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STABILITY AND NONPRODUCT FORM OF STOCHASTIC
´ 1FLUID NETWORKS WITH LEVY INPUTS

BY OFFER KELLA

The Hebrew University of Jerusalem

We consider a stochastic fluid network with inputs which are indepen-

dent subordinators. We show that under some natural conditions the

distribution of the fluid content process converges in total variation to a

proper limit and that the limiting distribution has a positive mass at the

origin. As a consequence of the methodology used, we obtain upper and

lower bounds for the expected values of this limiting distribution. For the

two-dimensional case, under certain conditions, explicit formulas for the

means, variances and covariance of the steady-state fluid content are

given. Further, for the two-dimensional case, it is shown that, other than

for trivial setups, the limiting distribution cannot have product form.

Ž .1. Introduction. In Kaspi and Kella 1996 we have studied a feedfor-

ward fluid network with independent Levy inputs and have shown that,´
under natural stability conditions, the network is stable, in the strong sense

that, for every initial condition, the distribution of the fluid content vector

converges in total variation to some limiting distribution which is indepen-

dent of initial conditions. Furthermore, we showed that, other than for trivial

setups, the limiting distribution never has product form, which contrasts the

situation in certain queueing and Brownian networks. The feedforward as-

sumption allowed us to give an inductive proof for both results. In this paper

the goal is to extend these results for the case of a general network in which

we allow feedback. In this case, the inductive proof developed in Kaspi and
Ž .Kella 1996 does not apply and we need to seek other methods. Indeed,

both results hold in the case under study and, in particular, for the two-

dimensional case product form holds only in situations where either there is

no flow between the stations or from some point on at least one of the stations
Ž .is always empty in particular, there is no external flow into that station .

Ž .Unlike in Kaspi and Kella 1996 , where for the major step in the nonproduct

form proof one has an explicit representation of all but one steady-state

marginal, here we do not know any of them. Also, here we are able to show an

additional feature, which is that the steady-state distribution has a positive

mass at the origin, which therefore implies that the process is strictly
Ž .regenerative. This remained on open problem in Kaspi and Kella 1996 .
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Recently, tremendous attention has been devoted to both stochastic and

deterministic fluid networks as well as the stability of both queueing and

Brownian networks. Regarding the stability of queueing networks, there is an

immense developing literature. Since this is not the focus of this article, we
Ž . Ž .will suffice by mentioning Dai 1994 , Meyn and Down 1994 and Baccelli

Ž .and Foss 1994 . Each of these three papers has an extensive reference list to
Ž .which the reader is referred for earlier and current some yet unpublished

Ž .works on the subject. In particular, Dai 1994 shows that, for a multiclass

queueing network with i.i.d. interarrival and service times within each class,

the network is positive Harris recurrent if it has deterministic fluid limits
Ž .which ultimately reach 0 from any initial condition. Meyn and Down 1994

consider the more restrictive single-class queueing network, but with differ-
Ž .ent, in some respects more general assumptions. Baccelli and Foss 1994 also

consider the single-class Jackson-type queueing network, but with weaker

assumptions, more precisely, weakening the i.i.d. assumptions to stationary

and ergodic. They show that, under the natural conditions discussed in
Ž .previous papers, the network is stable in the ergodic sense . As for Brownian

Ž .networks, the most recent work is by Dupuis and Williams 1994 , who show
Ž .that semimartingale multivariate reflecting Brownian motions are stable if

any solution of a related Skorohod problem is attracted to the origin for any

initial condition. In particular, for reflected Brownian motions which are

weak limits of single-class Jackson-type queueing networks, there is a unique

solution for the related Skorohod problem which is a deterministic fluid
Ž .network. This particular model is studied in Harrison and Williams 1987

Ž .and, as it turns out embarrassingly discovered after the fact , their idea of
w Ž .bounding the network by a simpler network see the proof of Lemma 12

xthere can be used here together with some simple monotonicity results
Ž .Lemma 3.1 here and other facts in order to provide the total variation

convergence to a limiting distribution which has a positive mass at the origin
Ž .as well as some other results for the Levy model considered in the current´
paper. Their idea was used in order to obtain an exponential tail bound for
Ž .hence to show nondegeneracy of the limiting distribution. Here this bound-

ing idea leads to other facts, in particular, strict regeneration and positive

mass at the origin, which do not hold in the Brownian case. It should also be
Ž .pointed out here that recently Chang, Thomas and Kiang 1994 also used a

Ž .related but different method of bounding a single-class Jackson queueing

network by a simpler network in order to achieve stability.

