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ON THE DISTRIBUTION OF BROWNIAN AREAS

BY MIHAEL PERMAN AND JON A. WELLNER!
University of Ljubljana and University of Washington

We study the distributions of the areas under the positive parts of a
Brownian motion process B and a Brownian bridge process U: with
AT= [IBT(t)dt and AJ= [{U"(¢)dt, we use excursion theory to show
that the Laplace transforms ¥*(s) = E exp(—sA*) and Y (s) =
Eexp(—sAf) of A* and A] satisfy

e , _ATYPAI(N) + (1/8 — [QAi(t) dt)
Jye (Vs ds = VXAi(A) — A'())

and
Ai())

VAAI(A) — A'(N)]

where Ai is Airy’s function. At the same time, our approach via excursion
theory unifies previous calculations of this type due to Kac, Groeneboom,
Louchard, Shepp and Takacs for other Brownian areas. Similarly, we use
excursion theory to obtain recursion formulas for the moments of the
“positive part” areas. We have not yet succeeded in inverting the double

Laplace transforms because of the structure of the function appearing in
the denominators, namely, VYAI(D) — Ai'().

fx%s“'o*(ﬁs“) ds = 27

0

1. Introduction. Our goal in this paper is to study the distributions of
the random areas

(1.1) A*(t)= [‘B*(s)ds and Ag= ['U'(1)dt,
0 0

where B is a standard Brownian motion process, U is a Brownian bridge
process and f* denotes the positive part of any real-valued function f on
[0,1]: f*(¢) = f(¢) v 0. We also compare our calculations for A* and A§ with
similar calculations for the related Brownian areas

(1.2) Amzﬂmmﬁ, %Eﬁmm@

(13) A = [(e(t)dt,  Apewn = [d(t) dt,
0 0

where e(¢) is a Brownian excursion process and d(¢) is a Brownian meander
process; see, for example, Durrett and Iglehart (1977). We show how excur-
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1092 M. PERMAN AND J. A. WELLNER

sion theory leads to a common structure for calculations for all of these
Brownian areas.

The “double Laplace transform” of the distribution of A, was found by
Cifarelli (1975) and independently by Shepp (1982). The first level of inver-
sion of this transform was accomplished by Rice (1982), and the second level
was carried out by Johnson and Killeen (1983). In the case of A, the Laplace
transform was found by Kac (1946), and this has been inverted and the
density function tabled by Takécs (1993a).

The double Laplace transform of A, ., was computed independently by
Louchard (1984a) and Groeneboom (1989) (Groeneboom’s paper was written
in 1984), and the first stage of inversion was accomplished by Louchard
(1984b). Takécs (1992b) carried out the second stage of inversion to obtain the
distribution function explicitly. Takacs also gave recursion formulas for the
moments and pointed out an interesting connection between the distribution
of A, ... and the supremum of a certain Gaussian process which was studied
by Darling (1983). See Borodin (1984) for related results.

Despite the considerable knowledge of the distributions of A, A,, A
and A_..,, the distributions of A* and A are apparently unknown.

This paper presents two approaches to computing the double Laplace
transforms. The first one uses random scaling and the master formulas from
excursion theory and uses known results derived by Kac (1951) and Shepp
(1982) for the double Laplace transforms of the random variables A and A,.
This approach offers some new insight into the structure of such transforms.
The second approach is the same as that used by Shepp (1982) and Louchard
(19844, b): we use Kac’s formula [Kac (1951) and It6 and McKean (1974)], or
an appropriate conditioned version in the case of Brownian bridge U, to find
formulas for the double Laplace transform of the general additive functionals

excur

(1.4) K(t) = fotk(B(s))ds

and

(1.5) Ky (t) = /Otk(U(s))ds,

where

(1.6) k(x) =Bx"+ ya~ = Bxly o(x) — yxL_. o(x)

for B, y = 0. Specializing these formulas to the case y = B gives back the
double transforms found by Kac (1946) and Shepp (1982), while taking the
limit as y — 0 yields the desired double transforms for the distributions of
A" and A§.

We then use these double transforms to derive recurrence formulas for the
moments of A* and A, and these in turn yield expansions for the distribu-
tions of A" and A in terms of Laguerre series much as in Takacs (1993a).
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We have not yet succeeded in direct inversion of the double Laplace
transforms. This requires more detailed knowledge about the function

Vu Ai(u) — Al (u)

in both cases.

2. Statistical background. Suppose that X,,..., X, are i.i.d. with dis-
tribution function F, and let F,, be a fixed continuous distribution function.
Consider testing

H:F=F, versus K:F <_ F,;

here F <, F, means F(x) > F,(x) for all x and F(x) > F,(x) for some x.
Under H the variables U, = F,(X,) are i.i.d. Uniform(0, 1), while under K the
U’s have a distribution function G given by

G(x) =P(U, <x) =F(F;'(x)), 0<x<1.

