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CONVERGENCE RATE FOR THE APPROXIMATION OF THE
LIMIT LAW OF WEAKLY INTERACTING PARTICLES:
APPLICATION TO THE BURGERS EQUATION

By MIREILLE Bossy AND DENIS TALAY
INRIA

In this paper we construct a stochastic particle method for the
Burgers equation with a monotone initial condition; we prove that the
convergence rate is O(1/YN + yA¢) for the L'(R X Q) norm of the error.
To obtain that result, we link the PDE and the algorithm to a system of
weakly interacting stochastic particles; the difficulty of the analysis comes
from the discontinuity of the interaction kernel, which is equal to the
Heaviside function.

In a previous paper we showed how the algorithm and the result
extend to the case of nonmonotone initial conditions for the Burgers
equation. We also treated the case of nonlinear PDE’s related to particle
systems with Lipschitz interaction kernels. Our next objective is to adapt
our methodology to the (more difficult) case of the two-dimensional invis-
cid Navier—Stokes equation.

1. Introduction. In this paper and in [4], we study the convergence rate
of a stochastic particle method for the numerical solution of the nonlinear
McKean—Vlasov equations

d
(1) a(,u/t,f>=<l‘bt’L(#t)f>’ K=o = Ho-

where u, is a probability measure, f is any real function of class #” with a
compact support and the operator L, is defined by

@) Loof(x) = 3 [ s 0) du(o)] 17(x) + [ [0x5) du()| /().

The method is based upon the simulation of a weakly interacting particle
system. Its construction and its analysis rely on the propagation of chaos
theory.

As shown by Osada [22] and by Marchioro and Pulvirenti [18], the incom-
pressible two-dimensional Navier—Stokes equation describes the limit be-
haviour of a weakly interacting particle system with a singular interaction
kernel b(zx, y). The numerical simulation of such a particle system coincides
with the well-known Chorin random vortex method. Thus, it might be useful
to start from the propagation of chaos to analyze the convergence rate of the
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random vortex methods. Recent publications on these methods are those of
Chorin [5], Chorin and Marsden [6], Goodman [11], Hald [13, 14], Puckett
[23], Roberts [25] and Long [17]; see also the bibliography in [5] and in the
different contributions of [12], in particular those by Chorin [5] and Hald [13,
14]; see [24] and [2] for a stochastic particle method for convection—
reaction—diffusion equations with a nonlinear reaction term. In [4], we stud-
ied the convergence rate of the empirical distribution function of a system of
simulated particles to the distribution function of the solution of (1) in the
case where the interaction kernels b(:,-) and s(-,-) are bounded and Lip-
schitz, and s(-,-) is bounded below by a strictly positive constant; under
additional hypotheses, an estimate is also given for an approximation of the
density of the solution to (1).

In view of treating the case of singular interaction kernels in the future, in
this paper we construct and analyse a stochastic particle system for the
Burgers equation

*v v
e (t,x) — V(t,x)a—x(t,x), (t,x) €(0,T],

V(0,x) = Vy(x).

A% )
(3) ﬂ_t(t, x) = EO’

For this particle system the interaction kernel b(x, y) is discontinuous: it is
the Heaviside function.

We then construct an algorithm of simulation of the particle system. The
error analysis of this stochastic particle method deals with a kernel which is
neither smooth (as in the case considered in [4]) nor singular (as in the case
of the random vortex methods for the Navier—Stokes equation). Considering
the Burgers equation is natural for a second reason: in the numerical
analysis literature, this equation is a common test case for algorithms solving
some nonlinear PDE’s of this type (in particular the Navier—Stokes equation),
especially to test their performances when the viscosity term tends to 0.

The simulation of the particles involves the discretization of a stochastic
differential system. We fix a time discretization step Az of the time interval
[0, T]. Let V,(-) be the empirical distribution function of N simulated parti-
cles at time ¢. We prove the following estimate for the convergence rate in
LY(Q X R)-norm: for some constant C uniform with respect to N and At¢, for
alll <k < T/At,

E[V(EAL) = V0 () iy < ClIVy = Vol + e
N

Here, we suppose that the initial condition V, is equal to a distribution
function. In Bossy and Talay [4], we extend the algorithm and the preceding
estimate to the case where the initial condition of the Burgers equation is
nonmonotone.

We now fix some notation.
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Consider (3). Throughout this article, we suppose that the initial condition,
V,, is the distribution function of a probability measure U, on R:

Vo(x) = [~ Uy(dy).

For such an initial condition, we interpret the solution of the Burgers
equation as the distribution function of the probability measure U, solution to
the following PDE of the McKean—Vlasov type:

V1,37
(4) Jt 2 gx? dx
U-o=Us.

Note that the above PDE is understood in the distribution sense: U, operates
on smooth functions with a compact support in ]0, T[ X R); its nonlinear part
makes the discontinuous interaction kernel 6(x, y) = H(x — y) appear, where
H is the Heaviside function [H(z) =0if 2 < 0, H(z) =1if z > 1].

With this McKean—Vlasov equation is associated the nonlinear stochastic
differential equation

((/RH(x —y)tﬁ(dy))Ut),

(5) dX, = odw, + fH(Xt —y)U,(dy) dt, where U,(dy) is the law of X,,
R
X,_, = X, with law Uj,.

In the stochastic differential equation (5), the interaction kernel is not
Lipschitz. As a matter of fact, the existence and uniqueness of a weak
solution cannot be derived from classical results, and the error analysis of the
stochastic particle method is much more complex than in the Lipschitz case
investigated in [4].

In Section 2 we give a proof of the existence and uniqueness of a weak
solution to (5). In Section 3 we show that the distribution function V, of
the law of X, is the classical solution of the Burgers equation, that is, the
solution given by the Cole—Hopf transformation [15]. In Section 4, we use
the probabilistic interpretation of the solution of the Burgers equation and
the ideas developed in [4] to construct a stochastic particle method. Its rate of
convergence is established in Sections 5 and 6. The Appendix proves some
intermediate results.

The results of numerical experiments can be found in [4] and overall in
Bossy [3]. In particular, they show the excellent behavior of the algorithm
even when the viscosity coefficient o tends to 0. By construction of the
algorithm, the empirical measure of the particles approximates the measure
(0V/dx)(¢t, x) dx and thus the particles are concentrated in the areas where
the gradient of the solution is large.

One can also see the Burgers equation as the Fokker—-Planck equation
describing the limit law of a particle system with an interaction kernel b,
roughly speaking, equal to a Dirac measure (see [29]) instead of the Heavi-
side function. The corresponding algorithm must involve a smoothing of this
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kernel, and its numerical analysis is complex; see [3] for a discussion. This
work is in progress.

REMARK. If the initial condition of the Burgers equation is of the type

x + o
Vo(x) =1— [ Uydy) = [ TUy(dy),
where U, is a probability law, we then consider the equation

oU 1 2&2U

- Z{o{fa - mG ),

— ag
at 27 9x? dx
Ue-o=Us.

If U, denotes the law of the corresponding process, with similar arguments as
above, we obtain that the function V(x, ¢) defined by

V(tx) =1- [ Ugdy) = [ U (dy)

is a weak solution to the Burgers equation; our algorithm and our conver-
gence rate can easily be extended to that situation.

2. Existence and uniqueness of a weak solution to (5).

2.1. Link between (5) and the Burgers equation. In this section, we first
show that the distribution function of the law at time ¢ of a weak solution to
(5), which is unique in law, is a weak solution (solution in the sense of the
distribution) to the Burgers equation. Then, making an additional hypothesis
on V,(-), we will show that this weak solution is also a classical solution.

ProprosITION 2.1.  If (5) has a weak solution which is unique in the sense of
probability law, the law U, of X, is a weak solution of the McKean—Vlasov
equation (4) in [0,T] X R, and the distribution function V(t,x) of U, is a
weak solution to the Burgers equation (3).

PROOF. Suppose that there exists a weak and unique in law solution to
(5). Then, applying Itd’s formula to f(X,), f € C*(0,T] X R) being of compact
support in (0,7) X R, one can easily check that U, is a solution in the
distribution sense to the McKean—Vlasov equation (4) in (0, T[ X R.

Let V(¢, x) denote the distribution function of U, and let V, denote the
distribution function of U,:

V(¢ x) = f_wat(dy) V(t,x) €[0,T] xR,

Vo(x) = fijO(dy) VxeR.
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We now show that V is a weak solution to the Burgers equation. We follow
arguments developed by Sznitman [28].
As 9V /dx = U in the sense of distributions, (4) implies that

ox

d (aV d (a? 9%V Y%
dx at) 2 Jx? dx |’
The distributions

v o? 9%V av
— and — —— -—
ot 2 dx 0x

have the same spatial derivates; thus their difference is a distribution
invariant by a translation on the x-axis (cf. [26]). Thus, for any test function
f(t, x) and for any z € R, one has that

V. o? 92V A%
ot T e VRS

20—'2

if
-/ V(t,x)(—(t,x+z)+——(t,x+z)
[0, TIXR Jt

dtd.
2 9x? X

1

af
V2(t,x)—(t,x +2)dtdx
[0, TTxR 2 ( )336( )

+
o? 92

D) W(t’ x)) dt dx

_ of
= [V(t,x —z)(ﬁ(t,x) +
+I%V2(t, x — z)%(t, x) dtdx.