Ž .The main tool in Dai 1994 and related papers is in establishing that if a

Markov process, after an appropriate rescaling, obeys a functional strong law

to a deterministic fluid network which is attracted to the origin from any

initial condition, and if, for the original Markov process, compact sets which
Žcontain the origin are small, then stability in the sense of positive Harris

.recurrence is implied. Therefore, it might be argued that the only remaining

problem for a given process obeying such a functional strong law is in

showing that indeed such compact sets are small. In order to obtain this, an
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assumption which has become standard in queueing literature is that inter-
Ž .arrival times for the various classes have spread out distributions with

unbounded support. This ensures the accessibility of the origin and the

nonarithmetic nature of the process, which is a sufficient condition for

compact sets containing the origin being small. We note that the model we

are considering here does indeed satisfy the desired functional strong law.

Also, for the special case of compound Poisson inputs, the origin is clearly
Ž .accessible and arrivals have an exponential hence spread out distribution.

Therefore, for this case, existing results can be used to establish stability.

However, we are not restricting ourselves to this setup and we emphasize

that we also include inputs that may have an infinite number of jumps in any

finite interval. In this case, it is impossible to talk about interarrival distribu-

tion, and accessibility of the origin is far from being obvious. In fact, we do

show that not only is the origin accessible, but actually the limiting distribu-
Ž .tion has a positive atom there which is a stronger statement . However, the

method which is used here in showing this immediately implies stability in

the strong sense of convergence in total variation for every initial condition.

Hence, the method referred to above is of no direct use to the setup here and

does not imply any extra results which are not obtained anyway.

Ž .In Meyn and Down 1994 , which deals with a single-class queueing

network, some of these difficulties are circumvented by assuming that service
Žtimes have finite second moments as well as some linearity condition for the

.arrival process . Also an inductive proof is given despite the fact that the

network is not of feedforward type. We emphasize that for the purpose of

stability we do not make any second moment assumptions here. The only

places where such assumptions are introduced are in Theorem 3.2 and

Section 4 where we consider moments of the stationary distribution of the

workloads.

Ž .A stochastic fluid network, defined here see Section 2 as a network in

which the net input process is the difference between a nondecreasing process
Ž . Ž .input and a deterministic linear fluid flow output , is a much younger and

less developed area than its queueing and Brownian counterparts. Neverthe-

less, the model itself is of significant importance, as it serves as a direct

model of phenomena previously studied via queueing models or Brownian

network approximations. In general, this model approximates any situation

in which the material flowing in the network can be approximated as fluid,

the only source of randomness is in the input, and the servers or machines at

the stations are reliable to the extent that output can be considered linear

and deterministic. In particular, these networks approximate any model

which can be described by a queueing network with batch arrivals and

deterministic service times with lengths which are ‘‘small’’ compared to the
Žarrival rates times the batch size. Two obvious examples are the flow of bits

.of information in high-speed communications networks, and production net-

works in which the output of material from machines can be approximated
Ž .or directly modeled as a continuous flow, such as in the oil, food and
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chemical industries. More motivation is discussed in earlier papers. We

emphasize here that, unlike models in the recent queueing literature which

concentrate on multiclass networks, the model in this paper is strictly single

class. Multiclass analogs are yet to be studied.

As for earlier work, the tandem case under certain conditions was consid-
Ž .ered in Kella and Whitt 1992b for the case where there is an external

Ž .compound Poisson input only to the first station, while Kella 1993 studied

both parallel and tandem networks, where, in the tandem case, the various
Ž .stations not only the first have independent general subordinator inputs

Ž .rather than the more restrictive compound Poisson . Recently, Kella and
Ž .Whitt 1996 established certain structural properties and tightness for

Ž .stochastic fluid and more general networks with inputs which have station-

ary, but not necessarily independent, increments. Finally, as mentioned
Ž .previously, Kaspi and Kella 1996 relates most strongly in flavor to the

current paper, but the methods are different.

For earlier works on fluid and related storage models, see Gaver and Miller
Ž . Ž . Ž . Ž .1962 , Miller 1963 , Meyer, Rothkopf and Smith 1979, 1983 , Newell 1982 ,

Ž . Ž . Ž .Anick, Mitra and Sondhi 1982 , Mitra 1988 , Chen and Mandelbaum 1991 ,
Ž . Ž .Chen and Yao 1992 , Kella and Whitt 1992a, c and the references therein.

The paper is organized as follows. In Section 2 we give the main setup. In

Section 3 we state and prove the main stability result and give upper and

lower bounds for certain linear combinations of the means of the steady-

state buffer contents. In Section 4 we consider the special case of a two-

dimensional network with an added assumption which allows us to re-

duce the model to a tandem fluid network which has the conditions imposed
Ž .in Kella 1993 and to provide explicit expressions for means, variances and

covariance. Finally, in Section 5 we establish the nonproduct form result for a

two-dimensional network.