Note that G <, G, where G, is the Uniform(0, 1) distribution function.
One simple statistic for testing H versus K is

¢ = —Vn (T, - 1/2) = /01\/;(@”(,5) —t)dt = fOlUn(t) dt,

where G,(t) = n~'L!_1;, ,(U) is the empirical distribution function of the
U’s, and U(t) = Vn (G,(¢) — t) is the uniform empirical process (under H).
The statistic T* was apparently proposed by L. Moses; see Chapman (1958)
and Birnbaum and Tang (1964). Under the null hypothesis H we have
TF -, N(0,1/12), and for small sample sizes the distribution can even be
calculated exactly; see, for example, Feller (1971), Theorem 1a, page 28. Of
course, another formulation of the limiting distribution is that

Ty = ['U,(t)dt >, ["U(t) dt ~ N(0,1/12);
0 0
here U is a standard Brownian bridge process on [0, 1]. This follows from
standard weak convergence arguments.
Another appealing statistic for testing H versus K is
= fI\/F(Gn(t) — )" dt = flU,j(t) dt
0 0
>, [UT (1) dt = A5
0

Thus the limiting distribution of 7,7 is not normal, and is, in fact, unknown.

This is part of the motivation for studying the distribution of Aj. Another
statistic related to T, is the statistic S, proposed by Riedwyl (1967):

sie g Eleli)-3) -2 el
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Riedwyl tabulated the null distribution of S; for 1 < n < 12. It is easily seen
that the asymptotic distribution of S, under H is the same as 7,/, namely,
that of A;. Riedwyl also considered the two-sided statistic S, defined by

i i 1 x
n n n -

i
{3}
1 n

and tabulated its null distribution for 1 < n < 12. Here S, has the same
asymptotic limiting null distribution as the two-sided test statistic

1 n
S = —
T L

1 1
T, = [ Wn(G,(t) —t)ldt = [ 1U,(¢)ldt,
0 0
namely, the distribution of A, = [}U(¢)| dt.
3. Double Laplace transforms via excursions. Define ¥} and ¥* to

be the Laplace transforms of the random variables K,(1) and K(1) defined in
(1.4) and (1.5) for some B,y > 0, k(x) = Bx™+ yx~:

(3.7) Uk (s) EEexp(—stlk(U(t)) dt),

(3.8) Wh(s) EEexp(—stlk(B(u)) du),

where B is standard BM and U is a standard Brownian bridge on [0, 1]. This
section will be concerned with the computation of the double Laplace trans-
forms:

—As

* ¢ kyo3/2
(3.9) /0 S Vi (s*?) ds,
(3.10) [ et wt(s¥/2) ds.
0

The approach will be based on excursion theory and properties of Poisson
point processes. Theorems 3.3 and 3.5 give suitable conditional versions of
(3.9) and (3.10) from which the above transformations will follow by integra-
tion.

First some preliminary facts about excursions need to be established.
Throughout this section let B be standard Brownian motion and let (I,:
t > 0) stand for its local time process at level 0 in the standard normalization
such that M =|B| -1 is a martingale. Furthermore, let g, = sup{u < ¢:
B, = 0} denote the last exit time from 0 of B before time ¢. The following
lemma is well known [see Lévy (1948), Dynkin (1961) and Barlow, Pitman
and Yor (1989)].

LemMA 3.1.  The distribution of g, = sup{u < 1: B, = 0} is Beta(1,/2,1/2).
Given g, the process (B,: 0 < t < g,) is a Brownian bridge of length g,, and
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the rescaled process (B(g,u)/ \/g1 0 < u < 1) is a Brownian bridge indepen-
dent of g,.

Let S, be an exponential random variable with parameter A independent
of B. It is clear from Lemma 3.1 that the process (B,: 0 <u <gg) is a
Brownian bridge randomly rescaled to the interval [0, gSA] by Brownian
scaling. On the other hand, it is well known that the excursion of B that
straddles S, can be thought of as the first marked excursion in the Poisson
process of excursions with marks assigned independently with probability
1 — e *B©_ <where R(e) is the duration of the excursion e. The results on
marked excursions are well known; for a detailed treatment, see Rogers and
Williams (1987), page 418. The precise statement of the assertions is as
follows.

THEOREM 3.1. Let (es: s = 0) be the excursion process of B in the sense of
Ith and let S, be an exponentzal random variable with parameter A indepen-

dent of B.

() The local time lg, during the excursion straddling S, has exponential

distribution with parameter m and is independent of Bg . Moreover, lg is
independent of the excursion e* = e .

(i) Given lg =1, the process of excursions (e;: 0 <s <1) is conditionally
a Poisson process wzth Ith excursion law m given by m(de) = e *E©n(de),
where n is Ith’s excursion law for B and R(e) denotes the duration of the
excursion. Moreover, (e;: 0 < s <) is independent of e* = e, .

(iii) The law n* of e* = )5, is given by

n*(e* € de) = (1 — e "E©)n(de)/V2A.

Let f be a measurable nonnegative function and define the additive
functional F as

F(t) = ['f(B,) du.

The following proposition can be derived from last exit theorems [see Getoor
(1979)]. For an alternative discussion of the distribution of the two pairs of
random variables defined in (3.11), see Biane and Yor (1988). Here a proof
based on Theorem 3.1 will be given.