For any ¢ in [0,T], V(¢, x) is bounded and tends to 0 when x tends to —o
and the right-hand side term tends to 0 when z tends to +« by the bounded
convergence theorem. This implies that V solves the Burgers equation in the
distributional sense. O

Under an additional hypothesis on the initial law U,, we now show that
the corresponding distribution function of the law of X, is the “classical”
solution to the Burgers equation, which can be explicated by the Cole-Hopf
transformation (cf. Cole [7] and [15]):

V(t,x)

(6) /R[(x —y)/t] exp(—(l/(rz)[(x —¥)%/(2¢) + fjlmVo(z) dz]) dy'

fRexp(—(l/(rQ)[(x —y)%/(2t) + /_waO(z) dz}) dt
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We make the following supposition:

(HO) The initial law U, satisfies either of the following statements:

(1) U, is probability measure with a compact support.
(i) U, has a continuous density u, and there exist positive constants M, n
and « such that

X2

Vix|>M, uo(x)snexp(—a?).

PROPOSITION 2.2. Under (HO), the distribution function V(t, x) of the law

of X, is the classical solution of the Burgers equation obtained by the
Cole—Hopf transformation.

The proof is an adaptation of the proof given in [28] for the case where the
initial condition of the Burgers equation is a density. For the sake of
completeness, we give it in the Appendix.

From this explicit representation we deduce an estimate concerning the
first spatial derivative of V.

LEmMA 2.3. If U, satisfies (HO)(G1), then

‘&V I
—(t < ,
ax(’x) 0

L0, TIXR)

where L, depends on o, u, and T. If U, is a Dirac measure, then for any
t €10, T[ one has

L,
< -,
L*(R) \/;

H A%

_ t, .
o2 ()
where L depends on o and T.

ProoF. The proof requires easy computations from the equality (6). O

2.2. Characterization of the law of X,. To get the uniqueness in the sense
of probability law of a solution to (5), we adapt arguments used by Méléard
and Roelly [19] for a similar equation.

We first state a result which appears in the proof of Proposition 1.1 of
Méléard and Roelly [19]:

LEMMA 2.4. On a filtered probability space (Q, F, (%), P), consider the real
process defined by

Y, =Y, +ow + [Cyds, 0<t<T,
0
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where Y, is a random variable independent of the Brownian motion (w,) and
(C,) is a bounded and (%)-adapted process. Then, for all t in 10, T[, the law of
Y, has a density u, which belongs to L*(R) and it holds that

(7 llu 2wy < T

Suppose that the existence of a weak solution to (5) holds. Let
(Q,7,P,(%),(w,),(X,) be a weak solution; let U, be the law of X,. Set

C, = [H(X, ~y)U(dy).
R

Since (C,) is a bounded process, the preceding lemma shows that U, has a
density in L*(R); we denote it by u,. We are going to show that u, is the
unique solution in an appropriate space of the equation

(8) pt=StUo—f0tSts(&—i(ps-fRH(x—y)ps(y)dy))ds vt €(0,7],

where, for any ¢ > 0, g, denotes the density of the law of o w, and where S,
denotes the heat semigroup S,U = g, * U.

The preceding equation is natural for the following reason. By a formal
differentiation of (8), one obtains that

2 2

%W(StUO) - So(a—i(ptfRH(x ~¥)p(¥) dy))

_/Ot%zj_;(sm(a—’;(ps[RH(x = 9)pu() dy))) ds
- %25—;[&% = ]()tSts(a—i(PszH(x — ) ps(¥) dy)) dS}

- %(ptfRH(x =) p(¥) dy).

o,
at

Thus, the probability measure p,(x) dx is a weak solution to (4) as well as U,
(remember Proposition 2.1).

The following lemma characterizes the density of the law of X, as the
unique solution of (8) in an appropriate space.

LemMmA 2.5. (i) For any weak solution (X,) of (5), the density of the law of
X, is a weak solution of (8).

(ii)) For any 0 <t < T, there exists at most one function p, in L"(R) which
is a weak solution of (8) and such that

3C >0, sup | pllz,w <C.
te]o, T']
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Proor. We first show (i). Fix ¢ in (0,7T] and f in C*(R) of compact
support. Set

G(s,x)=8,_.f(x), 0<s<t.
G(s, x) solves the heat equation in backward time:
iG o? 9*G
—_ + JR—
ds 2 gx?
G(t,x) =f(x).
The It6 formula implies that

=0, 0<s<t,

, G
G(t,X,) = G(0, X,) +/()E(S,Xs)dws

+fot%(s’Xs)(fRH(Xs —y)u,(y) dy| ds.
We deduce that
fRf(x)ut(x) dx
= [6(0.)Uy(dx)
+f0t/n@&_(ch(s’ x)(fRH(x —y)u(y) dy)us(x) dx ds
= [ (8.U0)(x) f(x) d

s [ H e =9 (9) dyfu () deds.

An integration by parts shows that
J

/R dx (/RgtS(x —2)f(2) dz)(fR H(x —y)u(y) dy)us(x) dx

d

_fo/Rth_S(x_Z)f(z)ﬁ_x[MS(x)(/[RyH(x —y)uy) dy) dx dz

dz,

x=2z

—/sz(z)sts(a—i[us(x)(fwyﬂ(x - () dy)])

so that we conclude that u, solves (8) in the weak sense.
Let us now show (ii). Let u, and v, be two weak solutions to (8) belonging
to LY(R) and satisfying

3C>0, sup (llu @ + llvllw)) < C.
te(0,T]
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Then, for any ¢ € (0, T], it holds that
”ut - vt”Ll(IR)

[150se(w) [ = )5

“u(0) [ H(x = )0() dy | ds

LY(R)

t 4 x )
<fo 85 * ax(us(x)f_qu(y) Y vs(x)f_ocvs(y) y) L'R) ’
K " )
< || ==e.- X W - ¢ ‘
'/;) (9xgt i) us(x)ffm%(y) Y vs(x)/;wvs(y) Y LY(R) ’
t 2 * :
- u(x u,(y)dy — v,(x v(y) dy ds.
'/;) 27 (t — s)o? ( ),[_w () ( )f—oc () LY(R)

However, one has

0o [ ) dy =00 [ o) ]

0 () [ () = 0 dy = (03 = () [ o) o]
S|us(x)|“us - Us”Ll(R) + C|Us(x) - us(x)l’
where C is a constant uniform with respect to ¢; thus,

4C

t
e, = vl < [ —=llu, = v,l1@) ds.
0 \/277(1? -s)o

As s » 1/Vt — s is integrable on [0, ¢], an application of Gronwall’s lemma
ends the proof. O

2.3. A nonlinear martingale problem. Having supposed the existence of a
weak solution to (5), we have fully characterized the law of each random
variable X,. In this section we show the existence of a weak solution and its
uniqueness in the sense of probability law. A classical method is to pose the
associated martingale problem.

We first fix some notation. For any space E, 2(E) denotes the set of
probability measures on E; x(-) is the canonical process on the space of
continuous functions from [0, T'] to R; for any measure u € .2(R), the differ-
ential operator £ ,, is defined by

a? 9% d
Lwf(x) = ?a—xé(x) + (fRH(x — ) i(dy) a—i(x)-
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A solution to the hereafter nonlinear martingale problem (9), associated
with the operator %, and the initial distribution U, € #(R), is an element &
of 2(C(0,T];R) (we denote by @,, t € [0,T], its one-dimensional distribu-
tions), such that:

@ @, =1U,,
© G Vfe CLR), fx(t) — F(x(0) - [0 "Ze Fx(s) ds, t €[0,T],

is a € martingale.

Suppose that there exists a solution & to the nonlinear martingale
problem (9). Set

C(t, 2) = [ H(x = y)&(dy).

Then @ also solves the linear martingale problem associated to the operator
Z defined by
A 1 _9%f N of
,?f(x) = EO'ZW(:XI) + C(t, :XI)E(.’X)
Thus (cf,, e.g., [16]), there exists a (C(0,7T), Br, @,(F) — (w,)
Brownian motion such that

x(t) =X, + j()té(s, x(s))ds + ow,, @-as.

As the probability measure @, is the law of x(¢) under @, we deduce that,
under @, x(t) is a weak solution to (5). Conversely, if there exists a solution
in the sense of probability law to (5), then @ = Po X! is a solution to the
martingale problem (9).

2.4. Uniqueness of the solution to the nonlinear martingale problem. Let
@ be a solution to the nonlinear martingale problem (9). Lemma 2.5 charac-
terizes the law of x(¢) under @, so that @, = p,(x) dx. This is not enough to
characterize @, but set

C(t,x) = [ H(x =y)p(y) dy.

Note (cf,, e.g., [16], page 327) that there exists a unique solution @ to the
linear martingale problem associated with the operator . defined by
. 1 9% . f
gf(x) = EO'ZW(X) + C(t, x)a—x(x)
As @, =p(x)dx, @ is a solution to this linear martingale problem; thus
@=a.
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2.5. Existence of a solution to the nonlinear martingale problem. We now
construct a solution to the martingale problem (9) as the limit of a sequence
of probability measures of #(C([0, T]; R)).

Consider the functions (H*; & € N*) defined by

0, if x < —1/k,
H*(x)={kx+1, ifxe]-1/k,0[,
1, if x > 0.

