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We consider a classical risk process compounded by another independent
process. Both of these component processes are assumed to be Lévy
processes. We show asymptotically that as initial capital y increases the ruin
probability will essentially behave as y−κ , where κ depends on one of the
component processes.

1. Introduction. This paper supplements Paulsen (1998a) by giving Cramér-
like asymptotics for the ruin probability for a risk process in a stochastic economic
environment. Let P and R be independent Lévy processes, where P can be
regarded as a risk process in a world without economic factors and R is the process
that describes return on investments. Then compounded assets at time t equal

Yt = y + Pt +
∫ t

0
Ys− dRs,(1.1)

where P0 = R0 = 0.
A major problem in classical risk theory is to find the probability of even-

tual ruin, that is, the probability that assets ever become negative. Let Ty =
inf{t : Yt < 0} with Ty = ∞ if Y never becomes negative. Then Ty is the time
of ruin, and ψ(y) = P (Ty <∞) is the probability that ruin will ever occur. We
will prove that ψ(y) behaves essentially like y−κ , where κ > 0 typically depends
on R only, the exception being when P has very heavy-tailed negative jumps, in
which case κ depends on P only. When R is dominating, our result was basically
conjectured by Paulsen and Gjessing (1997).

Similar, but somewhat weaker and different results have been obtained inde-
pendently by Kalashnikov and Norberg (2002), Nyrhinen (2001) and Frolova, Ka-
banov and Pergamenshchikov (2002). All these papers deal with the case when
the effect of R dominates that of P , so that κ depends on R only. Our proof for
this case is merely an extension of the example in Section 3 of Nyrhinen (2001);
this extension is based on methods used in Paulsen (1998a). For the case when the
effect of P dominates that of R, we shall use results from Grey (1994), Gjessing
and Paulsen (1997) as well as Klüppelberg and Stadtmüller (1997).
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2. The model. We will assume that all processes and random variables
are defined on a filtered probability space (�,F ,F,P ) satisfying the usual
conditions; that is, Ft is right-continuous and P -complete.

As in Paulsen (1998a), let P and R be independent Lévy processes w.r.t. the
filtration F. We interpret Pt as the surplus at time t in a world with no return on
investments, and for notational convenience we let P0 = 0. The interpretation of R
is that one unit of money invested at time 0 will be worth E(R)t at time t , where
E(R) is the Doléans–Dade exponential of R. Furthermore, R0 = 0.

Total compounded assets is then given by (1.1), and the solution is [see,
e.g., Paulsen (1998a), which also contains a discussion of inflation within this
framework]

Yt = eR̃t (y +Zt).(2.1)

Here

R̃t = log E(R)t =Rt − 1
2〈Rc,Rc〉t +

∑
s≤t

(
log(1 +�Rs)−�Rs)(2.2)

and

Zt =
∫ t

0
e−R̃s dPs.(2.3)

Note that Yt < 0 is equivalent to Zt <−y.
For εP > 0, the Lévy–Itô representation of P takes the form

Pt = pt + σPWP,t +
∫ t

0

∫
{|x|≤εP }

x
(
µP (ds, dx)−KP (dx) ds)

(2.4)

+
∫ t

0

∫
{|x|>εP }

xµP (ds, dx),

where WP is a Brownian motion, µP is the random measure associated with
the jumps of P and KP is the compensator of µP , that is, a (nonstochastic)
Radon measure with KP ({0}) = 0 and

∫∞
−∞(x2 ∧ 1)KP (dx) <∞. If the jumps

are summable, εP can be set equal to 0, and if they are integrable, it can be set
equal to ∞. Similarly, for 0< εR < 1,

Rt = rt + σRWR,t +
∫ t

0

∫
{|x|≤εR}

x
(
µR(ds, dx)−KR(dx) ds)

(2.5)

+
∫ t

0

∫
{|x|>εR}

xµR(ds, dx).

If �Rt can be smaller than or equal to −1, ruin will occur with probability 1. To
exclude this trivial case, we assume that

KR
(
(−∞,−1])= 0.(2.6)
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As for εP , εR can be equal to 0 if the jumps are summable, and equal to ∞ if they
are integrable. Otherwise, it should be between 0 and 1 since integrability can fail
at x = −1.