PrOPOSITION 3.1. The two pairs of random variables
(3.11) (F(gsA),l(gsA)) and (F(SA) _F(gsh),BsA)
are independent.
ProOF. A simple calculation shows that g5 and S, — g5 are indepen-

dent. By Lemma 3.1, given g , the process (B,:0 <t < gSA) is conditionally a
Brownian bridge on [0, gSA]. On the other hand, the random pair on the right
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is a functional of e*, as defined in Theorem 3.1, and S, — 8s, To conclude, we
need to argue that gg is independent of e*. However, this follows from the
independence of /g and e* and the conditional independence of (e;: 0 <'s <)
and e*, given Iy = 1. O

The master formulas for Poisson processes can now be applied to the
process (e,: 0 < s < l(gg)) conditioned on I(gg ). See Revuz and Yor (1994),
page 452, for details. Denote 1 sy by . Using "Theorem 3. 13G1),

E(exp(—F(gs))ll, =1) = exp(—lfu _ eF(u>)m(du))
(3.12)
= exp( —lj(l - eF(”))eAR(”)n(du)),

where F(u) = [F“f(u(s)) ds is the integral over the lifetime of the excursion
v and the integral on the right-hand side of (3.12) is over the space of
excursions. In the sequel (3.12) will be applied with the function f equal to
k(x) = Bx*+ yx~. It will be convenient to introduce the function

R(B,A) = [(1 = e FAm)e "Rn(du),

where now A(u) = f({““)lu(s)l ds is the absolute area of the excursion u. By
scaling properties of It&’s excursion law, it is easy to see that A has the
scaling property

(3.13) h(B,A) =h(c¥?B,cA)/Vc forc > 0.

To compute & explicitly, note that the approach based on Kac’s formula in
Section 3 gives the double Laplace transform of A,, which agrees with the
formula given by Shepp (1982).

THEOREM 3.2.

we S Al
(3.14) fo = E(exp(—V2s°%4,)) ds = —\/;ﬂ

where Ai is the Airy function [see Abramowitz and Stegun (1965), pages
446-451].

On the other hand, by Lemma 3.1 the process (B,: 0 < ¢ < gg ) is just a
randomly rescaled Brownian bridge and the process

(B(tgsx)/ 85, :0<t< 1)
is a Brownian bridge on [0, 1] independent of gg . Therefore,

(3.15) A(gs) = ggA/ZAO,
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where A, and A(¢) are defined in (1.1) and (1.2), and A, is independent of
&s,- This equality in law allows us to compute A explicitly.

PrOPOSITION 3.2. The function h is given by

Ai’()\21/3/,32/3)

Ai(/\21/3/B2/3) - V22,

h(B,A) = —(2B)"°

PROOF. An elementary computation shows that the distribution of gg is
I'(1/2, ). By multiplying (3.14) by YA and dividing by vV, the left-hand side
becomes the Laplace transform of V2 g#/?A,. By (3.15), then,

VXAi())
E(exp(—\/gA(gsA))) = — 141'—(/\)

Formula (3.12) applied to A gives that the conditional double Laplace trans-
form (3.14) equals

E(exp( ~V2 A(ggs))ll, = z) = exp(— (V2 , 1)).

By Theorem 3.1(i) the distribution of [, = /5 is exponential with parameter
V2, and integration gives

~ V22
T V20 +A(V2,A)

This identity, the scaling property (3.13) of A and some straightforward
calculations conclude the proof. O

E(exp( — @A(gSA)))

The properties of Poisson point processes can now be used to derive
expressions for the Laplace transform of A"(gg) and A (gg ) or the joint
Laplace transform of these two. Recall that [, = /5, where S, is an exponen-
tial random variable with parameter A independent of B. Further, recall the
definitions of K(¢) and K,(¢) in (1.5) and (1.4).

THEOREM 3.3. For B,y > 0 let k(x) = Bx*+ yx~. Then, for A > 0,

(3.16) E(exp(~K(gs))ILy =1) = exp(~1(h( B, 1) /2 + h(v,1)/2))
and, consequently,
@1 [ () di = ! .

0 V2wt V2A + (B, A)/2+ h(y,))/2

Proor. By Theorem 3.1 conditionally on [, = [, the positive and negative
excursions of (e;: 0 < s <) are independent Poisson processes with excur-
sion law m /2. Formula (3.16) now follows from (3.12). The second assertion
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follows by integration noting that, by Brownian scaling and Lemma 3.1,
K(gg) =, g3/°K,, where g5 and K, are independent. O

We now turn to the computation of the double Laplace transform (3.10). A
classical result by Kac (1946), which also appears as a special case in the
proof given in Section 3, states the following.

THEOREM 3.4. For A > 0 one has
M3/ Ai(t) dt — 1)

E(exp(—ﬁASA)) = 347 ()

Based on this result, an analogous formula for the double Laplace trans-
form of K(¢) is given by the following result.

THEOREM 3.5. Let B,y > 0 and let k(x) = Bx™+ yx~. For A > 0 let

VA (30 Ai(s) ds — 1) - 21/
BAi(1) and  $(x) = d’(W)

d(A) = -
Then

(3.18) E(exp(—K(S,))) = E(exp(—K(gs)))($(B8)/2 + $(7)/2).

Consequently,

f efAt\I,k(tS/Z) dt
0

@19 V27X (d?(ﬁ) ) cxé(y))
V2X +R(B,A) /2 + R(y, ) /2 2 2 |

Proor. By (3.1) the random variables K(S,) — K(gg) and K(gg) are
independent. The Laplace transform of the second is given in Theorem 3.3.
The compute the Laplace transform of the first term, note that the sign of the
excursion straddling S, is independent of its absolute area and hence

E(exp(~K(S,) ~ K(&s,)))
(3.20) — E(exp(—B(A(S)) — A(gs))))/2
+ E(exp(—v(A(S,) — A(gs)))) /2.
By Proposition 3.1 again
E(exp(—BA(S))))

B~ Bleal~B(A(S,) - Alg))| Elexn(~BACss).
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The left-hand side of (3.21) is given in Theorem 3.4 and the second term in
the product on the right-hand side is given in Theorem 3.3. Dividing, it
follows, for B = V2,
VA (3/3Ai(s) ds — 1)
3Ai(A)

E(exp( V2 (A(S,) - Ags)))) = = $(A).