Then
Vx € R, lgimHk(x)=H(x)
and, for any k&,
|H*(x) = H*(y)| < klx - yl.
Substituting H* to H in (5), we introduce the differential equation

dXF = odw, + fHk(th —y)Uf(dy) dt where U} is the law of X},
R

Xk , =X, whoselawis U,.
The corresponding interaction kernel (b(x, y) = H*(x — y)) is Lipschitz, so
that (cf., e.g., [29]) the above equation has a unique strong solution.
For a fixed measure u € 2(R) and for any k& > 1, define the operator Z’Z)
by
1 _9%f af
k _ 2 k
T () = 5ot 5 (0) + [ [ =3l | o).
The probability @* := P (X*)"! solves the martingale problem similar to
(9), obtained by substituting ¥ to %, and @} = U}, forall 0 <t < T.
PROPOSITION 2.6. The family (@) is tight.
PROOF. As @* = Po(X*)™!, it is enough to check that there exist strictly
positive constants C;, « and B such that
supE| X} — XF“ < Cp(t — )" VO<s<t<T.
k
We choose @ = 4, 8 = 1 and readily conclude. O
Now we show that any limit point €” of a convergent subsequence [still

denoted by (@*)] of (@*) solves the martingale problem (9). That is, for any f
in CZ(R), one has

(10) Eer| F(x(0) = F(x()) = [Fap f(x(r)) dr|(6),0 < 0= 5| = 0,

0<s<tx<T.
Set

M, = f(x(1) = F(2(0)) = [Far)f(x(7)) dr.
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Thus (10) is equivalent to
[E@’*[(Mt - Ms)‘;b(x(tl)’ S x(tn))] =0
Ve Cpy(R")and 0 <¢; < -+ <, <s.

In fact, we only need to prove that for all &> 0, for all ¢ € C,(R") and
0<e<t, < - <t, <s,

(11) [Eg?“[(Mt - Ms)‘»b(x(tl)""’ x(tn))] =0,
since then
[E@’X[Mt|‘z] :Ma Ve> 0’
so that, as M, is uniformly bounded on Q X [0,T], E [ M, |F] =0 = M,.
Set

M} = f(x() = F(2(0)) = [ s f(x(7) d.

As @* solves the martingale problem associated to Zf), for all functions
peCy(R")and all0 < e <¢; < -+ <t¢, <s,one has that

0= Eo[ (M} = ME)d(x(t1), .., x(2,))]

(12) = [Egk[(f(x(t)) —f(x(s))) d(x(ty), ..., x(¢,))

=B 5(80)) [ o () |

From this equality and the weak convergence of (¢*), one easily concludes
that (11) is implied by

tim £ #(2(00), oo, 2(00) [ [ () H (5 =)V () |

k— o

=B o), () [ [P () HCx = ) (dy) dir |

In order to prove this latter equality, we decompose the first term into two
parts:

o (x(), () [ (e HY (= ) U ) |

(13)

= B[ (x(6). x(0)) 7 (x(0)) [ H (3(7) = ) U () |
=B (x(t). s w(0) [ () [ H(x(0) =)y |

+Ear| b(x(02), 0 2(8,) [ 1(2(2) [ H(x(r) — )& (dy) dr

= Ear| @(x(02),, x(6,)) [ 1(x(0)) [ H(x(7) = )& (dy) dr|
=D, +D,.
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We first observe from Lemma 2.4 that, for any ¢ €10, T']l, U* has a density u*
in L*(R) satisfying [cf. (7)]

(14) bl < 7z

Thus, we have

Clillz-
t L(R)
|D,| 5[ L1/4

S

X \/fRf’z(x)[fRHk(x — y)U*(dy) — fRH(x - y)é’f’(dy)r dx dr.
We observe that
[} e = 0t a) - [ 1= yezan]|
<o [ (1 (x ) - H(x - )02 (an)|

2

+ 2[ [ Ukdy) - fjf’f(dy)]

) 1
[(H"(x=y) = H(x=y)) dy < o,

we obtain that

1 : C
|D,| < ||¢||L°C(R)ﬁ / ﬁdT I F'll e w)

x x 2 dr
ot 12 k _ -
+ Cllgllz (R)‘/:9 \/fRf (x)[war (dy) fim@; (dy)} dx rl/4
From (14), we deduce that for all functions g € Cx(R),

C
(15) (@7, 8 < W”g“LZ(R);

therefore, for all ¢ > 0, ¢ has a density q; w.r.t. the Lebesgue measure
belonging to L*(R). This implies that the distribution function V;*(:) of @ is
continuous, so that V,*(-) converges to V;*(-) everywhere and thus, D, tends to
0 when % tends to infinity.
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Now we consider D,. We again need to introduce a smoothing of the
kernel,

Dy = Eor| b(x(82), o 2(4,)) [ 1(x(7) [ H(x(7) — )& (dy) dr
= Ear | @(2(82), o, 2(8)) [ (2(n) [ HP(x(7) = ) &7 (dy) dr|

+ Egi| d(2(2),- .-, x(tn))ftf'(x(T))[RHko(x(T) — y)@*(dy) dr
(16) . 3 .

- [Eﬂx:q,’)(x(tl),..., x(tn))fstf’(x('r))fRHk"(x(T) - y)@; (dy) dT:
# E] 030, () [F/(5(0) [ B (x(0) = )7(y) dr |
- [E@x[gb(x(tl),..., x(tn))f:f’(x(ﬂ'))/RH(x(T) — y)a@*(dy) dT}.

From (15), we readily obtain that

”q;O“LZ([R) < 1517'

Thus,
2 C
[fR(H(x —y) — H'(x —y))@’f(dy)] S

so that, f being of compact support, one can choose %, uniformly in % to
make arbitrarily small the first and the last differences of (16). Such a k&,
being fixed, the second difference tends to 0 when % goes to infinity as a
consequence of the weak convergence of (€*), since the smoothness of H*®
implies that the functional

C([0,T];R) - R,

2() = d(x(t2), o 2(8)) [ £ (x(2) [ HY(2(7) = )& (dy) dr

is continuous.
Consequently we have proven that &~ solves the nonlinear martingale
problem (9). O

3. Algorithm and convergence rate. Throughout the sequel, we make
the following suppositions:

(H1) The initial law U, satisfies either of the following statements:

(1) U, is a Dirac measure.
(i) U, has a smooth density u,, satisfying one of the following two
conditions: (a) u,() is a continuous function and there exist strictly positive
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constants M,  and « such that
xZ
Vix|>M, uo(x)snexp(—ag);

(b) u, is a function with a compact support and is continuous on this support.

The existence in the sense of probability law of a solution of (5) implies the
existence in the sense of probability law of a solution of

(17) dz, = V(t,z,)dt + odw,, Z,_0 = 2.

Under (H1), Lemma 2.3 shows that V(¢, - ) is a Lipschitz function in x with
a Lipschitz constant bounded from above by L,/ Vt for all ¢ € (0, T'], which
implies the pathwise uniqueness of the solution to (17). Indeed, if (z}) and
(z2) are two solutions, then

1 2 tLo, 2

lz; —z7l < | —=lzg — 27l ds,
0 Vs

so that z! = z? by Gronwall’s lemma.

The Markov process (z,) with the initial distribution U, coincides with
(X,) and

V(t,x) =Ey, H(x —z,).

We now construct our algorithm by successive approximations of the
preceding representation.

3.1. Approximation of the initial condition. Choose N points in R,
(y3,..., ¥, such that the piecewise constant function

_ 1 |
Vo(x) = ';H(x - %)

approximates V,, and denote by U, = (1/N)XY | 8,; the corresponding em-
pirical measure.
_ When U, is a Dirac measure at a given point x,, set y{ =x,. Then
Uy,=U,and V, = V,.

When U, satisfies (H1)(ii), set

inf{y; Vo(y) = i/N}, i
inf{y; Vo(y) =1 - 1/2N}, i

1,...,N—-1,
N.

A first approximation of V(¢,-) is

1 N )
V(t,x) =Eg H(x —2,) = N .=21[EH(x - zt(yf))).
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3.2. Approximation of the expectation. Consider N independent copies
(w)HX_ | of the Brownian motion (w,) and the family of independent processes

(z))N_| defined by
(18) dz} =V(t,z})dt + odw/, z§=yi.
We now approximate V(¢, - ) by applying the strong law of large numbers:

1 X .
V(t,x) = N :ZIH(x - z}).

3.3. Time discretization. For T fixed, define At > 0 and K € N such that
T = K At. The discretization times are denoted by ¢, =k Af, 1 <k <K.
Applying the Euler scheme to the stochastic differential equations (18), one
defines independent discrete time processes (Efk):

(19) B =E +V(t, Z ) At +o(w)  —wl),  Zh=yi.
Thus, at time ¢, (k£ = 1,..., K), V(¢,, ) is approximated by

1 X A
V(t,,x) = N _ZIH(x - E;k)

3.4. Approximation of the interaction kernel. The dynamics of the z'’s
depend on the function V, which is our unknown. Thus, we are led to
approximate V(t,,-) by the empirical distribution function of the particles
that we denote by V, (). This approximation leads to the consideration of a
new particle system (Y,). B

Let Y,! be the position of the ith particle at time ¢, and let U, be the
corresponding empirical measure. Set

_ — 1 X ,
(20) V(%) = [ H(x =00, (dy) = 5 ¥ H(x = Y;)).