REMARK 2.1. In Paulsen (1998a) εP and εR were set equal to 1 and
1/2, respectively, but when applicable the values 0 and ∞ will usually make
the formulas easier for applications, hence the change here. For an example,
see Example 3.1. However, unless explicitly stated, we shall always have that
0< εP <∞ and 0< εR < 1.

It will be assumed throughout that∫
{|x|>εR}

|log(1 + x)|KR(dx) <∞.(2.7)

Then a few calculations give

R̃t = r̃ t + σRWR,t +
∫ t

0

∫ ∞
−1

log(1 + x)(µR(ds, dx)−KR(dx) ds),(2.8)

where

r̃ = r − 1
2σ

2
R +

∫
{|x|≤εR}

(
log(1 + x)− x)KR(dx)

(2.9)

+
∫
{|x|>εR}

log(1 + x)KR(dx).

Note that r̃ does not depend on εR , whereas this is not the case for r .
It is quite common to start out with the R̃ process instead of R; this is done, for

example, in Kalashnikov and Norberg (2002) and in Nyrhinen (2001). In that case
it is easy to see that

Rt = R̃t + 1
2 〈R̃c, R̃c〉t +

∑
s≤t
(e�R̃s −�R̃s − 1).(2.10)

Since we have assumed (2.7), the Lévy–Itô representation of R̃ using its own jump
measures µ

R̃
and K

R̃
becomes

R̃t = r̃ t + σRWR,t +
∫ t

0

∫ ∞
−∞

x
(
µ
R̃
(ds, dx)−K

R̃
(dx) ds

)
,(2.11)

and, in particular, (2.7) is equivalent to R̃ being a special semimartingale.
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3. Asymptotic ruin probabilities. We shall use the same model and assump-
tions as in Section 2, and, in particular, (2.6) and (2.7) are assumed to hold. Then
it is proved in Paulsen (1998a) that, under some weak additional assumptions,
ψ(y) = 1 if r̃ < 0, and if R �= 0 then ψ(y) = 1 also when r̃ = 0. Therefore, we
shall assume in the rest of the paper that r̃ > 0. Furthermore, in order for ruin to
happen it is necessary that

P (Pt < 0) > 0.(3.1)

The following result is proved in Paulsen (1998a).

THEOREM 3.1. Let Y, P and R be given by (1.1), (2.4) and (2.5), respec-
tively. Also let r̃ be given by (2.9) and assume that r̃ > 0. Furthermore, assume
that (2.6), (2.7) and (3.1) hold and, in addition, that either

(i)
∫ ∞
−∞

log(1 + |x|)KP (dx) < ∞ and
∫ −εR
−1

(
log(1 + x))4KR(dx) < ∞

or

(ii)
∫
{|x|>εP }

|x|KP (dx) <∞ and
∫ −εR
−1

(1 + x)−2KR(dx) <∞
hold. Then

ψ(y)= H(−y)
E[H(−YTy )|Ty <∞] .(3.2)

Here H is the (continuous) distribution function of the a.s. finite random variable

Z∞ =
∫ ∞

0
e−R̃s dPs,(3.3)

where R̃ is given by (2.8). Finally, ψ(y) < 1 unless Pt = pt, Rt = rt and
p <−ry.

Using the measure K
R̃

,
∫−εR−1 (log(1 + x))4KR(dx) < ∞ is equivalent to∫ −εR−∞ x4K

R̃
(dx) < ∞ and

∫−εR−1 (1 + x)−2KR(dx) < ∞ is equivalent to∫ −εR−∞ e−2xK
R̃
(dx) <∞.

EXAMPLE 3.1. Frequently for the jump-diffusion models appearing in
mathematical finance, R is of the form

Rt = rt + σRWR,t +
NR,t∑
i=1

SR,i,

where the sum is a compound Poisson process; that is, the {SR,i} are i.i.d. and
independent of the Poisson process NR , the latter having intensity λR . This is the
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same as (2.5) with εR = 0 and KR(dx)= λRFR(dx), where FR(x)= P (SR ≤ x)
and SR is generic for the SR,i . Now R̃ becomes

R̃t = r̃ t + σRWR,t +
NR,t∑
i=1

log(1 + SR,i)− λRE[log(1 + SR)]t,
where r̃ = r − 1/2σ 2

R + λRE[log(1 + SR)]. Furthermore, K
R̃
((−∞, x]) =

KR((−1, ex−1]), and if FR has a density fR , thenK
R̃
(dx)= λRexfR(ex−1) dx.