2. The model. Throughout this paper we let RR be the real line and RR
n
q

be the nonnegative orthant. For every real x , . . . , x we write x s1 n

Ž .x , . . . , x 9, where 9 denotes both transposition as well as the first derivative1 n

of a function. Which case it is will be clear from the context. We use
Ž . Ž . q ya k b ' max a, b , a n b ' min a, b , a ' a k 0 and a ' a n 0. Also, for

n n Žx, y g RR we write x F y to mean y y x g RR the usual partial order onq
n. ŽRR . As usual, we use a.s. for almost surely where the measure will be clear

.from the context and w.l.o.g. for without loss of generality and denote by 1A

� Ž . < 4the indicator of a set A. As customary, a process X s X t t G 0 will be
� w Ž . x < 4called tight if the distribution measures P X t g ? t G 0 are right.

Ž .Finally, we use Y ` to denote a random vector having the steady-state

distribution of a process Y whenever it exists.

� Ž . < 4We model the inputs to the network by J s J t t G 0 , i s 1, . . . , n,i i

Žwhich are right-continuous subordinators nondecreasing Levy processes, i.e.,´
. Ž .having stationary independent increments with exponents h a si i

Ž Ž ..ylog E exp ya J 1 , where a G 0. It is well known that the general formi i i
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of such an exponent is

2.1 h a s c a q 1 y exp ya x n dx ,Ž . Ž . Ž . Ž .Ž .Hi i i i i i
Ž .0, `

Ž . Ž .where n is the Levy measure known to satisfy n 1, ` - ` and H xn dx´i i Ž0, 1x i

- `. For i s 1, . . . , n let us denote

2.2 r s xn dx s h
X

0 s EJ 1 .Ž . Ž . Ž . Ž .Hi i i i
Ž .0, `

Ž .With strictly positive r , . . . , r and a substochastic matrix P s p with1 n i j
n Ž .P ª 0 as n ª ` spectral radius - 1 , the potential output from node i is ri

and every unit of fluid processed by station i is distributed to the other

stations according to the matrix P. That is, when there is a positive fluid

level at station i, this station sends r p units per unit time to station j.i i j

This means that, when the fluid level at all stations is positive, the net

outflow rate from station i is r y Ý p r . Therefore, in light of thisi i/ j ji j

description, the model considered in this paper is the cadlag strong Markov` `
process

2.3 W t s W 0 q J t y I y P 9 rt q I y P 9 L t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Ž .where W 0 is independent of J and L is the unique continuous nondecreas-
Ž . Ž .ing n-dimensional process with L 0 s 0 having the property that

` Ž . Ž . Ž .H W t dL t s 0 and known to be the minimal process for which W t G 00 i i

for all t G 0.

We would like to study the steady-state properties of the process specified
Ž .by 2.3 and, in particular, show that the following condition implies stability,

in a strong sense, which will be made precise in Theorem 3.1 in the next

section.

Ž .y1CONDITION 2.1. I y P 9 r - r.

w Ž .y1 2 xNote that, in particular as I y P s I q P q P q ??? , Condition 2.1

implies that r - ` for i s 1, . . . , n. For simplicity and w.l.o.g., we willi

assume throughout that c s 0, so that J is a pure jump process. If c / 0,
Ž̃ . Ž . Žthen we can consider J t s J t y ct, with r s r y c and r s r y I y˜ ˜

.y1 Ž .P 9 c. Clearly, L and W from 2.3 have not changed and Condition 2.1 is

satisfied for the new process if and only if it was satisfied for the old one. One

of the reasons for making this assumption is that for the two-dimensional
Ž . t Ž Ž ..case which is considered in Sections 4 and 5 we can write L t s H l W s dsi 0 i

with

q
r r y p rŽ .1 1 21 2l x s 1 q 1Ž .i � x s0, x s04 � x s0, x ) 041 2 1 2rž / ž /2 0

2.4Ž .
0

qq 1 .� x ) 0, x s041 2ž /r y p rŽ .2 12 1
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It is useful to note that, when r ) p r and r ) p r ,1 21 2 2 12 1

1 y p p rŽ .12 21 1I y P 9 r y l x s 1Ž . Ž .Ž . � x ) 0, x s041 2ž /0

0
q 1� x s0, x ) 041 21 y p p rž /Ž .12 21 2

2.5Ž .

r y p r1 21 2q 1 .� x ) 0, x ) 041 2r y p rž /2 21 1

Ž . Ž .Equation 2.4 will be referred to in Section 4 while 2.5 will be cited in

Section 5.

3. Stability and bounds in the multidimensional case. In this sec-

tion we will establish the stability of our n-dimensional network described by
Ž .2.3 under Condition 2.1. In particular, we will prove the following theorem.