However, by the scaling properties of BM,
E(exp(—B(A(S)) — A(gs))))
— E(exp(~V2 (A(S)) - Ags)))) = (X),

where X = 213 /B32/3, The formula for the integral (3.19) follows by scaling
because K(t) =, ¢*/2K(1). O

(3.22)

REMARK 3.1. Note that [§Ai(s)ds = 1/3 [Abramowitz and Stegun (1965),
page 448] and hence the function ¢ can also be expressed as

VA [FAi(u) du

¢(1) = Ai(u)

The above results have a few simple corollaries.

COROLLARY 3.1. When B=1and y=0[so k(x) = x*], we have

ot . - B Ai())
(3.23) /0 75 Vo (V2s7/?) ds = 2Vm VY Ai(L) — A'())

and
ATVPAL(X) + (178 — [ Ai(t) dt)
VAAi(A) — Ai'())

(324) [ e W (V25%/?)ds =
0

Proor. Equation (3.23) follows from the master formula (3.12) because
the positive excursions are a Poisson point process with mean measure m /2
and hence the second term on the right-hand side of (3.16) disappears. The
rest follows just as in Theorem 3.3.

The second identity follows from (3.18). For y = 0 one has

&
CV2X +A(B,A)/2]

Elexp(~K(gs,)))
which follows easily from (3.16), and

E(exp(—K(S)) - K(gs)))) = $(B)/2 + 1/2,
which follows from (3.20). Now take 8 = V2. O
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The following corollary is apparently known to Takéacs [see Takacs (1993b)],
but we do not know of any published derivation.

COROLLARY 3.2. Let A, .., be the area of the absolute Brownian meander
as defined in (1.3), and let W ean(s) = Eexp(—sA, ...). For A > 0,

(32 ds = JrAi(t) dt

(3.25) a0

—\If
'/(‘) \/E mean
PrOOF. One needs to notice that, by the scaling properties of BM,

A(S/\) - A( gS,\) 2 gg)\/zAmean ’
where the two random variables on the right-hand side are independent. Now
(3.25) follows from (3.22). O

For comparison, we also state the result of Louchard (1984a) and Groene-
boom (1989) for A, here. For an equivalent statement with a different
proof, see Biane and Yor (1987), page 75. Takacs (1992a) has inverted these
transforms and computed P(A < x).

excur

COROLLARY 3.3. Let

Y.(s) = E(exp( —sfle(u) du)),
0
where e is the standard Brownian excursion on [0, 1]. For A > 0,

1 e(1—e ) s Ai'(x)  Ai'(0)
(3.26) \/_[ S W(V25%%) ds = —@( Ai(N)  Ai(0) )

PRrOOF.
1 =(1—e?)
3/2
m/o $3/2 ‘I’e(\/gs ) ds

= (1 — e‘“)

= Elexp(~ V2 5%/%A(e))] ds

% exp(—V2s%/%A(e
];)E (1 —e?) ( ()

3

s
2s

_ /(1 _ e—/\R(u))ef\/Z—A(u)n(du)

by scaling and n(R(e) € ds) = =
TS

— /[(1 _ e*\/Z—A(u))efAR(u) _ (1 _ ef‘/Z—A(u)) + (1 _ efAR(u))]n(du)
= h(¥2,1) — h(V2,0) + V2X.
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All the changes in the order of integration are justified by Fubini. The last
line follows from the identity [(1 — e *%)n(de) = Y2\, which is contained
in Theorem 3.1(ii). Substituting for 4, one obtains (3.26). O

For B =y =1 and hence k(x) = | x|, the double Laplace transform for A,
has been inverted in terms of Airy functions in Rice (1982) and Johnson and
Killeen (1983); the double Laplace transform for A(1) has been inverted by
Kac (1946) and Takacs (1992a,b); and the transform (3.26) has been inverted
by Louchard (1984b) and Takécs (1992b). We have not yet accomplished a
similar inversion for the case y = 0, but we do use the transforms in Section 4
to develop recursions for the moment sequences of Aj and A™.

4. The double Laplace transforms via Kac’s formula. Theorems 3.3
and 3.5 can also be derived via Kac’s formula by solving a differential
equation. For completeness, the proof of the two main results in the previous
section is repeated here.

ProOOF OF THEOREMS 3.3 AND 3.5. First, writing E, for expectation condi-
tional on the process B starting at x at ¢ = 0, Kac’s formula [see, e.g., It6 and
McKean (1974), page 54] says that

(4.27) u(x) = Ex{fwe“exp(—ftk(B(s)) ds)f(B(t)) dt}
0 0

is the bounded solution of

(4.28) (A=Dy)u =f,

where D, is the differential operator

(4.29) Dyu(x) = 3u"(x) — k(x)u(x).

