > q}

0<s<T

of sup KOS9 )11~ ¥ir| > e
T

0<s<
of s rllo (50 KO =¥ > e .
0=<s<T

Then by using Lemma A.1 because of the boundedness of |Y7Y!| and the
smoothness of G(Sgg), s), we have the result. [

Next we shall give the proof of Theorem 4.2 in Section 4 by using three lemmas
and some additional derivations.

PROOF OF THEOREM 4.2. Without loss of generality we only give the proof
when m = 1. First we consider first-order derivatives {Df M (s, 1)}. For anyh e H,
we successively define a sequence of random variables {& Ds,1); (s,1) € T'r,
[ > 1} by the integral equation

gD (5. 1) = /OS [aa(f(l)(v, 1), v,1) /t a(fPw, ), v, y)dyeP(, t)] dv

—{—/S[a(f(l)(v,t),v,t) /l aa(f(l)(v,y),v,y)S(l)(v,y)dy}dv
(A4) 0 v

: (1) 0
+/0 o (f (v, 1), v,t)§ (v, 1) dw,

+/‘ a(f(l)(v,t), v,t)fzv dv,
0

where the initial condition is given by £©(s,7) = 0. Then we have the next
result by using the standard method of stochastic analysis. The proof is given in
Kunitomo and Takahashi (1995).

LEMMA A.3. Foranyp>1land0<s<t<T,E[|ED(s,0)|Pl<oo( > 1),
and there exists a positive constant My such that

1
(A.5) E[ sup !s““)w,t)—s@(u,t)rz]s [Ma(r + 1)s].
O<u<s 7+ 1
As [ — o0,
(A.6) sup E[ sup yg““)(u,t)—g<’>(u,t)\2]—>0.
0<s<t<T 0<u<s
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Using Lemma A.3 and the Chebyshev inequality, we have

- 1 > 1
Z { sup s(l—i—l)(u,S)_g(l)(u,s)’>?} Z—[4M4(T+1)T] < +00.

=1 O<u<s<t 1= 1

Then by the Borel-Cantelli lemma, the sequence of random variables {& D (s, 1)}
converges uniformly on (s, t) € I'r. Hence we have established the existence of the
H -derivative of £ (s, r), which is given by the solution of the stochastic integral
equation

Dy V(s 1) =/0S[36(f(1)(v,t),v,t)

x / to(f“)(v,y), v, y)dy th“)(v,m] dv
* (1)
—I—/(; [o(f (v,1),v,1)

(A.7) ,
< | aa(f“)(v,y),v,y)th“)(v,y)dy]dv

+/S 3o (fVw, 1), v,8)Dpf O (v, 1) dw,
0

S .
—|—/ o(fPw, 0, v,1)h, dv.
0

We note that for the spot rate process {r®)(¢)} the H -derivative can be well defined
by

Dpr® @) = lim Dy, ¥ (s, 1).
S

We consider the random variables {Ss(’lt’l)(u)} for (s,t) e'r(s,t)and0 <u <s <
t < T satisfying the stochastic integral equation when ¢ =1,

5D ) = / 80 (£ (1), v, 1) )
x/ o(f®@ @, y),v,y)dydv

+82/So(f(8>(v,t),v,t)
(A.8) u

/ 90 (O, ), v, y)EED ) dy dv

+e/ 3o (£ (v, 1), v, 1)E5" ) dw,

+o(f @, 1),u,r1).
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Then we can show that
I CRIPI M)
| &85 @ du = Dy Vs,
In order to examine the existence of moments of {Ss(’lt’l)(u)} and other related

random variables, we need the following inequality, whose proof is given in
Kunitomo and Takahashi (2001).

LEMMA A.4. Suppose for kg >0, ki >0, Ay >0and 0 <s <t <T,
a function wy (u, s, t) satisfies (1) 0 < wy (u, s, t) < Ay and (ii):

N N t

(A.10) wN(u,s,t)fko-i-kl[/ wN(u,v,t)dU—i-/ / wN(u,v,y)dydv].
u u v

Then

(A.11) wy(u, s, 1) < koek1d+0s

As an illustration of our method based on Lemma A.4, we consider the truncated
random variable

(A.12) N ) =[5V )]s, ),

using the boundedness conditions in Assumption Il and &, being square integrable,
we can show that there exist positive constants M; (i =5, ..., 8) such that

Ky Ky P
(A13) [N )" < Ms f e )| dv + Mg f ¢ () dw,

K t
+ M7/ f e @)|” dy dv+ Mg|o (f V. 1), u.1)|".
u v

By using the martingale inequality, the expectation of the second term is less
than MGE[[) |§lfYt(u)|p dv]. Also the last term in (A.13) is bounded because
o(-) is bounded. If we set wy(u,s,t) = E[|¢(u)|”], then we can directly
apply Lemma A.4. By taking the limit of the expectation function wy (u, s, t) as
N — oo, we have E[|SS(’1;1) (u)|”] < 4+o00. By using similar arguments, we have the
existence of moments as summarized in the next lemma.