Ž .In the statement of the theorem we denote by P w, ? the Markov kernelt

Ž . Ž .associated with W t starting from w . Also let p be the joint steady-state
Ž .distribution when it exists .

n Ž .THEOREM 3.1. For every w g RR , P w, ? ª p in total variation, where pq t

Ž . Ž� 4.is proper nondegenerate with p 0 ) 0 if and only if Condition 2.1 holds.

ŽFurthermore, under Condition 2.1, the origin is accessible in finite resp.

. Žfinite expected time for every initial condition that is a.s. finite resp. has
.finite expectation .

In preparation for the proof of the ‘‘if ’’ part and in a similar manner as in
Ž . Ž .the proof of Lemma 12 of Harrison and Williams 1987 , let r ) r be such˜

Ž .y1that I y P 9 r - r. By Condition 2.1 clearly a vector like this exists. Con-˜
sider the process

˜ ˜ ˜3.1 W t s W 0 q J t y r t q L t ,Ž . Ž . Ž . Ž . Ž .˜

˜Ž .where W 0 is independent of J and

y
˜ ˜3.2 L t s y inf W 0 q J s y r s , 1 F i F n.Ž . Ž . Ž . Ž . ˜i i i i

0FsFt

˜ 0 0Ž . Ž .When W 0 s 0 or W 0 s 0 we will emphasize this with the notation W , L ,
˜ 0 ˜0W and L .

˜ y1 y1 ˜Ž . Ž . Ž . Ž . Ž . Ž .LEMMA 3.1. If W 0 F W 0 , then I y P 9 W t F I y P 9 W t ; hence
˜Ž . Ž .e9W t F e9W t for every t G 0.

˜ ˜Ž . Ž . Ž .PROOF. First assume that W 0 s W 0 . Then it is easy to see that W t s
Ž . Ž . Ž . Ž . Ž .W 0 q J t y I y P 9 rt q I y P 9 L* t , where

y1 y1˜3.3 L* t s I y P 9 L t q r y I y P 9 r t .Ž . Ž . Ž . Ž . Ž . ˜
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Ž .Note that L* is clearly a nondecreasing process with L* 0 s 0. Since L is the
Ž . Ž . Ž . Ž . Ž .minimal such process for which W 0 q J t y I y P 9 rt q I y P 9 L t is

Ž . Ž . Žnonnegative for all t G 0, it follows that L t F L* t and hence I y
y1 y1 ˜ ˜. Ž . Ž . Ž . Ž . Ž .P 9 W t F I y P 9 W t for all t G 0. Then e9W t F e9W t follows upon

Ž .premultiplying both sides by e9 I y P 9 , which is nonnegative as P is sub-
˜Ž . Ž .stochastic. To see that this result holds when W 0 G W 0 , it is easy to check

˜ ˜w Ž .x Ž . Ž .see 3.2 that W t is monotonically increasing in W 0 for each i s 1, . . . , n.i i

I

Ž . Ž .PROOF OF THEOREM 3.1. It suffices to assume and we do that EW 0 - `,
Ž .since the case W 0 - ` a.s. can be considered as a special case, by condition-

Ž .ing on the value of W 0 and therefore assuming that it is a finite constant.
˜ Ž .Now observe that, for each 1 F i F n, W t is a one-dimensional reflectedi

Levy process having no negative jumps. If we let´

˜<3.4 T s inf t W 0 q J t y r t s 0 ,Ž . Ž . Ž . Ž .� 4˜i i i i

˜w Ž .x Ž .then it is well known e.g., Kella and Whitt 1992a that ET s EW 0 ri i

˜ ˜Ž . Ž . Ž .r y r - ` whenever EW 0 - `. It is easy to check that W t sĩ i i i

˜ 0 ˜ ˜ 0Ž . Ž . Ž . Ž .W t for t G T . Therefore, W t s W t for t G T ' max T , . . . , T , wherei i 1 n

clearly ET F Ýn ET - `. Denoteis1 i

˜ 0<t s inf t t G T , W t s 0Ž .� 40
3.5Ž .

˜ ˜< <s inf t t G T , W t s 0 s inf t W t s 0 .Ž . Ž .� 4 � 4

Ž .From standard regenerative arguments we have since ET - `

1 t
0˜lim P W s s 0 dsŽ .H

ttª` 0

1¡ T
0E 1 ds, if Et - `,˜H �W Ž s.s04 0~s Et 00¢

0, otherwise.

3.6Ž .