Hence, letting 0 < g; » and 0 < g, \« be two independent solutions of the
homogeneous equation

(4.30) (A—=D,)u =0,
and writing W = g g, — g, g5 for the Wronskian,
(4.31) G(a,b) =g,(a Ab)gy(a VE)/W

for the Green’s function, it is classical that the solution of the inhomogeneous
equation (4.28) is given by

(4.32) u(a) = 2[G(a,b)f(b) db.

Hence, in particular, when f= 1 and a = 0 we have

(439 () = 3 {5:00) [* £(6) db +2,(0) [ .(b) db).
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By arguing as in Shepp (1982), it is easily seen that the corresponding result
for [4R(U(s)) ds is as follows:

(4.34) EO{/OOO%eXp(—tfolk(\/t_U(s))ds)} = %gl(O)gQ(O).

We now use (4.33) and (4.34) for the particular & given in (1.6). For this & the
homogeneous differential equation (4.30) becomes

(4.35) su'(x) — (A + Bxt+ yx )u(x) = 0.

It is easily verified that the two solutions g, and g, that we seek are given
by g.(x) = g,(—x;v, B), where g, = g,(; B, v) is defined by

Ai((2B)°(x + A/B)), x>0,
(436)  gy(x) = { CLAI((27)*(—x + A/v))
+C,Bi((27)(—x + A/7)), x <0,

where Ai and Bi are the two standard independent solutions of w”(z) —
zw(z) = 0 with Ai decreasing and Bi increasing on (0, »); see Abramowitz
and Stegun (1965), page 446. Here C; and C, are constants chosen so that
8,0 +)=g,0—) and g4,(0 +) =g4L(0 —). It follows by straightforward
calculation that

C, = [4i((28)"°A/B)Bi((21)°4/7)
+(B/7)"* A ((28)/°1/B)Bi((21)°A/7)]
x [ 4i((27)"*A/v)Bi'((27)"°A/7)

— AP ((2v)°M/v)Bi((2v)*\ /)| B

and
C, = [=(B/m)4i((29)°\/7) Ai((28)°1/B)
—Ai((28)°A/B) A ((20)*1/7)]
x [ Ai((27)"*A/v)Bi'((2v)"°A/7)
AT ()2 /7)Bi((20) " a/)]
Substitution of these into (4.33) and (4.34) concludes the proof. O

5. Moments of A; and A*. Now we use the methods developed in
Shepp (1982) and Takéacs (1993a) to obtain recursion formulas for the mo-
ments

wi=E(AD)",  vi=EADY, k=12,
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of A;j and A™. For comparison, we first state the recursion relations found
by Shepp (1982) and Takéacs (1993a) for

w, = E(AY), v, = E(AY), £E=0,1,2,....
For n =0,1,2,..., define

3n+1\ (V2)
(5.37) L, = Mnr( 2 ) aras
and
(5.38) K, = Vnr( 3”; 2) (‘/z)

and set y, =1, B, =1 and
I'(3n +1/2) 1

(5.39) "= T(n+1/2) (36)"n!
and

(5.40) B,=w+i(2n—1)B,
forn=0,1,2,....

THEOREM 5.1 [Shepp (1982) and Takacs (1993a)]l. Forn =1,2,...,

” 6k + 1
ek -1t
and
n 6k +1
LBt e 1

ProoF. The recursion for {L,} follows by rewriting Shepp (1982), formula
(1.8): divide both sides of Shepp’s (1.8) by n!(36)" and rearrange to obtain
(5.41). The recursion for {K,} is exactly Takacs (1993a), formula (24). O

A recursion for the moments of A is given by Takéacs (1992b).
Now, for n =0,1,2,..., define

excur

3n+1\(V2)"
5.43 L=uT|———
3n+2)\(vV2)"
5.44 K'=v'T .
(5.44) e
In the sequel we will also need the moments of the Brownian meander area:
3n +1 n
(545) b, = B(Ahy) and R, =p,0( 25 |(2) /miras2)
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for n = 1,2,... . Now let S, be an exponential random variable independent
of the Brownian motion B, and define A(S)), A(gs), A(S,) and A'(gg)
just as in Section 2. The quantities L,, K,, L and K, can also be rewritten
using the scaling properties of BM and the independence property from

M. PERMAN AND J. A. WELLNER

Proposition 3.1 as

(5.46)

(5.47)

and

(5.48)

(5.49)

(5.50)

and

(5.51)

The identity (5.49) follows from the fact that the sign of the excursion
straddling S, is independent of A"(gg ) and of A(S,;) — A(gg). To derive
recurrence formulas similar to those in Theorem 5.1, note the following
result.

PROPOSITION 5.1.  Let fy, f, be the densities of A(gg) and A*(gg ), respec-

n ‘/E i
L, = B[A(gs,) )%,

(V2)"

Ky =E(A*(S)")~——

n!

(2)"

n!

(2)"

n!

~B((A%(8) ~ A% (g5) + A" (85)))

%(E((A(Sl) - A(gsl) + A+(g31))n))

()"

n!

b

1
+ EE(A+(gsl)n)

= Z I’l;rlznfk/2 + L:{/2
k=0

\/5 n
R, = E(A(Sl) _A(gsl))%-

tively. The densities satisfy the equation

(5.52)

fo=2f1—fi*fs,

where * denotes convolution.