LEMMA A.5. Under Assumption1l, forany p > 1and0<u <s <t <T, we

have E[supg_,, -, 167" )|7] < +00 and E[supy, -, | D, 1)|7] < oc.

Using Lemma A.5 and the equivalence of two norms stated in Section 2.1, we
now have established the following property of the first-order H -derivative,

fPs.ne [ DyR.

l<p<+oo
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Since we have completed the investigation of the first-order H -derivative, our
next task is to investigate some properties of the higher order H -derivatives
of f M (s, ). We shall use the induction argument and assume that f M(s, 1) e
Ni<p<too D4(R) (k> 1). Then we have
Dy[D* f s, )]

- / [a"(f(l)(”’ D, v, f)fta(f(”(v, ), v,y)dyDy[DF fV (v, t)]}dv

+f[ (fPw,n,v, r)fvtao(f(“(v,y),v,y)
x DD F Vv, ) dy | v

+ / 395 (V. 1), v, 1) Dy [D* O (v, )] dw(v)
+/ [ (k) o(fPw,0,v,1),

D' f O, 1), Dy f D@, 0),0,1:1=0,....k)

/v H(k)( o(fPw y).v.y).
D’f“)(v,y),th“)(v,y),v,y;l:O,...,k)dy]dv

+/()S[G§">(alo(f<”<v,z),v,z),

D FDw, 1), Dy FOw, 1), v,8:1=0, ..., k)] dw,
+/O (63 (0o (1D @, 0),v,1),

D FDw, 1), Dy fFOw, 1), v,8:1=0, ..., k)] dv
+/O (G (0o (1D @0, 0,0),

D FDw, 1), Dy FOw, 1), v,8:1=0, ..., k)]fzvdv,

where Hl(k)(-) and G;k)(-) (j =1,...,4) are defined recursively and they are
actually a sequence of polynomial functions. Although the above stochastic
integral equation has many terms, the basic structure is the same as the first-order
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H -derivative of f M (s, 7). Now we define the random variables {551 k) (u) (k=1)}
forO<u <s<t<Thby

£ w)
=/‘S[8(7(f(1)(v,t),v,t)/ o (FD(w, y). v, y)dyell kH)(u)}dv
+[ [ (FOw.0.0.0) [ lao(f(“(v,y),v,y)éé3;k+l><u>dy]dv
+/ 3o (fO, 1), v, 1)V W) dw,
+f0‘ [Gﬁ")(a’a(f(“(u,z), v, 1),
D' fOw, 1), el ’><u),v,z;1=0,...,k)
< [ HP (o (10w .0,
D' fOw, y), &P @) v,y 1=0,..., k) dy] dv
+/()S[G§")(ala(f“>(u,z),v,z),
D' fOw, 1), el ’>(u),v,t;1:o,...,k)]dwv
+/(;S[ng)(alo(f(1)(v,t),v,t),
D' fDw, 1), el ’><u),v,z;1=o,...,k)]dv
+/()S[G§">(a’o(f“>(v,t),v,t),
D' fOw, 1), el ’><u),v,z;1=o,...,k)]dv.
Then we can show that
[ &84 @y du = Dy[D* £V 5. 1)

From the above representation, we have

2 S (k41 2
(A.14) D5 D (5, 1) 2 g = fo 604D () 2o .
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Applying Lemma A.4, repeating the procedure as Lemma A.5 and using induction
with respect to k, we have for any integers k > 1 and p > 1,

(A.15) E[|€s(,lz’k) (M)|l;1®<k—1>] < +o0.

Then by the same construction and induction arguments, for positive integers
k (> 1) we can define a sequence of random variables {f(g) (s, 1)}, {Ss(ft’k) (u)} and
{D¥ f @) (s, 1)}. Hence we have completed the proof of Theorem 4.2. [

Acknowledgments. This paper is a revised version of Discussion Paper
No. 98-F-6 at the Faculty of Economics, University of Tokyo. We thank Professors
S. Kusuoka and N. Yoshida for some discussions on technical issues involved. We
also thank a referee and an Associate Editor for their helpful comments on earlier
versions. However, we are responsible for any remaining errors in this paper.