In the famous Merton jump-diffusion model (1976), it is assumed that log(1 +SR)
is normally distributed, and it is easy to check that in this case either condition
on KR in Theorem 3.1 is satisfied.

Under the assumptions of Theorem 3.1, it is shown in Gjessing and Paulsen
(1997) that Z∞ satisfies the random equation

Z∞ d=AZ∞ +B, Z∞ is independent of (A,B),(3.4)

where

A= e−R̃T and B =
∫ T

0
e−R̃t dPt

for any stopping time T . Here X
d= Y means that X and Y have the same

distribution. Formally, the integrand in B should be e−R̃t− , but since P and R
are independent, it makes no difference.

Define νκ by

νκ = − logE[e−κR̃1],(3.5)

that is, E[e−κR̃t ] = e−νκ t . For later use, let us collect a few facts about νκ . They
are well known and not very difficult to prove.

LEMMA 3.1. Assume that R̃ given by (2.11) is nondeterministic and satisfies
σR �= 0 or K

R̃
((−∞,0)) > 0 [equivalently KR((−1,0)) > 0]. Then limκ→∞ νκ =

−∞ and νκ > −∞ implies that να > −∞ for 0 < α < κ . Let κ2 = sup{κ ≥ 0 :
νκ > −∞}. Then νκ is continuous and concave on (0, κ2) and limκ→κ2 νκ = νκ2

(possibly −∞). Furthermore, if r̃ > 0 and κ2 > 0, there exists a β with 0< β ≤ κ2

so that νκ > 0 on (0, β).

If νκ >−∞, using Itô’s formula on Yt = e−κR̃t , it is not hard to prove that

νκ = κr̃ − 1
2κ

2σ 2
R −

∫ ∞
−∞
(e−κx − 1 + κx)K

R̃
(dx).
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Also, using that �R̃t = log(1 +�Rt), we get, in terms of r and KR ,

νκ = κr − 1
2κ(κ + 1)σ 2

R −
∫
{|x|≤εR}

(
(1 + x)−κ − 1 + κx)KR(dx)

−
∫
{|x|>εR}

(
(1 + x)−κ − 1

)
KR(dx).

It follows that a necessary and sufficient condition for νκ >−∞ is∫ −εR
−1

(1 + x)−κKR(dx) <∞ or, equivalently,
∫ −εR
−∞

e−κxK
R̃
(dx) <∞;(3.6)

that is, negative jumps in investment returns should not be too large.
We are now ready for the main result of this paper.

THEOREM 3.2. Let the conditions of Theorem 3.1 hold.

(a) Assume there exists a κ0 > 0 so that νκ0 = 0. Assume, in addition, that for
some ε > 0,

νκ0+ε >−∞ and
∫
{|x|>εP }

|x|κ0+εKP (dx) <∞,
and finally that the distribution of RT has an absolutely continuous component
when T is uniformly distributed on [0,1] and independent of R. Then

yκ0ψ(y)=C + o(y−ε) as y→ ∞.
Here

C = 1

κ0mh
E
[(
(AZ∞ +B)−)κ0 − (

(AZ∞)−
)κ0],

where (A,B,Z∞) are as in (3.4), m = E[Aκ0 logA] and h= limy→∞ h(y) with
h(y)= E[H(−YTy )|Ty <∞]. Also 0<C <∞. Finally, x− = −max{0, x}.

(b) Assume KP ((−∞,−x]) ∼ x−κ1L(x) as x → ∞, where L is slowly
varying. Assume also that νκ1+ε > 0 for some ε > 0. Then

ψ(y)∼ 1

h(y)

1

νκ1

y−κ1L(y) as y→ ∞,

where h(y) is as in part (a).

For the proof we will need two lemmas.