ON BROWNIAN AREAS 1105

_ Proor. From Theorem 3.3 we know that the Laplace transforms fl and
fo are

R 7Y
f1(B) = \/ﬂ+h(ﬂ,)\)
(5.53) A Zx
fa(B) =

V2A +Rh(B,N) /2
For (5.52) to hold the Laplace transforms would have to satisfy the relation

}62 = 2f1 _/;1]62-
That they do is checked by straightforward calculation. O

COROLLARY 5.1. Forn=1,2,...,

(5.54) L'=L,— Y L/L, ,.
k=1

Proor. Multiplying (5.52) by x™ and integrating, one obtains

(A" (g5)") - 2E(A(gs)") - éo(’,:)E(A%gsl)k)E(A(gsl)”"‘)

- B(Ag5)") = X (7 ]B(A7(85)")B(Ags)").
k=1
Substituting the expressions for L, and L, gives (5.54). O
For two sequences a,,a,... and by, by,... we will write a* b for the

convolution: (a=*b), = X}_,a,b,_,. In this notation, setting L, =1 and
Lg = 1, the identity (5.54) can also be written as

(5.55) L*=2L - L=«L".
COROLLARY 5.2. Forn=20,1,2,...,

5.56 L=y + L ,

( ) n Yn kgl n—*k 6k — 1 Ye

5.57 K} ! + + i K !

( . ) n z(yn Bn) ot nfk6k_1’)/k
and

(5.58) R,=B,— L nR,

k=1

Proor. For k£ =0,1,... denote y, = 2v,/(6k — 1). The recurrence for-
mula (5.41) can be rewritten as

(5.59) 0=y+Lsy+L=7.
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From (5.55) we have L =(L*"+ L=+ L")/2. Plugging this into the above
formula, we get

O=vy+(L*+L+L")*y/2+ (L*+L+L")*y/2.

Rearranging the terms using associativity and commutativity of convolutions
and multiplying by 2 yields

0=2y+L*sy+ y«LT+(L*xy+Lxy)*L".
However, the term in parentheses equals — vy by (5.59), so we obtain
(5.60) Ltsy= —2y,

which is precisely (5.56).
To prove (5.57), note that (5.42) says

(5.61) 0=B+K=xy+K=¥y.

Substituting K=L+«R and L =(L*+ L*%L)/2, recalling that K=

L*+ R/2 + L*/2 and rearranging terms gives

O0=B+K'sy+K'+y+ (Lxy+L*y)*xK"
—oL*#(Lry+L#y) — gL xy— 3L" 7.

The term in the first set of parentheses is —vy by (5.59), and similarly the

term in the second set of parentheses is also —y. By (5.60), the above identity
becomes

(5.62)

0=B+y+K'=y,
which is (5.57).
Multiply (5.59) by R in the sense of convolutions. Note that R+ L = K.
Comparing the resulting identity with (5.61) shows that

y*R =B,
which is (5.58). O

Now define A;= (U (¢)dt and A~ = [}B (¢) dt. It follows by symmetry
that Aj=, Aj and A™=, A*, but in both cases they are dependent. The
following calculation of covariances and correlations follows easily from our
moment calculations and A = A"+ A~, A, =AJ+ A, [or [(B(t)dt=A"—
A, [fU@)dt = Af— Agl:

Cov( AL, A7) = — T
(Ao, 40) = 795 ~ T28°
L 128 — 1207
P(AG,A)) = e o8 1305 — 0636791,
1 2
Cov(A*",A") = — — —,
96 97
37T — 64
p(A*",A") = ——— = —0.567185... .
517 — 64

Tables 1 and 2 were computed using Mathematica; see Wolfram (1991).
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TABLE 1

First 10 moments of A,, A, A and A*

1107

E Pr Vi (194 Vi
1 7 41 1 /7 2 1
! V2 3 Von sV 2 3 on
7 3 1 17
2 60 B 20 %
21 [ 263 1 1 [ 251 1
5 Ve 315 Van 2096V 2 630 Van
19 903 211 6989
4 720 2560 18480 40960
101 /7 2119 1 15103 7 188267 1
> 8192V 2 1980 27 360777252864 \/g 360360 V27
70753 37623 75233 37235311
7001290 65536 16336320 132120576
45493 |7 11074363 1 32420011 /7 1451280043 1
7864320 \/g 5250960 27 1209595520 \/; 1396755360 27
206530429 114752519 75516257 522258818027
36714712320 86507520 28555887360 797253304320
89374187 7 3845017725821 1 32582240233 /7 8096107769 1
23991418880 \/g 688400856000 27 2145 - 2% \/g 2930256000 27
1256447927 189970427903 292964136763 1011667945773427
305663155200 47982837760 149061732019200  515911471595520

6. Expansions of the distributions in Laguerre series.
follow Takécs (1993a) to express the distribution functions

and

and their densities h =H', h, = H'

+

H(x)=P(A,<x),
H, (x)=P(Aj<x),
K(x)=P(A <x)

K, (x)=P(A"<x)

Laguerre series. The generalized Laguerre polynomials,

defined for n =0,1,2,...