We replace V in (19) with this approximation. This defines the dynamics of
the particle system (Yti)fil which can be simulated on a computer:

Yi, =Y+ V,(Y)) At + o Awj,,
1N . _ .
=Y + ¥ ZIH(n; ~Y/) At + o Awj 4,
-

i i i
where Awy, ; = w;,  —w;.

3.5. Convergence rate. We now state our estimate on the convergence rate
of the empirical distribution function to the solution of the Burgers equation.

THEOREM 3.1. For T fixed, let At > 0 be such that T = KAt, K € N. Let
V(t,, x) be the solution at time t, = k At of the Burgers equation (3) with the
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initial condition V. Let Vtk(x) be defined as in (20), N being the number of
particles. Under (H1), there exists a strictly positive constant C depending on
o, U, and T such that, for all k €{1,..., K},

— 1
LR S CllVy = Villow) + CW + CVAt

@) B[V, ) = V,0) N

(22) S%JFC\/E.

The order #(1/VN) for the error in L'R X Q) cannot be improved.
Indeed, it is easy to see that this convergence rate also holds for systems of
independent particles; see [30]. Besides, numerical experiments confirm this
theoretical estimate [remember that the exact solution V(¢, x) is explicitly
given by (6)]; see [3].

REMARK. If the initial law U, is a Dirac measure, then ||V, — VOII Lwr) = 0.
In the other case, one can prove (see [4]) that [V,(-) — V(DI @, converges
with the order ﬁ((l /N)ylog(N) ) Therefore, (22) is an immediate conse-
quence of (21).

3.6. Propagation of chaos. Consider N particles which at time 0 are
independent with law U, and follow the dynamics

. 1 X . , .
dXiN=—1Y% H(Xt"N —Xg’N) dt + o dw,.
N o
In this section, we prove the propagation of chaos for this system of particles.
The propagation of chaos property explains the convergence of the algorithm:
when N goes to infinity, any finite subsystem of these particles tends to

behave like a system of independent particles, each one having the law &
defined in Section 2.4.

THEOREM 3.2. Let P be the joint law on (C(0,T];R)YN of the particle
system (X V,..., XN'N). For any k € N*, for any continuous and bounded
functions f1, ..., f,: C({0,T];R) — R, one has that

k
lim (PY,fi®-ef,0l-e1l) =[[(ef),
N— +o i=1

where @ is the solution of the nonlinear martingale problem (9) [ the sequence
(PN) is said “@-chaotic”].

ProOF. To our knowledge, our context does not satisfy the hypotheses of
the systems studied in the literature. We adapt arguments appearing in [19]
or [29].

The &-chaoticity is equivalent to the convergence of the laws of the
empirical measures u" = (1/N)ZV , dxin to 8, (cf. [1] or [31]).
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When the kernels are smooth, the argument is as follows. First, one shows
that the sequence of the laws of the uV’s is tight. Let II5 be a limit point of a
convergent subsequence of {Law( u™)}. Set

Fm) = (i, A(x(0) = A(x(5)) = [LiuF(5(0)) )

Xg(x(81),.--» x(sk))>,

where L, is asin (2), f € C}(R), g € C,(R*),0 <s; < - <5, <s < T and
m is a probability on C([0, T']; R). Then one uses two arguments:

(a) First, one checks that lim _, , . F[F(u")]*> = 0 by using the dynamics
of the particles [see (23) below];

(b) Then, one uses the continuity of F(-) in #(€(0,T];R)) endowed with
the Vaserstein metric to deduce that the support of I17 is the set of solutions
to the nonlinear martingale problem (9) with L, ) defined as in (2) instead of
,‘Z( €y One proves the uniqueness of such a solutlon which implies that

= 8.

In the case of the Burgers equation, step (a) does not need to be changed:

lim E[F(u™)]*

N-— +x
N . 2
< I XlN — Xi’N — [z v XPN)do
(23) <N—1>n-:oo NZ (l—zl{f s ) j; (Me)f( 0 ) })
N t
= i E dW‘
i gge S [
= 0.

However, the Heaviside function being discontinuous, F(-) is discontinuous,
too, and we cannot proceed as in step (b). This leads us to use the explicit
form of F.

Let vV be defined by

N
v = N4 Z S(xiN, x4 N XEN xLN).
N* k=1

First, we note that the sequence of the laws of the »"’s is tight; indeed, a
sufficient criterion due to Sznitman [27] is the tightness of the sequence of
the intensity measures IV defined by ( IV, ) = K vV, f), which by symmetry
reduces here to the tightness of the laws Py ~. This latter fact is implied by

EIX Y — XDV < Cplt — sl

Let I1” € 2(2(#(0,T];R)*)) be the limit of a convergent subsequence of
{Law(»")} which we still denote by {Law(»" )} throughout.

We denote by »! the first marginal of a measure v € 2(Z([0, T']; R)*) [for
all Borel sets A in (0, T];R), »'(A) = v(A x #(0,T];R) x #(0,T];R) X
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#([0, T]; R))]. Then we make the following assertion:
LEMMA 3.3. [T"a.e,v=7v'® v ® v ® vl

Proor. We observe that
N

<VN’ fl(xl)fz(xz)fs(xs)f4(x4)> = Nt / :1f1(X.i1’N)"' f4(Xf4’N)

:<VN’1a f1> "'<VN’1’ f4>,

is the first marginal of »”. Consequently,

4 4 2
(4 L) - T =0

from which, for any set of functions ( fj, j=1,...,4) in a set /# of measure
determining functions on Z([0, T']; R),

4 4
/ [< foxj)>— I1(»". 1)
P(E(0,T]; )Y j=1 j=1

As % is denumerable by definition, one has 3.7, [I"(#) = 0, Vv €/, YV f, €7
for j € {1,2,3,4},

where N1

E

2
dIl”(v) = 0.

4

<V,Jf[1;g<xj>>= [1(v" ).

j=1
As 7* is a set of measure determining functions on #([0, T'];R)*, it becomes

M-ae,v=rv'®vier . O

Coming back to the proof of Theorem 3.2, let us show that
lim E[F(u™)]”
Jim E[F( )]

[@(%([0, T1; R)“){f%([o,T]; R)*
(24)

Xg(xil, ey x;p) dv(xt, x2, 23, x*) ) dII*(v).

An easy computation shows that, for some functionals  and ¢,
2
e[ F(u)’]
N

1 N ‘ 1 .
=z L EN(XL XY+ o ¥ OEg(XL XN X))+ Cy
i k=1 ik,l=1

(25)
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with
e, T g A (D)
YoON' ik, 1=1"s"s €0, T];R)* ! ’ ’ A

XH(x3 — x;‘)f’(x;”)g(xfl,..., x? )

r

XdP(X.i,N7X!',N,X.k,N’X_l,N)(xl, ceey x4) do dy.

Let us look at the convergence of (Cy). Let 7V be defined by

N
N ._ _ . . .
T N+ .kzl 18(ng”,ngN,kavN,Xyl'N,X;iN ..... XLV, XEN, L XEN)
ij, k1=

and let @), . . be the measure on R*?** defined by

Q) ys,,...5,(A) = E(7V(A)).

3815y

S

,,,,,

The convergence of (a subsequence of) {Law(»?")} implies the weak conver-
gence of @', , ., and the limit measure on R*”** is defined by

3

4 .1 1,3 3
v Xy Xgsenns Xy 5 X xs)

PR N

/ f lA(x‘}, xp, x
P(Z(0,T]; RH'Z(0,T];R)*

xdv(xt,..., x*) dIT*(v).

This probability measure has a density w.r.t. Lebesgue measure since, for any
smooth function ¢ of compact support in R2P**,

N
— : i, N i, N k,N I,N i, N i, N
=|lim — Y E¢(X;N, XN, XPN XN XEN X0V,
i, J, k

k,N k,N

< C(T, g, YsS1s---s Sp)||¢||L2(R2p+4).

[This can be proved by using Girsanov’s transformation and the boundedness
of the drift term of the stochastic differential system which describes the
dynamics of (X*V, X/ N X* N X!’N)] Thus, the function p defined on R2P**
by
p(xt, ..., x?P+*)y = H(x' —x2) f'(xV)g(x®,..., xP%)
X H(x® —x*)f'(x®)g(xPT5,..., x2PH%)
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is continuous @, , , ., -a.e., which implies
Y »

1 N

N* ik, 1=1 %([O,T];R)“H(xel - xg)f’(xgl)g(xil, o x;”)

X H(x3 — xf)f’(xfj)g(xfl, e xfp) dPxin xin xin xim(x, ..., x*)

Therefore, we have

t [t ,
Cv gf(%([o,T];R)‘*)/s '/; f%([o,T];R)4H(x91 —x)f (x;)g(x;“ Y xip)
X H(xs - x4)f’(x3)g(x3 . xfp) dv(x', 22, x3, x*) d6 dy dI1*(v),

Y Y §17°°

and by Lemma 3.3,

Cy— /
P(Z(0,T];R)*

t
H(x5 —x3)f"(x5) do
'/97(%([0,71];[}@2),/; (xG xg)f(xﬂ)
2
X[, an ) dvi(sh) ®dv1(x2)} dIT(v).