LEMMA 3.2. Assume that να > 0 and let T be exponentially distributed with
intensity γ ; that is, fT (t)= 1{t>0}γ e−γ t with T and R independent. Then

E

[
sup
t≤T
e−αR̃t

]
<∞.
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PROOF. Let p > 1 and define the martingale N by

Nt = exp
(
−α
p
R̃t + να/pt

)
.(3.7)

Then 1 ≤ E[Npt ] = exp{−(να − pνα/p)t}; hence pνα/p − να > 0. Now choose
p > 1 so small that pνα/p− να < γ . Then by conditioning on T and using Doob’s
inequality,

E

[
sup
t≤T
e−αR̃t

]
≤E

[
sup
t≤T
N
p
t

]
≤
(
p

p− 1

)p ∫ ∞
0
E[Npt ]γ e−γ t dt <∞.

The proof of the next lemma is similar and is omitted.

LEMMA 3.3. Assume that −∞ < να < 0 and let T satisfy E[e(ε−να)T ]<∞
for some ε > 0 with T and R independent. Then

E

[
sup
t≤T
e−αR̃t

]
<∞.

PROOF OF THEOREM 3.2. For part (a) we will make extensive use of
Nyrhinen (2001), actually following closely the example in Section 3 of that paper.
Let T1, T2, . . . be i.i.d. uniformly distributed random variables, also independent
of P and R. From Lemma 3.3 it follows that

E

[
sup
t≤T
e−(κ0+ε)R̃t

]
<∞.

Let Vn = T1 + · · · + Tn with V0 = 0. Also define, for n= 1,2, . . . ,

An = e−(R̃Vn−R̃Vn−1 ), Bn = eR̃Vn−1

∫ Vn
Vn−1

e−R̃t dPt

and

Ln = eR̃Vn inf
Vn−1<t≤Vn

{
−
∫ Vn
t
e−R̃s dPs

}
.

Then the (An,Bn,Zn) are i.i.d., and by letting

Z̄n = B1 +A1B2 + · · · +A1 · · ·An−1Bn +A1 · · ·AnLn,
it is not hard to see that

Z̄n = inf
Vn−1<t≤Vn

Zs;

hence, ψ(y) = P (Z̄n < −y for some n). Therefore, by Nyrhinen [(2001), Theo-
rem 2] and the discussion following it, we must prove that

E[|B|κ0+ε]<∞ and E

[∣∣∣∣ inf
t≤T (Zt −ZT )

∣∣∣∣
κ0+ε]

<∞.
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But B d= ZT , and hence it is sufficient to prove that

E

[
sup
t≤T

|Zt |κ0+ε
]
<∞.

This is accomplished provided

E

[(∫ T
0
e−R̃s ds

)κ0+ε]
<∞,(3.8)

E

[
sup
t≤T

∣∣∣∣
∫ t

0
e−R̃s dWP,s

∣∣∣∣
κ0+ε]

<∞,(3.9)

E

[
sup
t≤T

∣∣∣∣
∫ t

0

∫
{|x|≤εP }

e−R̃s−x
(
µP (ds, dx)−KP (dx) ds)

∣∣∣∣
κ0+ε]

<∞,(3.10)

E

[
sup
t≤T

∣∣∣∣
∫ t

0

∫
{|x|>εP }

e−R̃s−xµP (ds, dx)
∣∣∣∣
κ0+ε]

<∞.(3.11)

Using Lemma 3.3, the proof of (3.8)–(3.10) is exactly as the proof of (4.12)–(4.14)
in Paulsen (1998a). Also writing

∫ t
0

∫
{|x|>εP }

e−R̃s−xµP (ds, dx)=
Nt∑
i=1

e−R̃Ui Si,

where N is a Poisson process, U1,U2, . . . are the times of jump of N and
E[|S|κ0+ε]<∞, we get, for (3.11),

E

[
sup
t≤T

∣∣∣∣
∫ t

0

∫
{|x|>εP }

e−R̃s−xµP (ds, dx)
∣∣∣∣
κ0+ε]

≤E
[

sup
t≤T

e−(κ0+ε)R̃t
]
E

[(
NT∑
i=1

|Si |
)κ0+ε]

.

But

E

[(
NT∑
i=1

|Si |
)κ0+ε]

≤E[Nκ0+ε
T ]E[|S|κ0+ε]<∞.