Ž .Therefore, if we show that the left-hand side of 3.6 is strictly positive, this

will immediately imply that Et - `. To see that this is indeed the case, note0

˜ 0 ˜ 0that since J , . . . , J are independent by assumption, then so are W , . . . , W .1 n 1 n

˜ 0Ž . Ž . w Ž . xFrom Kella and Whitt 1992a and many more references , P W t s 0 ªi

1 y r rr ) 0 as t ª ` so that, in particular,˜i i

n ri0˜3.7 P W t s 0 ª 1 y ) 0,Ž . Ž . Ł ž /r̃is1 i

˜Ž . Ž .where by coupling at time T the same limit is valid for W t . From Lemma
˜ ˜Ž . Ž . Ž . Ž .3.1, when taking W 0 s W 0 for example, W t is 0 whenever W t is, so

that the above also implies that our original process reaches 0 in finite

expected time, which is one of the stated results. In particular, we clearly
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have that

n ri
3.8 lim inf P W t s 0 G 1 y ) 0,Ž . Ž . Ł ž /rtª` ˜is1 i

which implies that once we argue the existence of a proper limiting distribu-

tion, then this distribution must have a positive atom at the origin.

In order to complete the proof we now need to argue that the limiting

distribution for our process indeed exists, is independent of initial conditions

and holds in total variation. To see this, it is well known that, for any a.s.
˜finite initial condition, W is tight for every 1 F i F n as a one-dimensionali

reflected Levy process with driving process having a negative mean. There-´
˜fore, the vector-valued process W is tight as well and by Lemma 3.1 so is W.

In particular, it is a standard observation that in such an instance a proper
Ž . Ž .stationary distribution for W exits. Now let W 0 be arbitrary finite a.s. and

Ž . w Ž . xW * 0 has such a proper stationary distribution so that W * 0 is finite a.s.
˜ UŽ Ž . Ž .. Ž . Ž . Ž .where W 0 , W * 0 is independent of J. Set W 0 s W 0 k W 0 for everyi i i

˜Ž . Ž . Ž . Ž .i s 1, . . . , n also finite a.s. . By Lemma 3.1, e9W t G e9W t k e9W * t and
˜Ž . Ž . Ž . Ž . Ž .since T - ` a.s. we have W T s W T s W * T s 0, so that W t s W * t

for every t G T. By coupling we immediately obtain both total variation

convergence and independence of initial conditions. In particular, this, of

course, also implies that the stationary distribution we chose is unique.

In order to complete the proof we need to show the ‘‘only if ’’ part of the
Ž .y1 Ž .theorem. For this we observe that with Q s I y P 9 we have QW t s

Ž Ž . Ž .. Ž .Q W 0 q J t y rt q L t G 0, so that L is greater than or equal to the

minimal nondecreasing process L9 having this property, which is given by

y
n

X
3.9 L t s y inf q W 0 q J s y r s .Ž . Ž . Ž . Ž .Ž .Ýi i j j j iž /0FsFt js1

n Ž . Ž Ž . Ž ..For every i such that Ý q r G r we have, with W 9 t s Q W 0 q J t yjs1 i j j i

Ž . w XŽ . xrt q L9 t , P W t F x ª 0 for every x ) 0 as a one-dimensional reflectedi

Ž .Levy process. Since W 9 F QW as L9 F L we immediately have´
w n Ž . xP Ý q W t F x ª 0 for every x ) 0 as t ª `, which clearly implies thatjs1 i j j

W is not tight and hence cannot even converge in distribution, let alone in

total variation. I

REMARK 3.1. Note that as a consequence of Theorem 3.1 we immediately

have that, when Condition 2.1 is satisfied, W is necessarily strictly regenera-

tive where, for every d ) 0, we can choose regeneration epochs as T sm

� < Ž . 4 Ž . Ž .inf t t G T q d , W t s 0 with T s 0 . Since p 0 ) 0 it clearly followsmy 1 0

Ž . wthat E T y T - ` for every m G 2 for m s 1 it also holds providedm my1

Ž . xW 0 has a finite mean . In fact, as argued, one may couple the process
Ž .starting from an arbitrary initial condition in particular, 0 with the process

starting with the stationary distribution. Hence the regeneration epochs

themselves admit coupling, and thus they have a spread-out distribution. See
Ž .Theorem 2.3 on page 146 of Asmussen 1987 .
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We conclude this section with the following theorem which gives lower and

upper bounds for the steady-state means.