(a)x=n -1/ !
B = 1 y(n L

n+a«a x_J
J

x < o with respect to the Gamma(a + 1, 1) density
guir(x) = e x/T(a + 1),

Here we

k=K' and k,=K! in terms of

and a > —1, are orthogonal on the interval 0 <
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TABLE 2

Numerical values of the first 10 moments of A,, A, A and A"

k 23 Vi (194 vy
1 0.313328534 0.531923041 0.156664267 0.265961520
2 0.116666667 0.375 0.05 0.177083333
3 0.051405463 0.333085142 0.021724928 0.158943670
4 0.026388889 0.352734375 0.011417749 0.170629883
5 0.015452237 0.426948834 0.006876919 0.208423982
6 0.010105723 0.574081421 0.004605260 0.281828252
7 0.007250089 0.841375983 0.003363727 0.414515660
8 0.005625277 1.326503395 0.002644507 0.655072629
9 0.004668917 2.228265881 0.002216275 1.102251713

10 0.004110564 3.959132823 0.001965388 1.960933225

Let

Goer(2) = [ "guin(u) du

be the corresponding Gamma(a + 1, 1) distribution function.

Now we take the approach of Takécs (1993a) to expand the distributions
H, and K, as Laguerre series. In the process, we will correct a few minor
typographical errors on page 196 of Takacs (1993a). By using the results of
Uspensky (1927) and Nasarow (1931) [Sansone (1959), Chapter 4], we can
show that, for a distribution H of a nonnegative random variable Y which is
determined by its moments u, = EY", r = 1,2,... (such as the areas A, A,

A" and Ay),

h(x) = gu(b)b Y ¢, Lo~ b)

n=0

[this corrects formula (68) in Takéacs (1993a)] and

(663)  H(x)=G(bx) +a ¥ g, y(bx) L2 (bx)

TABLE 3

Values of a and b

A, A Af At
157 64 57 64
@ 56 — 157 27m — 64 32 — 57 517 — 64
b 60y27 48V2m 40v2m 96v2m
56 — 157 277 — 64 32 — 57 517 — 64
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TABLE 4
Numerical values of a and b

A, A A A*

a 5.3090699374
b 16.9440997412

3.0735242250
5.7781370439

0.9641497577
6.1542416479

0.6551339118
2.5008652044

for x > 0, where @ > 0, b > 0 and

4
n+a-—-1)\_ Lo (-1 n+a—1)\zr
C"( n )_ E‘O rl ( n—r )b”"

for n =0,1,2,... [(6.63) corrects formula (67) in Takacs (1993a)].
As noted in Takécs (1993a), if we choose
2
s > and b= i,
Mo — My M
then the first and second Laguerre coefficients, ¢, and c,, are both 0, and the
next term in the series to enter is the third term. Tables 3 and 4 give the
values of a and b [and hence the leading Gammal(a, ) term] for the four
random variables A,, A, A; and A". We have made numerical comparisons
of H and %k computed via the Laguerre expansions with H and . computed
via the formulas obtained by inversion of the double Laplace transform in
Johnson and Killeen (1983) and Takécs (1993a), respectively, and have
obtained excellent agreement. As seen in Table 5, however, the Laguerre
coefficients ¢, and ¢, decay much more slowly than the corresponding

a:

TABLE 5
Laguerre coefficientscy,, c,, ¢j, and ¢,

n Con Cn an C,:—
3 —0.021454119803 —0.011584328208 0.097883267635 0.157758186834
4 —0.016523337226 —0.027178915962 0.127586565732 0.247981499267
5 —0.007745843462 —0.027729182039 0.109492841572 0.258338193831
6 —0.002656004243 —0.020663009369 0.080609708895 0.226619040144
7 —0.000158072001 —0.013188716669 0.059395115926 0.185964134827
8 0.000961309559 —0.007518446236 0.049017732282 0.153690893619
9 0.001283485814 —0.003542017611 0.046078654907 0.134554052077
10 0.001177477843 —0.000784228414 0.046305580415 0.126580019477
11 0.000899538852 0.001069042587 0.046373029005 0.125557381830
12 0.000596775550 0.002209142203 0.044849197460 0.127540086205
13 0.000335517004 0.002794038532 0.042632790813 0.129818478532
14 0.000137038413 0.002974420142 0.040199307720 0.130995229809
15 0.000001353846 0.002884301321 0.037904739443 0.130667652469
16 —0.000080633690 0.002629846283 0.035932605867 0.129024337933
17 —0.000121149592 0.002287456968 0.034323026910 0.126506297339
18 —0.000132376130 0.001908702360 0.033028868889 0.123580870558
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coefficients c,, and c,. This may be related to the fact that the leading term
of the expansions, which is a Gamma(a, b) distribution, has a substantially
greater than 1 in the case of both A, and A, but a less than 1 (so that the
resulting Gamma density is unbounded at the origin) in the case of both Aj
and A”. Thus it seems that the Laguerre series obtained by this method will
require a very large number of terms to yield numerically accurate values of
H,_ and K,.

REFERENCES

ABRAMOWITZ, M. and STEGUN, I. A. (1965). Handbook of Mathematical Functions. Dover, New
York.

BaArLOW, M., PITMAN, J. M. and YoR, M. (1989). Une extension multidimensionnelle de la loi de
Parc sinus. Séminaire de Probabilités XXIII. Lecture Notes in Math. 1372 294-314.
Springer, New York.

BIaNE, PH. and YOR, M. (1987). Valuers principales associées aux temps locaux Browniens. Bull.
Sci. Math. 111 23-101.