REFERENCES

DUFFIE, D. (1996). Dynamic Asset Pricing Theory, 2nd ed. Princeton Univ. Press.

FuiikosHI, Y., MORIMUNE, K., KUNITOMO, N. and TANIGUCHI, M. (1982). Asymptotic
expansions of the distributions of the estimates of coefficients in a simultaneous equation
system. J. Econometrics 18 191-205.

HE, H. and TAKAHASHI, A. (2000). A variable reduction technique for pricing average-rate options.
Internat. Rev. Finance 1 123-142.

HEATH, D., JARROW, R. and MORTON, A. (1992). Bond pricing and the term structure of interest
rates: A new methodology for contingent claims valuation. Econometrica 60 77-105.

IKEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion Processes,
2nd ed. North-Holland, Amsterdam.

K1M, Y. and KUNITOMO, N. (1999). Pricing options under stochastic interest rates: A new approach.
Asia—Pacific Financial Markets 6 49-70.

KuNITOMO, N. and K1M, Y. (2001). Effects of stochastic interest rates and volatility on contingent
claims. Discussion Paper CIRJE-F-129, Faculty of Economics, Univ. Tokyo.

KuNITOMO, N. and TAKAHASHI, A. (1992). Pricing average options. Japan Financial Review 14
1-20 (in Japanese).

KUNITOMO, N. and TAKAHASHI, A. (1995). The asymptotic expansion approach to the valuation
of interest rate contingent claims. Discussion Paper 95-F-19, Faculty of Economics, Univ.
Tokyo.

KUNITOMO, N. and TAKAHASHI, A. (1998). On validity of the asymptotic expansion approach in
contingent claim analysis. Discussion Paper 98-F-6, Faculty of Economics, Univ. Tokyo.

KuNITOMO, N. and TAKAHASHI, A. (2001). The asymptotic expansion approach to the valuation
of interest rate contingent claims. Math. Finance 11 117-151.

Kusuoka, S. and STROOCK, D. (1982). Applications of the Malliavin calculus. I. Taniguchi
Symposium, SA Katata 271-306.

MORTON, A. J. (1989). Arbitrage and martingales. Ph. D. dissertation, Cornell Univ.

NUALART, D. (1995). Malliavin Calculus and the Related Topics. Springer, New York.

SHIGEKAWA, 1. (1998). Stochastic Analysis. Iwanami-Shoten (in Japanese).

S@RENSEN, M. and YOSHIDA, N. (2000). Random limit expansion for small diffusion processes.
Unpublished manuscript.

STROOCK, D. and VARADHAN, S. (1979). Multidimensional Diffusion Processes. Springer, New
York.



952 N. KUNITOMO AND A. TAKAHASHI

TAKAHASHI, A. (1995). Essays on the valuation problems of contingent claims. Ph.D. dissertation,
Univ. California, Berkeley.

TAKAHASHI, A. (1999). An asymptotic expansion approach to pricing contingent claims. Asia—
Fasific Financial Markets 6 115-151.

TAKAHASHI, A. and YOSHIDA, N. (2001). Asymptotic expansion scheme for the optimal portfolio
for investment. Preprint.

WATANABE, S. (1984). Lectures on Stochastic Differential Equations and Malliavin Calculus.
Springer, New York.

WATANABE, S. (1987). Analysis of Wiener functionals (Malliavin calculus) and its applications to
heat kernels. Ann. Probab. 15 1-39.

YOSHIDA, N. (1992). Asymptotic expansions of maximum likelihood estimators for small diffusions
via the theory of Malliavin—Watanabe. Probab. Theory Related Fields 92 275-311.

YOSHIDA, N. (1997). Asymptotic expansions for martingales on Wiener space and applications to
statistics. Probab. Theory Related Fields 109 301-342.

FACULTY OF ECONOMICS GRADUATE SCHOOL
UNIVERSITY OF TOKYO OF MATHEMATICAL SCIENCES
BUNKYO-KU, HONGO 7-3-1 UNIVERSITY OF TOKYO

Tokyo 113 MEGURO-KU, KOMABA 3-8-1
JAPAN TOKYO 153

JAPAN