2 Ž Ž ..THEOREM 3.2. Assume that s s Var J 1 - ` for 1 F i F n and denotei i

Ž . Ž . Ž .y1w s EW ` as well as Q s q ' 1 y P 9 . Then, for every 1 F i F n,i i i j

n 2 2 n n 2Ý q s sjs1 i j j j
3.10 F q w F qŽ . Ý Ýi j j i jn2 r y Ý q r 2 r y r˜Ž . Ž .i js1 i j j j jjs1 js1

for every r ) r for which Q r - r.˜ ˜

Ž .PROOF. The right inequality in 3.10 follows from Lemma 3.1 together
˜ 2Ž . w Ž .x w Ž .xwith the fact that EW ` s s r 2 r y r see Kella and Whitt 1992a . To˜i i i i

Ž Ž . Ž .. Ž .obtain the left inequality, we take W 9 s Q W 0 q J t y rt q L9 t from the
w Ž .x Ž .proof of Theorem 3.1 see 3.9 . Even though the QJ t are not independent

subordinators, since all we are interested in is the mean, it suffices to
XŽ .consider each i separately. However, for each i, W t is a one-dimensionali

reflected Levy process having no negative jumps and satisfying the appropri-´
Ž .ate stability conditions since Q r y r - 0 , so that, once again, the same

Ž .results from Kella and Whitt 1992a imply that

Var Ýn q J 1Ž .Ž .js1 i j j
3.11 EW9 ` s ,Ž . Ž .

n2 r y EÝ q J 1Ž .Ž .i js1 i j j

Ž .which is precisely the left-hand side of 3.10 . I

4. A two-dimensional network and reduction to the tandem case.
Consider this model under the added assumption that p r G r . The case12 1 2

Ž .p r G r is, of course, treated in the same way. From 2.4 we have21 2 1

r y p r1 21 2I y P 9 r y l x s 1Ž . Ž .Ž . � x ) 04r y p rž /2 12 1

4.1Ž .
0

q 1 .� x s0, x ) 041 21 y p p rž /Ž .12 21 2

X X Ž . X
Therefore, if we take r s r y p r , r s 1 y p p r , p s p and1 1 21 2 2 12 21 2 12 12

X Ž .p s 0, it is easy to see that the right-hand side of 4.1 will remain21

unchanged. This means that the network is identical to a tandem network

with the same inputs and initial conditions, with r 9 and P 9 replacing r and

P. The reason this makes sense intuitively is that, under the stated condition,
�Ž . < 4the second queue is never idle, so that the boundary x , 0 x ) 0 is never1 1

hit.

The following observation is obvious for the case of a tandem network
Ž .when p s 0 , which is the case resulting from the previous paragraph. The21

fact that it holds for any two-dimensional network was discovered by Glick-
Ž . Ž .man 1993 . It is obtained by multiplying the first equation in 2.3 by p and12

Ž .inspecting the parameters of both equations, noting that, trivially, p L , L12 1 2
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is the minimal nondecreasing process, starting at 0, which makes the appro-

priate right-hand sides nonnegative.

ŽLEMMA 4.1. For any two-dimensional network not necessarily satisfying
˜ ˜. Ž . Ž .the conditions of this section W , W s p W , W is the content process of1 2 12 1 2

˜ ˜Ž Ž . Ž .. Ž .a fluid process with initial condition p W 0 , W 0 , inputs J , J s12 1 2 1 2

Ž . Ž .p J , J , maximal output rates p r , r and routing matrix12 1 2 12 1 2

0 1
.

p p 0ž /12 21

The first paragraph of this section together with Lemma 4.1 immediately

leads to the following result.

˜ ˜Ž . Ž .THEOREM 4.1. When p r G r , W , W s p W , W is the content12 1 2 1 2 12 1 2

process of a tandem fluid network with p s 1 and p s 0, initial condition˜ ˜12 21

˜ ˜Ž Ž . Ž .. Ž . Ž .p W 0 , W 0 , input processes J , J s p J , J and output rates12 1 2 1 2 12 1 2

Ž . Ž Ž . Ž . .r ,r s p r y p r , 1 y p p r .˜ ˜1 2 12 1 21 2 12 21 2

˜ Ž .Finally, with the notation of Theorem 4.1, denoting r s EJ 1 for i s 1, 2,ĩ i

simple algebra leads to the following result.

LEMMA 4.2. If p r G r , then r G r and Condition 2.1 holds if and˜ ˜12 1 2 1 2

only if r - r and r q r - r .˜ ˜ ˜ ˜ ˜1 1 1 2 2

Ž .Theorem 4.1 and Lemma 4.2 imply that p W , W is a tandem network12 1 2

Ž .satisfying the conditions in Kella 1993 . Hence explicit joint steady-state

characteristics are readily available via substitution in the formulas of that

article.

Ž . Ž .From Kella 1993 , for every a.s. finite initial condition W 0 , the time to

reach 0 is a.s. finite, and the expected time to reach 0 is explicitly given by

˜ ˜EW 0 q EW 0 p EW 0 q EW 0Ž . Ž . Ž . Ž .1 2 12 1 2
4.2 s .Ž .