Coming back to (25) and for the first two terms of the right-hand side using
arguments similar to those developed for C,, we deduce (24). Combining this
result with (23), we have, I1*-a.e.,

Fxb) = F(x) = 5 [F (x3) do

f%([O, TI;R)?

(26) ~ [‘H(x} —xg)f’(x;)del

xg(al,..., xl Jdvl(x) ® dvi(a?) = 0.

Then, (26) and the uniqueness of the solution of the nonlinear martingale
problem (9) imply that »! = &, which is equivalent to

. N _
Alflinw(Law(,u ) = 8. ]

4. Proof of Theorem 3.1.

4.1. Notation. In the sequel, C will denote any strictly positive real
number independent of N and At; typically it will depend on o, T and U,.

We also will denote by [E,f(z,) the expectation of f(z,) when z, has the
distribution u, where (z,) is the Markov process solution to (17).
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4.2. Preliminaries. As in the case of smooth kernels (cf. [4]), we decom-
pose the error at time ¢, (V(¢,,-) — V, (-)), into three terms:

E|V(ts %) = V() s
S”[EUOH('X N Ztk) o [EUOH(x - Ztk)”Ll([R)

1 N
(27) E|[Eg, H(x —2,) — NZ H(x—zjk
i=1 LY(R)
1 13
ZH x—ztk)— NZH(x_Ytk
i=1 LY(R)

In the right-hand side, the first term corresponds to the approximation of
the initial condition V, by the piecewise constant function V,. The second
term corresponds to the introduction of the independent processes (z}) and is
a statistical error. Estimates of these two terms are obtained by Bossy and
Talay ([4], Lemmas 2.4 and 2.5), where the case of smooth interaction kernels

is studied:

(28) |Eu, H(x = 2,) = Eg, H(x = 2,) | ney < CIIVe = Vol
1N i C
(29) E|Eg, H(x —z,) —Ning(x—ztk) LI(R)SW'

The proofs of these two inequalities use the following estimates on the
density of the transition probability y(¢, x, y) of the process (z,(x)):

1. If U, satisfies (H1)(ii), Lemma 2.3 shows that V is Lipschitz in x (and
similarly we can also show that V is Hélder in time with exponent 3), so
that one has the following estimates (cf. [9], pages 139-150 or Chapter 1 of
[8]): for any T, there exist strictly positive constants C, and C; such that,
Vte[0,T], Vx,y, Vo> o,

C, x—y)?

(30) |7t(x’y)|ﬁﬁexp(—%),
d 1 x—y)°

(31) a7 Texp(‘%)-

The proof of (28) is based on (31), and the proof of (29) is based on (30) (see
[4D.

2. If U, is a Dirac measure, there is no initialization error and we just need
to prove (30) to obtain (29). In this case, Friedman’s hypotheses to get (30)
are not satisfied [the drift coefficient of (z,(x)) is V, which is not smooth
enough]; nevertheless, we can prove the following lemma:
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LemMmA 4.1. Under (H1)Q), if v,(x, y) denotes the density of the law of
z,(x) (¢t € (0,TY, then there exists a constant C, only depending on T and o
such that

Co

Y (x,y) < 2

(y-x)”
PN Tare )

2wto

The proof of this lemma, postponed to the Appendix, uses a representation
formula for y,(x, y) given in [10].

Thus, it remains to treat the third term of the right-hand side of (27),
namely,

LYR)

1 XN 1 X ,
(32) [EHN ElH(x —z ) - Nizle(x -Y/)

When the interaction kernel is smooth (cf. [4]) one can separately treat

1N . 1 N .
" Ning(x - Ztk) - Ning(x _Ztk) LY(R)
and
E ! H z! L 5 H Y/,
Nigl (x - Ztk) - Nizzl (x - tk) Ll([R)‘

Here, as the kernel is equal to the Heaviside function, this method does not
work and a more complex analysis must be developed. The rest of this section
is devoted to the proof of the next lemma.

LEMMA 4.2. There exists a constant C > 0 only depending on V,, o and T
such that, forallk =1,..., K,

H—ZHx—zt)—%iiH(x—Yti) sc(m+i).

VN

LYR)

In the proof of this estimate we use that for any ¢ € (0,T], V(¢,-) is
Lipschitz in x with a Lipschitz constant bounded from above by L,/ Vt,
which is true under (H1) (cf. Lemma 2.3). In the case where U, is smooth,
some steps of the proof can be simplified, but the convergence rate is not
improved.

4.3. Proof of Lemma 4.2. Observing that

(33) Va,beR, [|H(x—-a)-H(x-b)|dx=la-bl,
R
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one gets

N 1

EHi Y H(x—2) -~ ¥ H(x - ¥})

N
— Y [Elzi —
N, N, g' lzt’“

2

Ll(R)

Our objective is to bound (1/N) X Elz; — Y/ ']),_, g from above.

We mention that time discretization of nonlinear diffusion processes in
McKean’s sense has also been studied by Ogawa [20, 21], but in a spirit
totally different from ours. First, Ogawa’s objective was not the analysis of a
stochastic particle method for the McKean—-Vlasov equation. Second, in the

case under study, Ogawa’s approximate process is recursively defined from
k =0 by

1 Mo )
i1 =& + A Y H(& — &AL + Awy,

0i=1

where the &/’s are independent of ¢, and have the same law (on a high-
dimensional product space) as ¢,. Thus, the simulation of (¢,) using his
approach does not seem tractable.

Observe that

. . . . ty,
Elzf, - Y/ <Elzj, - Y | +E|[

tp-1

V(s,2l)ds — AtV

tp—1

(¥i..)

(34) < [E|szi1 - Yt’ | + [Eftk V(tk—lﬁ Ztik,l)|ds

lp—1

+ACEV (1.2l ) = Vi, (V)]

For all ¢+ > 0, V(¢,-) is Lipschitz with a Lipschitz constant bounded from
above by L,/ Vt . Therefore,

ds

Ef* [V(s.2) = V(tin2i, )

k-1

[Ef —V(ty 1, 2l)|ds

tp-1

+ [Ef tk—l? Z;) - V(tk—l’ ka_l)

tp-1

(35)
ds

E|z¢

S

<[Ef |V(s, 2 )—V(tk,l,zé)|ds+ftk

— 2zl |ds.
71
tp—1 th-1 Vir-1

When u, is smooth, one can bound E[* [V(s,2}) — V(t,_,, 20l ds from
above by using the Hélder property of ¢ — V(¢, x); in any case, under (H1)(1)
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or (H1)(ii), one can apply Lemma 4.1 [respectively (30)] and get

Eftk |V(s,2l) = V(t,_1,21)|ds

tp—1

scft’“

lp—1

1
< Cf" By [|H(x—2) ~ H(x 2, )| - dvds,

1
'/[;q{lv(& x) - V(tkfl, xnﬁdxds

from which, by (33), one gets that

Ef* V(s 20) = V(ty_y, 20)|ds < '[kE%MS—z%Jd&

tes bh-1 Tths
As
Elz! — 2 |<At+ oElw! - w] |
and
Ey,lz, — 2, | <At + oElw, —w, |,

the inequality (35) becomes

¢ i i c Lo
[E/tk:|V(s,zs) ~V(ty1, 2l )|ds < (\/tk_1 + - (A2 + o At3/2)
CAt3/2
< ,
tr-1

where C is a constant depending only on 7, ¢ and V,. Coming back to (34)
and using again that V(¢,_,, - ) is Lipschitz, one gets

. A L, C A¢3/2
Elz! —Y/il< |1+
k k

| +

At)[EIz,fk1 — thﬂ

b1 tp-1

+ At [E|V(tk—17 Yti,l) - Vtk—l(Ytifl)

b

from which comes

Elz;, -,
k-1 L, A o CAe3?
< 1+ —At)[Elzgt—YA‘tlJr

=1 th-1 k-1

+At [E|V(tk71’thefl) N ‘_/tkfl(thzfl)
k-1l-1 LyAt | [ CAt3/2

0 i 7 i

+ Z ] +At IE|V(tk*l’Ytk4) _Vtk—l(yvtk—l)| '

-2 j=1 bh—j br—i
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Forallle{2,...,k — 1},

-1 L k-1 L At
TT(1+ — At < exp( 2
= Vi j=k-1+1 VJ AL
< exp ftk ﬂols < exp(2L \/T)
B lp—1+1 ‘/g B 0 .
Therefore,
Elz; — Y/

< exp(2 LO\/T)

k-1 CAt3/2

E-1
X |Elzy, — Y3l + ¥ AtE|V(2,Y) - V()| +
-1 -1 Vi1
As z) =Y/, one has that F|z}, — Y/,| < A¢, so that

[E|ka - Ytz| <exp(L,T)

Ly

k-1
At + ZZ ALE|V (2, Y1) = V,(¥))
=1

For k=0,...,K set

1N o
(36) By = 5 ZEV(6.Y) = V(%)
Then,
1y , k1
NZ[ﬂz;k—Ytgsc(ZAtEﬁ\/g\/E), k=2,...,K,
i=1 =1
(37) 1N

Z Elz), — Y|l < At,

where C is a constant depending only on 7', o and V.
Below (Lemma 4.3) we will prove that there exists a constant C depending
only on V,, T and o such that, for any £ =0,..., K,