BiaNE, PH. and YOR, M. (1988). Sur la loi des temps locaux browniens pris en un temps
exponentiel. Séminaire de Probabilités XXII. Lecture Notes in Math. 1321 454-465.
Springer, New York.

BIRNBAUM, Z. W. and TANG, V. K. T. (1964). Two simple distribution-free tests of goodness of fit.
Rev. Internat. Statist. Inst. 32 2-13.

BoRroDIN, A. N. (1984). Distribution of integral functionals of a Brownian motion. J. Soviet Math.
27 3005-3022.

CHaPMAN, D. G. (1958). A comparative study of several one-sided goodness-of-fit tests. Ann.
Math. Statist. 29 655.

CIFARELLI, D. M. (1975). Contributi intorno ad un test per 'omogeneita tra du campioni. G.
Econom. Ann. Econ. (N.S.) 84 233-249.

DARLING, D. A. (1983). On the supremum of a certain Gaussian process. Ann. Probab. 11
803-806.

DURRETT, R. T. and IGLEHART, D. L. (1977). Functionals of Brownian meander and excursion.
Ann. Probab. 5 130-135.

DyNkIN, E. B. (1961). Some limit theorems for sums of independent random variables with
infinite expectations. Selected Translations in Mathematical Statistics and Probabil-
ity, IMS-AMS 1 171-189.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley,
New York.

GETOOR, R. K. (1979). Excursions of a Markov process. Ann. Probab. 7 244—266.

GROENEBOOM, P. (1985). Estimating a monotone density. Proceedings of the Berkeley Conference
in Honor of Jerzy Neyman and Jack Kiefer (L. M. Le Cam and R. A. Olshen, eds.) 2.
Univ. California Press, Berkeley.

GROENEBOOM, P. (1989). Brownian motion with a parabolic drift and Airy functions. Probab.
Theory Related Fields 81 79-109.

It6, K. and McKEaN, H. P. (1974). Diffusion Processes and Their Sample Paths, 2nd ed.
Springer, Berlin.

JOHNSON, B. Mck. and KiLLEEN, T. (1983). An explicit for the c.d.f. of the L; norm of the
Brownian bridge. Ann. Probab. 11 807-808.

Kac, M. (1946). On the average of a certain Wiener functional and a related limit theorem in
calculus of probability. Trans. Amer. Math. Soc. 59 401-414.

Kac, M. (1951). On some connections between probability theory and differential and integral
equations. Proc. Second Berkeley Symp. Math. Statist. Probab. 1 189-215. Univ.
California Press, Berkeley.

LEvy, P. (1948). Processus Stochastiques et mouvement Brownien. Gauthiers, Paris.



ON BROWNIAN AREAS 1111

LoucHARD, G. (1984a). Kac’s formula, Lévy’s local time and Brownian excursion. J. Appl.
Probab. 21 479-499.

LOUCHARD, G. (1984b). The Brownian excursion area. Comput. Math. Appl. 10 413-417. Erra-
tum: A12 (1986) 375.

Nasarow, N. (1931). Ueber die Entwicklung einer beliebigen Funktion nach Laguerreschen
Polynomen. Math. Z. 33 481-487.

REvVUZ, D. and YOR, M. (1994). Continuous Martingales and Brownian Motion, 2nd ed. Springer,
New York.

RIcE, S. 0. (1982). The integral of the absolute value of the pinned Wiener process. Ann. Probab.
10 240-243.

RiEDWYL, H. (1967). Goodness of fit. J. Amer. Statist. Assoc. 62 390—398.

RoGERs, L. C. G. and WiLLIaMS, D. (1987). Diffusions, Markov Processes and Martingales. Itb
Calculus 2. Wiley, New York.

SANSONE, G. (1959). Orthogonal Functions. Interscience, New York.

SHEPP, L. A. (1982). On the integral of the absolute value of the pinned Wiener process. Ann.
Probab. 10 234-239. [Acknowledgment of priority. Ann. Probab. (1991) 19 1397.]

TAKACS, L. (1992a). Random walk processes and their various applications. In Probability
Theory and Applications. Essays to the Memory of Jézsef Mogyorédi (J. Galambos and
I. Katai, eds.) 1-32. Kluwer, Dordrecht.

TAKACS, L. (1992b). Random walk processes and their application in order statistics. Ann. Appl.
Probab. 2 435-459.

TAKACS, L. (1993a). On the distribution of the integral of the absolute value of the Brownian
motion. Ann. Appl. Probab. 3 186-197.

TAKACS, L. (1993b). Personal communication with J. A. Wellner.

USPENSKY, J. V. (1927). On the development of arbitrary functions in series of Hermite’s and
Laguerre’s polynomials. Ann. Math. 28 593-619.

WoLFRAM, S. (1991). Mathematica, a System for Doing Mathematics by Computer, 2nd ed.
Addison-Wesley, Redwood City, CA.

INSTITUTE FOR MATHEMATICS, PHYSICS UNIVERSITY OF WASHINGTON

AND MECHANICS DEPARTMENT OF STATISTICS
DEPARTMENT OF MATHEMATICS Box 354322
UNIVERSITY OF LJUBLJANA SEATTLE, WASHINGTON 98195-4322
JADRANSKA 19 E-MAIL: jaw@stat.washington.edu
61111 LJUBLJANA
SLOVENIA

E-MAIL: Mihael. Perman@fmf.uni-lj.si