By Nyrhinen (2001) it remains to show that z̄ = −∞, where z̄ = inf{z :
P (infn Zn < z) > 0}. But this is obvious from (3.1) and the fact that P is a
Lévy process. We know from Nyrhinen (2001) that C > 0, so it follows from
Theorem 3.1 and Theorem 3.2 in Gjessing and Paulsen (1997) that C is of the
stated form. This implies, in particular, that limy→∞E[H(−YTy )|Ty <∞] must
exist.
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To prove part (b), using Theorem 3.1, we have to show that

H(−y)∼ 1

νκ1

y−κ1L(y) as y→ ∞.

To do so, we shall use (3.4) with T = inf{t > 0 : |�Pt |> εP } (εP > 0). Then T is
exponentially distributed with intensity γ say, so, by Lemma 3.2,

E

[
sup
t≤T
e−(κ1+ε)R̃t

]
<∞.(3.12)

For B as in (3.4), we have B =Q+ e−R̃T S, where

Q= p
∫ T

0
e−R̃t dt + σR

∫ T
0
e−R̃t dWR,t

+
∫ T

0

∫
{|x|≤εP }

e−R̃t−
(
µP (dt, dx)−KP (dx) dt).

As in the proof of part (a), using (3.12), it follows that E[|Q|κ1+ε] <∞; hence
P (Q < −y) = o(y−κ1) as y → ∞. Furthermore, by assumption, P (S < −y)
= γ−1KP ((−∞,−y]), and S is independent of (Q, e−R̃T ). We can now use
Lemma 2 in Grey (1994); the only difference is that I1(t) defined there is now
o(t−κ1). Thus, using that E[e−κ1R̃T ] = γ/(γ + νκ1), this lemma gives

P (B <−y)= P (Q+ e−R̃T S <−y)∼ 1

γ + νκ1

KP
(
(−∞,−y]).

Finally, Theorem 1 in Grey (1994) yields

P (Z∞ <−y)∼ 1

1 − γ/(γ + νκ1)

1

γ + νκ1

y−κ1L(y)

= 1

νκ1

y−κ1L(y) as y→ ∞.

REMARK 3.2. (a) In part (a) of the theorem it was assumed that R̃T , or,
equivalently, RT , has an absolutely continuous component when T is uniformly
distributed and independent of R. Using a random instead of a fixed time gives
a little more generality. Assume, for instance, that Rt = rt +∑NR,t

i=1 SR,i , where
the sum is a compound Poisson process and SR has an arithmetic distribution. If
r �= 0, then R̃T is absolutely continuous distributed, while, for fixed t , R̃t has no
absolutely continuous component. If r = 0 we do not know if our result holds, but
Theorem 2 of Nyrhinen (2001) gives at least the large-deviation-type result

lim
y→∞y

−1 logψ(y)= −κ0.
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(b) Since YTy ≤ 0,

0<H(0)≤ lim inf
y→∞ h(y)≤ lim sup

y→∞
h(y)≤ 1.

In part (a) we saw that h = limy→∞ h(y) exists, but we do not know this for
part (b). Because of the heavy-tailed negative jumps of P , we conjecture that h
exists and equals 1, in which case

ψ(y)∼ 1

νκ1

y−κ1L(y) as y→ ∞.(3.13)

In Section 4 we will show that (3.13) holds in a generic special case, thus strongly
suggesting it holds in the general case.

There are a few cases not treated in Theorem 3.2 (or even in Theorem 3.1), when
the negative jumps of R, or, equivalently, R̃, can become too large in absolute
value. They may not be terribly interesting, but for completeness we shall end this
section by looking at the most prevalent of them. It will be assumed that RT has
an absolutely continuous component.

Assume first that the conditions of Theorem 3.1 hold and let κ2 be as in
Lemma 3.1. Assume that κ2 > 0 and that νκ2 > 0. Notice that this implies that

E[|B|κ2+δ] = ∞ for all δ > 0, where B d= ZT as in the proof of Theorem 3.2.
Assume also that

∫
{|x|>εP } |x|κ2+εKP (dx) <∞ for some ε > 0. Let R̃(γ ) be as

R̃, except that r̃ is replaced by γ r̃ , and let ν(γ )κ = − logE[e−κR̃(γ )1 ]. Then since
e−κx − 1 + κx ≥ 0, it is clear that, for any δ with 0 ≤ δ < κ2, there exists a γ
between 0 and 1 so that ν(γ )κ2−δ = 0. However, for γ < 1, R̃(γ ) is stochastically

dominated by R̃; hence ψ(y) ≤ ψ(γ )(y) def= P (R̃
(γ )
t < 0 for some t). But R̃(γ )

satisfies the conditions of Theorem 3.2, so ψ(γ )(y) ∼ c(γ )y−(κ2−δ) for some
c(γ ) > 0. On the other hand, we can let R̃[m] be as R̃, except that K [m]