1
38 E, < C|V/At + —|.
3 el - )
Assuming this result, (37) becomes
1y ) 1
(39) Ni;[Elzt‘k - Y/l < C(\/At + W)

Thus, Lemma 4.2 is proved. O

LEMMA 4.3. There exists a constant C depending only on V,,, T and o such
that, forany k = 0,..., K,

1N _
(40) Ek=ﬁ'§l[E|V(tk,Y) ACAE

s o )
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Proor. First note that, when U, is a Dirac measure, then V, = V, and
thus, E, = 0. When (H1)(ii) holds, by definition of the (y{)'s one has

~ Z |V(0 zb) — Vo(Y4)]

(o) - s - ) o2

Now fix k {1, ..., K} and decompose E, into three terms:

+|V,

1N , 1N A A
By LEV(YE) - D H(Y - V)
1N .
< LEV(. ) - V(. 2)
i=1
1N 1N
ty LEV(o2) - g D H(E - #1)
1N |1 X 1N
(41) ty LE ﬁjgﬂ(z:k — ) - NEH(Y,; - Y/)
L N
= \/% thl[HZtlk _YtZ|
1N 1 X
+NL§1[E V(ty,2i,) - Njng(ztk —2})

1 . . . _
tr L EH(z =) ~H(Y, - Y5)].
i,j=1

We now use the following arguments:

(a) We have just seen [cf. (37)] how we can bound (1/N) XN [Elztk - |
from above in terms of the E;’s (I = 0,...,k — 1). Note that we cannot use
(39) since we use (40) to get it.

(b) In the next subsection (Lemma 4.4), we will prove the following upper
bound for the second term of the right-hand side of (41): there exists a
constant C, depending only on 7' and o such that, for all # € [0, T'] and any
i=1,..., N, one has

(42 EV(t,20) — = X H(si — 2)| < —
t,z!) — — 2zl —2z]) £ —.
t Nj:1 t t m
(c) Set
1 N A 1 XN
I — [ J —_ l J
F, e MZZIE H(z} —2i) NEIH(Y Y/)
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In the next subsection (Lemma 4.5), we will prove that there exists a
constant C, depending only on 7', o and V|, such that one has

"y L5 )

1 k-1

C\/E-FN"'Z;Q 7

(43)  F, < fork =3,...,K,
C(\/E-i- %), for k =1,2.

Assume the above estimates; for £ > 3, one then has

C
‘/_(ZAtE +‘/E\/_ +W
1 k-1
Cm+ﬁ+l§2 b= 4 \/7q21E

Besides, as Elzi, — Y| < At and E|z},, — Y4 ,,l < 2 At, the inequalities
(42) and (43) imply that E, < C(YAt + 1/VN) and E, < CW/At +1/VN).
Thus,

k—l -1
E, E+Z E+Z ZAtE
zl\/_k \/ 5 Vi tn/—l
1
+C|VAt + — |, *k=3,...,K,
Vae «zv)
E ! E, < C|VAt ! E, < C|VAt !
0= SN 1 < ¢ ik 5 < ¢ vk

where C is a constant depending only on T, o and V.

We are now in a position to prove (40).
For all ¢t € [0, T'], define the function &(¢) by

K-1
e(t) = Z l[tk,tkﬂ)(t)Ek’ e(T)=E
k=0

This function is measurable, positive and bounded by 1 [remember the
definition (36)].
The function s — 1/ /t, — s being increasing on (0, £,), one has that

k-1 At

ty ‘9(3)
——F < ———ds.
Z Z, l fo S

1-2 Vtr — by =8
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The function s — 1/ Vs Vtr — s being decreasing on (0, ,/2) and increasing
on (¢,/2,t,), one has that

k 1 At k—1 At
AtE < S dS ——
lzv ’51\/—1Z ! fg() l2Vtk_tl\/E

ds < 4/tka(s) ds.
At

<

t t 1
_/Oa(s)ds/o ——tk—sx/;

Thus, the function &(#) satisfies

a(tk)<C(\/_+ N ftk (‘/_ ‘/t +1|e(s) ds.
k
We conclude by applying Gronwall’s lemma
1
T) < C|VAt + —|. |
#(T) (“_ m)

4.4. Technical lemmas. We now prove estimates (42) and (43).

LEMMA 4.4 [Proof of (42)]. There exists a constant C depending only on T
and o such that, for all t € [0,T] and for anyi =1,..., N, one has

E

A 1 X _ )
V(t,z}) - N ‘Z1H(Ztl -z])| < =
=

Proor. Forie{l,...,N}and ¢t €[0,T] fixed, consider

E

. 1 N ) .
V(t,zg) - 'ZlH(Ztl - 2{)
-

s[E|Vtz

Y H(z - 2))

Let us first treat A.
If U, is a Dirac measure, then U, = U, and A is 0; if (H1)(ii) holds, then
we can easily use the arguments of the proof of Lemma 3.1 in [4] to prove

V(£ %) = g, H(x = 2)| < C[Vo() = Vu()
By definition of V,, it follows that

L“(R) Vx S R

A 1
< —.
- N



CONVERGENCE RATE FOR WEAKLY INTERACTING PARTICLES 847

Now consider B:

1N ‘
El r (EH(x = 2{)|.—.i — H(2 — 2]))
Jj=1
1 X 2
= vz L EEH(x = &)y — H(2] = 2]))
j=1
1 N
+— ¥ E[(EH(x - 2])|,—.; - H(2 - 2]))
k=1
Jj*k

which ends the proof of the lemma. O

LEMMA 4.5 [Proof of (43)]. There exists a constant C, depending only on T,
o and V, such that, for any k € {3,..., K}, one has

1 NN ‘ . , .
Fy= 52 & L E[H(z, ~ =) - H(Y, - ¥])
i=1j=

1 k-1 At At -1
sC\/E+N+ Y — El+—tZEq
=2

Fork=0,F,=0andfork=1,2, F, < C(/At + 1/N).

PROOF. As z{ = Y{, it is clear that the left-hand side is 0 when % = 0.
When £ =1, Y/, = z;,; thus, for i #j,

[E|H(Zit - Zit) - H(Eét - Eit)|
< E|H (24, — 2{,) — H(zi, — 24,)| + E|H(2L, — 2{,) — H(zL, - 2,)|.

Integrate w.r.t. the law of z{, and apply Lemma 4.1 or (30) and use (33):
A . . A C A .
E|H(z%, —2{,) — H(z, — 2{,)| < [EfRE|H(zgt —x) — H(zi, — x)|dx

c
< E[ﬂzit — thl < C\/A_t
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Besides, for i # j,
E|H(z4, — 2{,) — H(zi, — 2i,)]

(x —2{,) — H(x — 2{,)|dx < CVAt.

1
<Et| ———|H
f RV2mo? At |
Thus (43) holds for 2 = 1 and, similarly, for 2 = 2.
Now fix &k €{3,..., K}. The difficulty is to find the appropriate relation

between the left-hand side of (43) and the E’s. '
Forall x €eR,i=1,..., Nand [ = 0,..., K, define the process (z/''(x)) by

(44) 2bl(x) =x + j:V(tl +5,2z0!(x))ds + 0(w§+tl - wtil),

te[0,T—1¢].
Then

E[H(Y; - Y]) - H(z, —2],)| = F[H(Y; - ¥;}) = H(2};°(%) = 2],°(+9)) .
from which

E[H (Y - Y)) - H(z, - 2],)
) — 2V )

i, k—(l+1 ' _ ,k—(+1 j
_H(Z(lHl)(At )(Yt;,(lﬂ)) Z(Jl+1)(At )(Ytjk,(lﬂ)))"

k-1
(45) < ¥ E|H (20 (Y
=0

Fix [ and i # J:
|H (=% ) — =17 )
—H(zik (v ) - (v )]
<[ (et (v) — 2 (7))
—H (b (V) — k()|
E(i (v - k4 ()
~H(zik (v - (v )|
=: A + B.
We first bound EA from above.
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Let () be the o-field generated by (w;, 1 < i < N). Then, denoting by Aw;
the quantity w;,, — w(,_1)r;, One has

EA = E[H(2 (V) - 20 (vE )

—m (=i (V) - 2t )|
) =zl (Y )
~H(=i (V) — it ()|

H(zf’A";’l(Yi + AV, (Y ) A

bh-+ 1) e+ )\ " th—a+1)
_ohk-l(yJ
27 At (Ytk,l))
—H(20 Y AT (Y )+ Awg
e+ 1\ " te—a+1)

LAt tp—(+1)
_ o k=(U+D [V
Z{l+1) At (Ytk_am))‘-

Let g,2,,(-) denote the Gaussian density of mean 0 and variance o ? A¢.

i Lk=l(yJ b=+ (yJ i
The random Vs.n".lables_ 2 (Ytk:l) and zj;/ (7Y, ) are independent
of Aw}_,. In addition, z/J:"!(x) is independent of Aw] _,. Therefore,

EA=E[g,qu(2)|H(=i (¥

e+

= EE%%-q+1

H(zjd (Y]

tp—1

= EE%%-a+v

7 i
+ AtVtk—(zH)(Y%—(zu)) + 2)

_ j,k—l( J )
ZlAt Ytk—z

~H (= (Y 30V (V) +e)

th-+1)
— oL k-(U+D[yJ
2+ 1At (Kk,(HD))‘dZ'

Remember that y/**(x, - ) denotes the density of the law of z%*(x) defined in
(44). As i # j, it becomes

EA=Ef[H(y 247 (¥,)) - Hy — 250, )|

Lh-+1) L\ " th—+ 1)

XngazAt(Z)‘YZiyAliil(yaYi + AtV (Yi ) + z) dzdy.