1 y p p r y p r y rŽ .r y r y r˜ ˜ ˜ 12 21 2 12 1 22 1 2

Also, in this case, the steady-state atom at the origin is

r q r p r q r˜ ˜1 2 12 1 2
4.3 p 0 s 1 y s 1 y ) 0.Ž . Ž .

r 1 y p p rŽ .2̃ 12 21 2

For future reference we give the explicit formulas for the steady-state
Ž . XŽ .means, variances and covariances. We recall that r s EJ 1 s h 0 , andi i i

2 Ž Ž .. YŽ . Ž .denote s s Var J 1 s yh 0 . For the purpose of 4.4 below, we assumei i i
Z Ž .that h 0 - `, which implies that s - ` as well, for i s 1, 2:i i
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s 2
1

EW ` s ,Ž .1
2 r y p r y rŽ .1 21 2 1

p2 s 2 q s 2
12 1 2

EW ` s y p EW ` ,Ž . Ž .2 12 1
2 1 y p p r y p r y rŽ .Ž .12 21 2 12 1 2

h
Z

0Ž .1 2
Var W ` s q EW ` ,Ž . Ž .Ž . Ž .1 1

3 r y p r y rŽ .1 21 2 1

p r y r q r12 1 2 2 2
Cov W ` , W ` s Var W ` q EW ` ,Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 2 1 1

2 r y p r y rŽ .1 21 2 1

4.4Ž .

p3 h
Z

0 q h
Z

0Ž . Ž .12 1 2
Var W ` sŽ .Ž .2

3 1 y p p r y p r y rŽ .Ž .12 21 2 12 1 2

2
q p EW ` q EW `Ž . Ž .Ž .12 1 2

y p2 Var W ` y 2 p Cov W ` , W ` .Ž . Ž . Ž .Ž . Ž .12 1 12 1 2

Ž .In Corollary 4.2 of Kella and Whitt 1992b and Corollary 4.1 of Kella
Ž . w Ž .1993 , it was shown that, other than for trivial setups where either W ` ' 01

Ž . xor W ` ' 0 , the steady-state correlation coefficient in a tandem fluid2

network, in which the maximal output rate from the first station is at least as
'large as that of the second station, is strictly between 0 and 1r 3 . Hence, by

Theorem 4.1, this also holds for the case considered in this section whenever
Ž . w Ž . xneither of the following situations takes place: 1 h ' 0 where W ` ' 01 1

Ž . w Ž . xand 2 h ' 0 and p r s r so that r s r , hence W ` s 0 .˜ ˜2 12 1 2 1 2 2

5. Nonproduct form for a two-dimensional network. In this section

we will show that, other than for trivial setups, when Condition 2.1 is

satisfied, the limiting distribution associated with our two-dimensional net-

work never has a product form. More precisely, we prove the following result.

THEOREM 5.1. The limiting distribution associated with our two-dimen-

sional network has product form only in the following obvious cases:

Ž . Ž .i p s p s 0 parallel network , in which case W and W are clearly12 21 1 2

independent processes;
Ž . Ž . Ž .ii J ' J ' 0, in which case W ` s W ` s 0;1 2 1 2

Ž . Ž . Ž .iii J ' 0 and r ) p r , in which case W ` s 0, where i, j gi i ji j i

�Ž . Ž .41, 2 , 2, 1 .

PROOF. For the case considered in Section 4, that is, when either p r G12 1

r or p r G r , since we can reduce the network to a tandem network2 21 2 1

Ž .satisfying the conditions considered in Kella and Whitt 1992b and Kella
Ž .1993 , the result follows from the fact that the correlation coefficient is

positive whenever either both J and J are not identically 0 or J k 0 and1 2 i
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Ž .p r ) r the strict inequality is important . This, however, assumes thei j i j

existence of second and third moments for J and J . Without this assump-1 2

Žtion, this, as well as when p p s 0, which includes the tandem not12 21

.necessarily satisfying the conditions of Section 4 and parallel cases, follows

as a special case of Lemma 4.1 and, more generally, of Theorem 4.1 in Kaspi
Ž .and Kella 1996 . Therefore, it suffices to consider the case where both

r ) p r and r ) p r where 0 - p p - 1.1 21 2 2 12 1 12 21

Ž .Applying Theorem 2 of Kella and Whitt 1992a to the one-dimensional
Ž .process a 9W t , we have that

exp ya 9W t y exp ya 9W 0Ž . Ž .Ž . Ž .

t
q h a q h a y a 9 I y P 9 r y l W s exp ya 9W s dsŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž .H 1 1 2 1

0

5.1Ž .