R̃
(A) =

K
R̃
(A ∩ (−m,∞)) for any Borel set A. Then R̃ is stochastically dominated by

R̃[m] and henceψ(y)≥ψ [m](y) def= P (R̃
[m]
t < 0 for some t). Now for any δ > 0 we

can choosem so that ν[m]
κ2+δ = 0, and then, by Theorem 3.2,ψ [m](y)∼ c[m]y−(κ2+δ)

for some c[m] > 0. Hence we get the Kalashnikov–Norberg-type result: for all
δ > 0 there exist positive constants C1 and C2 so that

C1y
−(κ2+δ) ≤ψ(y)≤ C2y

−(κ2−δ).
If κ2 = 0, the second argument above can still be used to conclude that, for any

δ > 0, there is a C > 0 so that

ψ(y)≥ Cy−δ.(3.14)

In the unlikely case that KR does not satisfy the conditions of Theorem 3.1, for
instance, if

∫ −εR−1 (log(1+x))4KR(dx)= ∞ while
∫−εR−∞ log(1 + |x|)KP (dx) <∞,

we can let R̃ stochastically dominate R̃[m] as above and conclude that (3.14) holds.
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Our final odd case is when νκ0 = 0, νκ0+ε > −∞ for some ε > 0 and
KP ((−∞,−x])∼ x−κ0L(x) as x→ ∞. We can then dominate P by P [m], where
P [m] is as P , except that K [m]

P (A)=KP (A ∩ (−m,∞)) for any Borel set A, and
also dominate R̃ by R̃(γ ) as above to conclude that, for all δ > 0, there exist a
positive C1 and a positive C2 independent of δ so that

C1y
−κ0 ≤ψ(y)≤ C2y

−(κ0−δ).

4. A special case. In this section we consider the special case

Pt = pt −
Nt∑
i=1

Si and Rt = rt + σWt,(4.1)

where
∑Nt
i=1 Si is a compound Poisson process with intensity λ and jump

distribution F . We assume that S is positive so that F(0)= 0. Furthermore, W is
a standard Brownian motion independent of the income process P . It is assumed
that r̃ = r − 1

2σ
2 > 0 and that E[log +S]<∞; hence, by Theorem 3.1, ψ(y) < 1.

It is easy to see that κ0 = 2r̃/σ 2, and if, for some ε > 0, E[Sκ0+ε] < ∞, it
follows from Theorem 3.2(a) that ψ(y)∼ Cy−κ0 for some positive C. This result
is also proved in the example in Section 3 in Nyrhinen (2001). Clearly, κ0 → ∞
as σ → 0, so our result is not useful when σ = 0, a fact that is well known.

Indeed, in this case if 0 < α0
def= sup{α > 0 : E[eαSP ] <∞} <∞, then roughly

ψ(y)∼ Ce−α0y . If both σ and α0 equal 0, the asymptotic behavior of ψ can take
various forms; a general survey is found in Paulsen (1998b) and additional results
can be found in Asmussen (1998).

Assume now as in Theorem 3.2(b) that F̄ (x) = 1 − F(x) ∼ x−κ1L(x), where
κ1 < κ0. Then, by Theorem 3.2(b),

ψ(y)∼ 1

h(y)

λ

νκ1

y−κ1L(y) as y→ ∞.