We apply Lemma 4.1 or (30) and get

4to?

. C x—y)?
(46) v (x,y) < ﬁexp(—ﬂ)-

Tto

Thus,

— C

i, k=1 i i
/gozAt(z)ylAt (y’yvtk—(Hl) + At‘/tk—(Hl)(Ytk—(Hl)) + Z) dZ S t °
R Ve
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Finally, using (33) once more, we get

(47) FA <

C
a \/tl+1

To bound E B from above, we follow the same way and obtain

GE=L(vi Y _ i k-(+D(yi
[E‘ZZM (sz,,) Z{[+1)At (Ytk,(m))

C . ; ‘ )
EB < Ef —— (=i 1(v ) - ) - B2k L) - y)|dy
(48) C A
< S Eeft (L) - 2l (V)

From (47) and (48), we get

]| H (=i () - =)

_ i k—(+D(vi S Lk=Ad+D (v
H(Z<l+1w (thz”)) Z{l+1)At (Ytk,am))‘

(49) C

i k=1(VJ \ _ shk—(+ (v
= \/t_ ([E‘ZZJM (Ytjk,l) Z(Jl+1)(At )(Ytjk,(,ﬂ))
I+1

+E

).

In Lemma 4.6 we will prove that for any i = 1,..., N and for any [ =
0,...,k =3,

ik=l(yi \ _ S k—(+D(yi
21 At (Ytk,l) Z(+1)At (Ytk,(,m)

i k=l(yi \ _ yik—(+D(yi
[E‘th (Ytk,,) Z(+1)At (Ytk,(m))
v,

tk—(zn)(Yti—(zﬂ)) - V(tk—(l‘*'l)’Yti—(Hl))
CA E—(+2) ) _ )
— | x aevle,v) -7 (%)

Vie-a+1 | ¢=1

We will also prove that, for [ =%k —2and [ =%k — 1,

<CAtE

(50)
+ VAt |.

—+

(1262 (Vi ao) — 26 ()| + B3 (V) — 25°(54)) < €.

Using these estimates in (49), we get for all € {0, ...,k — 3},
B H (= (Vi) 27 (vE)

_ i,k—(l+1) i _ L k=(+1) J
H(Z(l+ 1At (Ytk—<z+1)) Zi+1)At (Ytk—(zﬂ))) ‘
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CAt
<

E

VvV Jj _ J
Vtk—(zﬂ)(Ytk—(zﬂ)) V(tk*(lJrl)’Ytk—(ZH))

tl+1

\Va i i
+ [E‘ ‘/tkf(l+1)(Ytk—(l+1)) o V(tk*(l+ 1> thk—(l+l))

At k—(1+2) . _ '
Y ( Py E|V(t,.Y)) - V,,(¥7)

At k—(1+2) ' _ ' At
+—'—tk(l+1)( z E[v(e,, v) = V(Y +—tk(l+1)}'

For [ =k — 2, one has
E|H(2i2(Yia) — 202 (Yia)) — H(20' (V) = 27(Y4)))]

C At
< CVAt.

Vir-1

For [l =%k — 1, one has

B[ H (2" (Y,) — 2 (Y4))) — H(2), - 21

<

C
< —— At < CYAt.

N

Thus, for £ > 3, using the definition of E, [cf. (36)], we get

1 N N 4 . 1N _ .
— FlH(z, —2{)—- —= Y H(Y} - Y/
N2 i—1j-1 ( 173 tk) Nj:l ( ty tk)
k=3 C At At E—(1+2) ‘/E
<CVAt + Y — E, i1t 77— Y E, + ———
1=0 Vti+1 \/tkf(l+1) g=1 \/tkf(l+1)
1
+—.
N
Observe that
k-3 Ag3/2
)y
=0 VAt(L+ 1) yAt(k — (1 + 1))
) A3/2
=X
=1 VIAt/At(k —1)
[k/2] A#3/2 k-2 A23/2
< X + Y
-1 VEAE AL (R — [R/2])  (h/2141 VAL([R/2] + 1) JAL(k — 1)
< At + — dx < 4/At .
\/At(k - [%k/2]) ‘/At([k/Z] + 1) fo Vx
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We deduce that, for £ > 3, we have

N N

1
N Lt

) . 1
H(zj, —2,) - +

M=

H(Y, - Y;)

j=1

k=3 (At At E—+2) 1
< Y —{E g+t ——= 2 E, | +CJ/At +—.
1=0 Vs Vie—a+1  ¢-1 N

The inequality (43) is proved. O

LEMMA 4.6 [Proof of (50)]. Foralli=1,..., Nand foralll =0,...,k — 3,
one has that

E

i, k-1 _ L k—(+1)

2 At (Ytk l) 2(+1)At (Ytk (Hl})
i _ i

‘/tk (z+1>(yvtk—<z+1)) V(tk*(l+1)’Ytk7<z+1))

C At kE—(+2) _ '
———| X atEv(t,.¥}) -V, (¥))
\/tk—(l+1) q=1 oo
Forl=Fk —2andl =k — 1, it holds that
(52) ( (thm) Ztkll(YAt | + [E|Ztk1(YAt) - Zti,;o(y(i))

where C is a positive constant depending only on T, o and V,,.

<CAtE

(51)

) < CaAt,

Proor. We have already noticed the strong uniqueness of the solution to
(17):forall k=0,..., Kandi=1,..., N,

zt+At(x) = zl k+1(23’tk(x))-
An easy computation also shows that
(53) Elzi*(x) — 2% ()] < exp(Lo2VT )l x — yl.
Thus,

ik—l(vi _ SLk=(+])
[E‘zlAt (Ytk,l) Z([+1)At (Ytk (M))
- k-1 k-1 E-(+1
[E‘Z;At Yti Z) 20, (Zit ( )(Ytk (Hl)))‘

Lkl _lkl Lk(l+1)
(Ytk ) =zl (v, )|

< exp(L 2\/_)

(54)
= EEZ%-.

. 22 k- (z+1>(

tk ! ty - (z+1>)
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We then obtain (562) from

E|Yy, - 210(y5)| = [E‘AtVO(yé) _ fO“v(s,zg(yg))ds < At

and

E|Yi,, — 201 (V)] = [E‘At V(YY) - fOAtV(At +s,20Y(Yy,)) ds| < Ae.
Now, for [ €{0,...,k — 3},
AR LA
S AN
At - ;
) [T V{tmey s 2T ) ds
<AtE ‘_/th—(z+1)(yvti—(z+1)) o ‘/(tk*(l+ 1)’the—(l+1))
+ [EfO“ V(o qon + 5, 200007 )
_V(tk*(l+1)’Ytif(z+1)) ds.
As V is Lipschitz, we get
[E‘[()At V(tk*(Hl) ts, zé,ki(Hl)(Yti—(zn))) B V(tk*(”l)’thz—(zn)) ds

At . ,
JR—(1+1
< [E/; ‘V(tk_(l“) + s, z0 k¢ )(Yt;,m))

i, k—(1+1 i
—V(tk,(pr])az‘: ( )(Ytzf(Hl)))‘ds
At LO

o Voi-an
<E Al Vit + 8, zb kDY)
< o k—(+1) »%s e+ 1)

i k—(+1 i
—V(tk,(z+1)7zé ( )(Ytzf(zu)))‘ds

L
0 At(At+a'\/E).

Vi-a+1

+ E

i,k—(l+1)( i )_ i
Zs Ytk—(1+1) Ytk—(zﬂ)

+
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We introduce the random variable 2;’]"_(“1)(2&7(“1)) = z!

TRt e s
At
[Ef ds
0

i, k—(+1 A _ i
V(tkf<1+1>+3’2§ ( )(KL(M)) V{tiaon Y.

At . .
JR—(1+1
= [E'/(-) ‘V(tk_(“l) szt )(Ytz—uu)))

—V(tk,(lﬂ)+s,zi’k*(”1)(zi ))‘ds

s te—(+1)

At ; '
- [E'/(; ‘V(tkf(lJrl) +s, Ztk—(zn)*s) N V(tk*(lJr 1) Ztk—(l+1>+s) ds
At i k— i
- [E/o ‘V(tk—(lﬂ)’zé’k (Hl)(’ztk—wl)))
_V(tk—(l+1), zé’ki(Hl)(Yli—(Hn))‘dS
L,
+ ———— At(At + o V/AL).
Vie-a+1
Using the fact that V(¢,-) is Lipschitz, (53) and (46), we get
At ih— i i
[E'/(-) ‘V(tk—(l+1) + s, Zs’k (Hl)(Ytk—(Hl))) - V(tk—(“'l)’Ytif(Hl)) ds
C 4 .
< — At [E|Ztl - Kl
\/tkf(l+1) E—(l+1) k=(l+1)
+At|[EH— — By, H(x - |—/C—dd
/0 fR Uo (x Ztk—(lﬂ)”) Uo (x Zt’“““)) th-a+1) o
C
+ —=——— At(At + oV/A7).
Vik-a+1
Applying (33) yields
At i i i
[Efo V(tk—(z+1) +s, Zé’kf(Hl)(Ytlkfmu)) - V(tk*”l)’Yt;f(HD) ds

C A
< — At [Elzgki(m) — |

 Vheasy

C
+ S —
\/tk—(l+1)

14
t—+1)

At(At + oVAL).
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Finally, we bound [EszHM) —-Y! | from above as in (37) and we get

th—+1)

[E/OM V(tk,(lﬂ) +s, z;,k*(l“)(l/,if(m))) - V(tk*(Hl)’Yti—(zn)) ds
CA k—(+2) . — .
s | I, eelvienv) - R+ VA
_ q=
CAt3/?
Vi
CA k—(+2) . — ,
) % o AcE[V(t,¥)) - T (¥i)[ + VAe ).
_ q=

We conclude by using this estimate in (55) and then by considering (54). O

5. Conclusion. We have constructed a stochastic particle method for the
one-dimensional Burgers equation and given its convergence rate for the
L'(R X Q) norm of the error.