Ž .Ž Ž .. Ž .is a zero-mean martingale, where I y P 9 r y l x is given by 2.5 . Hence,

when taking a stationary version of the Markov process W, we immediately

have

E h a q h a y a 9 I y P 9 r y l W ` exp ya 9W `Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .1 1 2 1

1 t
s E h a q h a y a 9 I y P 9 r y l W sŽ . Ž . Ž . Ž .Ž .Ž .H 1 1 2 1

t 0
5.2Ž .

= exp ya 9W s dsŽ .Ž .

s 0.

Ž . Ž Ž .. Ž . Ž Ž ..Let us denote w a s E exp ya 9W ` and w a s E exp ya W ` fori i i i

Ž . Ž Ž .. Ž .i s 1, 2. In particular, w a , ` s E exp ya W ` 1 , w `, ` s1 1 1 �W Ž`.s042

w Ž . Ž . x Ž . w Ž . x Ž . Ž .P W ` s W ` s 0 and w ` s P W ` s 0 . From 5.2 and 2.5 we have1 2 i i

h a q h a w a , aŽ . Ž . Ž .1 1 2 2 1 2

s a 1 y p p r w a , ` y w `, `Ž . Ž . Ž .1 12 21 1 1

q a 1 y p p r w `, a y w `, `Ž . Ž . Ž .2 12 21 2 25.3Ž .

q a r y p r q a r y p rŽ . Ž .1 1 21 2 2 2 12 1

= w a , a y w a , ` y w `, a q w `, ` .Ž . Ž . Ž . Ž .1 2 1 2

Ž . Ž . Ž .The limiting distribution has product form if w a , a s w a w a .1 2 1 1 2 2

Ž . Ž .Hence substituting in 5.3 and denoting p s w ` givesi i

h a q h a w a w aŽ . Ž . Ž . Ž .1 1 2 2 1 1 2 2

s a 1 y p p r w a y p pŽ . Ž .1 12 21 1 1 1 1 2

q a 1 y p p r p w a y pŽ . Ž .2 12 21 2 1 2 2 25.4Ž .

q a r y p r q a r y p rŽ . Ž .1 1 21 2 2 2 12 1

= w a y p w a y p .Ž . Ž .1 1 1 2 2 2
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Dividing by a or by a and letting a , a x0 yields1 2 1 2

r s 1 y p p r 1 y p p q r y p r 1 y p 1 y p ,Ž . Ž . Ž . Ž . Ž .1 12 21 1 1 2 1 21 2 1 2

r s 1 y p p r p 1 y p q r y p r 1 y p 1 y p ,Ž . Ž . Ž . Ž . Ž .2 12 21 2 1 2 2 12 1 1 2

5.5Ž .

Ž .respectively. Now setting a s 0 in 5.4 results in2

h a w aŽ . Ž .1 1 1 1

s a 1 y p p r p q r y p r 1 y p w a y pŽ . Ž . Ž . Ž .Ž .1 12 21 1 2 1 21 2 2 1 1 1
5.6Ž .

a r w a y pŽ .Ž .1 1 1 1 1
s ,

1 y p 1

Ž .where for the bottom equality we apply 5.5 . Therefore,

a p ri i i
5.7 w a s ,Ž . Ž .i i

a r y 1 y p h aŽ . Ž .i i i i i

so that

p 1 y p h aŽ . Ž .i i i i
5.8 w a y p sŽ . Ž .i i i

a r y 1 y p h aŽ . Ž .i i i i i

for i s 1, 2.

Ž . Ž . Ž .Substituting 5.7 and 5.8 in 5.4 and performing some cumbersome but

straightforward computations, which among others involve the substitution
Ž . Ž .of r by the right-hand side of 5.5 in certain but not all places, leads to thei

following equation which holds for all a , a ) 0:1 2

p p 1 y p 1 y pŽ . Ž .1 2 1 2

r y h a ra h a r y h a ra h aŽ . Ž . Ž . Ž .Ž . Ž .1 1 1 1 2 2 2 2 2 2 1 1
= q s 0.

p r y p r p r y p rŽ . Ž .21 2 12 1 12 1 21 2

5.9Ž .

Ž .It is well known that h a F a r for all a ) 0 with equality for somei i i i i

a ) 0 if and only if it holds for all a ) 0. This follows from the concavity ofi i

h , which is strict whenever J is not a linear deterministic process. Hence,i i

Ž .since we assumed that J , i s 1, 2, are pure jump subordinators, h a s a ri i i i i

Ž .for some a ) 0 if and only if J ' 0. Next we observe that since W ` isi i i

Ž .proper, then, from 5.7 , if J k 0, then necessarily p ) 0. Finally, we notei i

Ž .that, from 5.5 , p s 1 if and only if r s 0, which is equivalent to J ' 0.i i i

Ž .With these observations in mind it is now clear from 5.9 that either J ' 01

Ž .or J ' 0 or both which completes the proof. I2
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