Here KP ((−∞,−x])= λF̄ (x), hence the slight difference from Theorem 3.2(b).
Again h(y)=E[H(−YTy )|Ty <∞]. The conjecture (3.13) now becomes

ψ(y)∼ λ

νκ1

y−κ1L(y) as y→ ∞.(4.2)

When σ = 0 so that νκ1 = rκ1, both Klüppelberg and Stadtmüller (1998)
and Asmussen (1998) proved that (4.2) holds, so in this case the conjecture
[see Remark 3.2(b)] limy→∞ h(y) = 1 is correct. We will show that it is
generally correct for the model (4.1) as well. To this end, we will rewrite an
integrodifferential equation for the survival probability in a way similar to that
in Sundt and Teugels (1995). So consider the integrodifferential equation

1
2σ

2y2φ′′(y)+ (ry + p)φ′(y)= λφ(y)− λ
∫ y

0
φ(y − x) dF (x).(4.3)
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Paulsen and Gjessing (1997) proved that if (4.3) has a smooth solution satisfying
the boundary condition limy→∞ φ(y) = 1, then φ(y) = 1 − ψ(y), that is, the
probability of survival. Later Wang and Wei (2001) proved that under some
conditions the survival probability really is a smooth solution of (4.3) with the
boundary condition limy→∞ φ(y)= 1.

Integrating (4.3) from 0 to y and doing the necessary changes of variables and
integration by parts brings it into the form

1
2σ

2y2φ′(y)+ (
(r − σ 2)y + p)φ(y)

(4.4)

= pφ(0)+
∫ y

0
φ(y − x)(λF̄ (x)+ r − σ 2)dx.

Introducing, as in Sundt and Teugels (1995), the probability distribution function

G(y)= φ(y)− φ(0)
1 − φ(0) = 1 − ψ(y)

ψ(0)

brings (4.4) into the form

1

2
σ 2y2G′(y)+ (

(r − σ 2)y + p)G(y)
=
∫ y

0
G(y − x)(λF̄ (x)+ r − σ 2)dx + λ φ(0)

1 − φ(0)
∫ y

0
F̄ (x) dx.

Assume finally that η = E[S] is finite and set FI (y)= η−1 ∫ y
0 F̄ (x) dx. Then the

above equation becomes

1
2σ

2y2G′(y)+ (
(r − σ 2)y + p)G(y)

(4.5)
= ρG ∗ FI (y)+ (r − σ 2)

∫ y
0
G(x)dx +KFI (y),

where ρ = λη and K = ρφ(0)/(1 − φ(0)). Note that (4.4) and (4.5) are
consequences of (4.3) and are valid for any distribution function F with F(0)= 0.
Thus these equations are of independent interest.

PROPOSITION 4.1. Assume the model (4.1) with F̄ (x) ∼ x−κ1L(x) as
x→ ∞, where κ1 < κ0. Assume furthermore that φ(y) = 1 − ψ(y) solves (4.3).
Then (4.2) holds, where

νκ1 = κ1r̃ − 1
2κ

2
1σ

2 = 1
2κ1σ

2(κ0 − κ1).

PROOF. The expression for νκ1 is easy to verify. In the proof we will make
use of arguments and methods from Klüppelberg and Stadtmüller (1998), hereafter
abbreviated as K&S. As there, assume that η = E[S] <∞; the case with η = ∞
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can be dealt with as explained by K&S. For any distribution function F0 with
F0(0)= 0 and for any q ≥ 0, define the Lq -transform by

LqF0(s)=
∫ ∞

0
e−sy(sy)q dF0(y).

An easy integration by parts shows that (4.5) can be written as

1
2σ

2y2G′(y)+ (r − σ 2)

∫ ∞
0
x dG(x)+ pG(y)= ρG ∗ FI (y)+KFI (y).

Taking the Lq -transform on both sides, some integration by parts yields

1

s

(
1

2
σ 2Lq+2G(s)+

(
r − q + 2

2
σ 2
)
Lq+1G(s)

)
+ pLqG(s)

= ρLqG ∗ FI (y)+KLqFI (y).
(4.6)

By Theorem 3.2(b), Ḡ(y) = 1 − G(y) ∼ λ(ψ(0)νκ1h(y))
−1y−κ1L(y). Since

1/h(y) lies in the compact set [1,1/H(0)], by considering convergent sub-
sequences, it follows from Proposition 3.2 in K&S that Lq+2G(s) ∼ (q + 1
− κ1)Lq+1G(s). Therefore the left-hand side of (4.6) can be replaced with(

r̃ − 1

2
σ 2κ1

)
1

s
Lq+1G(s)+ pLqG(s).

But then (4.6) is of the same form as (2.11) in K&S; hence, by Corollary 2.4 there,

ψ(y)∼ λ

κ1(r̃ − 1
2σ

2κ1)
y−κ1L(y).

This ends the proof. �
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