Here, the initial condition is taken equal to a distribution function. It is not
too hard to extend the method and the theoretical estimate of the conver-
gence rate to nonmonotonic initial conditions: this is done in [4] and [3].

Our next objective is to extend the algorithm and our error analysis to
treat the two-dimensional inviscid Navier—Stokes equation, which would
permit giving new error estimates for Chorin’s random vortex methods. The
additional difficulty is because the corresponding interaction kernel is sin-
gular.

APPENDIX

A.1. Proof of Proposition 2.2. We again stress that this proofis adapted
from [28]. We give the essential arguments; the details of the computations
can be found in [3].

We start with an easy lemma.

LEmMA A.1. Under (HO), the function V(¢, x) = EH(x — X,) is integrable
in x; more precisely, there exist strictly positive constants C, v and & such
that, for all t € [0,T],

(x +8)°
Vx < -M, V(t,x)<Cexp|——-—]|.
Y
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PrOOF. The proof only requires easy computations from

Vit,x)=P(X,<x)=P

0 + ft(fli(;(s _y)l’s(dy)) dS + ow,; Sx)
0 R
<P(ow, + X, <x),

and the estimate

x|

+ oo y x2
Vx € R, f exp( — o dy < Cexp|l——|. O

We are now in a position to prove Proposition 2.2. For (¢, x) € [0, T'], set

F(t,x) = [* V(t,y) dy

(which is well defined in view of the above lemma) and

1
W(t, x) = exp(— — [ V(t,y) dy).
O- —0oC
As V is a weak solution of the Burgers equation in (0,T'] X R, F satisfies

the following equality in the distributional sense:
d dF 1 _J*F 1 9
—|-—=+ 0’ —=|=5—(V? in(0,T[ XR.
dx at 2 dx 2 dx

The distributions

JF 1 3°F 1 1 v
-+ — and —
ot 27 ax? 2
have the same spatial derivatives; therefore, their difference is a distribution
invariant under translations along the x-axis. Then, for any test function ®
and any z € R, one has

oF 1 _9%F 1
- — 4+ —0¢? —§V2,<I>

at 2 dx?
2

Jd 1
— fF(t,x)(E(t,x +2) + 50t ——(t,x +2)| didx

1
—fEVz(t, x)P(¢t, x +2)dtdz

2&2

> ox? (¢, x)) dtdx

= [F(t,x —z)((z—(f(t,x) +

1
—/EVz(t, x —z)®(t, x) dtdx.
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Using the preceding lemma, the bounded convergence theorem and the fact
that V(¢,-) is a distribution function, one can check that the right-hand side
tends to 0 when z tends to +o. Thus,
JF 1 3*F 1V2 in (0,7] % R
——+ —0l— == X
ot 27 922 2 in (0, ’
in the sense of the distribution.

Denote by (®,) a sequence of smoothing functions in R2, define F and V in
R? by

7 | F(t,x), if(¢,x) €(0,T] XR,
(,x) = 0, if (¢, x) € R2\(0,T] X R,
and
_ V(¢ x), if (¢, x) €(0,T] X R,
V(t,x) = 0, if (¢, x) € R2\(0,7] X R.

Define the functions F,, V, and W, on (0,T] X R by
Vk(t, x) = ((Dk *V)(t, x),

W, (t,x) = exp(—%Fk(t, x)).

First, we note that (W,) converges to W in the distribution sense. Indeed,
let ¢ be a test function and let K be such that supp ¢ € (0,7T) X (—K, K).
For any % such that supp ®, ¢ (—K, K)?, one has

a? |[W,(t,x) — W(t,x)| |p(t, x)|dtdx
©,T1XR

< |F,(t,x) — F(t,x)|| (¢, x)|dtdx
©,TIXR

< [ JF) = 1o () F(8, )| [6(8, %) | ded

+/ JLeoxan(DF(E ) = (a0 F)y (1 )| [9(t, 2)|dedx
supp

g

supp ¢

‘q)k *(F - 1(—2K,2K)F)(t7 x)‘ |¢(t, x)|dtdx

= f ¢|1(—2K,2K)(x)F(t’ x) = (L a2 F), (¢, x)| |o(¢, x)| dtdx.
supp
Lemma A.1 shows that the function 1 _,x 55, F belongs to L'(0,T) X R),
which implies that the sequence (1,_;x o5, F), converges to 1 _,x o5, F in
LY(0,T) X R).



858 M. BOSSY AND D. TALAY

In addition, denoting (V?), := ®, * V2 one can check that

aw, 1 _9*W, 1 oF, \?
- 5o’ = [(Vz)k_ (W) W,

Jt 2 dx? 202

1 9 9
= 5 [(VH - () w,
Then, letting & go to infinity, easy computations show that W satisfies the
heat equation so that, for 0 <s <t < T,

1 (x— )
2—[ W(s,y)exp| ————
V2mo“(t —s) ‘R 207%(t —s)
We now make s tend to zero. Lemma A.1 and the bounded convergence

theorem imply that F(s, x) converges to F(0, x) when s tends to 0. Conse-
quently, we get that

W(t, x) =

W(t,x) = +/ Vo(2) dz

A.2. Proof of Lemma 4.1. In Chapter 13 of [10], Gihman and Skorohod
give a representation of the transtion density of a process (z,) solution to

dz, = b(t,z,) + oduw,,

under the condition that the derivatives 4,b(¢, x) and 9,b(¢, x) are well
defined and that the function B defined by

x1 9b
B(t, x) = (t ox) —[ —— (t,02) dz
satisfies
____supg.,.7 B(t,x
(56) m Po<i<r 2( ) _
X o0 1+x
The formula for the density vy,(x, y) of the law of z,(x) is
(riy) = e[ )
iy 27to? P 2to”

X exp{%(/oyb(t,z) dz — foxb(O,z) dz)}
X [Eexp{thlB(ut,% +(w(tw) — w(t)) + %(x —y)) du}.

In our case b is equal to V and the condition (56) seems difficult to check
for the process (z,(x)) because of the discontinuity of the derivatives of V at
t =0 when U, is a Dirac measure. Thus, we introduce an intermediate
process (z7(x)) with ¢ > 0, and we will get the desired result by making &
decrease to 0.
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Let (27(x)) be defined by

zf(x) =x + fOtV(s +e,25(x))ds + ow,.

Set
Be(t,x) = — ! V2(t+ e,0x)
> 20_2 ’
10V x1 dV
—Ea—x(t'f-é‘,o’x)—j;);a—t(t+8,02)d2.

As V is the solution of the Burgers equation,

10V oV 1
Bs(t,x)=——(t+s,0)—ﬁ—(t+a,ax)— 2 V2(t + &,0).
x

2 dx o?

We already proved that for all ¢t € (0,T'], [0V /dx(¢, Nw) < C/ vVt . Thus,
for all (¢, x) in (0, T] X R, one has

|Be(¢,x)| < C[1+

1
Vi + ¢ )
The condition (56) is satisfied, so that, y,/(x, y) denoting the law of z/(x),
() )

2to?

(o
Y (x,y) < =——=—==exp
2 ) V2mo?t
1 y x
X e — Vit+e,z)dz— | V(s,z)dz
ol oo (V04 o0y e = [Vis,2) )|

X exp(C(\/; + t))
Using the fact that V(¢ + ¢, x) = E; H(x — 2,, ), we can easily show that

<ly —x|+CVt.

ny(t +¢&,2)dz — fo(s,z) dz
0 0

Thus,

(y—x)2—2t|y—x|

- )exp(C(\/? +t)).

C
v(x,y) < ———=¢€xp

2mo 2t 2to?

For all v > o, an easy computation shows that

C(ly—xl-¢)’ B (v t*
xP 2to? = exp 2ty? exp 2(y* -0 |

Choose y = V2 o:

Yo (x,y) <



860 M. BOSSY AND D. TALAY
Using Lemma (2.3), one easily obtains that (z7(x)) converges to (z,(x)) in

L'(Q) when & — 0. Thus, for any positive, continuous and bounded function
f, it holds that

L1 ) dy = [ F(0)v(x,5) ase=0.

Set
1 (y —x)"
8(x,y) = mexp(—w)-
As
L7 (2, 9) dy < [ F(9)8(%,9) dy,
we find that

[f) (e, y) dy < [ F(3)&(x,y) dy,

which implies that y,(x, y) < g,(x, ). O
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