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CONVERGENCE OF MARKOV CHAIN APPROXIMATIONS TO
STOCHASTIC REACTION–DIFFUSION EQUATIONS1

BY MICHAEL A. KOURITZIN AND HONGWEI LONG

University of Alberta

In the context of simulating the transport of a chemical or bacterial
contaminant through a moving sheet of water, we extend a well-established
method of approximating reaction–diffusion equations with Markov chains
by allowing convection, certain Poisson measure driving sources and a
larger class of reaction functions. Our alterations also feature dramatically
slower Markov chain state change rates often yielding a ten to one-hundred-
fold simulation speed increase over the previous version of the method
as evidenced in our computer implementations. On a weighted L2 Hilbert
space chosen to symmetrize the elliptic operator, we consider existence
of and convergence to pathwise unique mild solutions of our stochastic
reaction–diffusion equation. Our main convergence result, a quenched law
of large numbers, establishes convergence in probability of our Markov
chain approximations for each fixed path of our driving Poisson measure
source. As a consequence, we also obtain the annealed law of large numbers
establishing convergence in probability of our Markov chains to the solution
of the stochastic reaction–diffusion equation while considering the Poisson
source as a random medium for the Markov chains.

1. Introduction and notation. Recently, the problem of assessing water
pollution has become a matter of considerable concern. For proper groundwater
management, it is necessary to model the contamination mathematically in order
to assess the effects of contamination and predict the transport of contaminants.
A large number of models in the deterministic case have been developed and
solved analytically and numerically [see Jennings, Kirkner and Theis (1982);
Marchuk (1986); Celia, Kindred and Herrera (1989); Kindred and Celia (1989);
Van der Zee (1990); Xin (1994); Barrett and Knabner (1997, 1998); Chen and
Ewing (1997); Dawson (1998); Hossain and Miah (1999) and Hossain and Yonge
(1999)]. Based upon Kallianpur and Xiong (1994), we consider a more realistic
model by introducing some randomness in a meaningful way. We assume that
the undesired (chemical or biological) contaminants are released by different
factories along the groundwater system (or river). There are r such factories
located at different sites κ1, . . . , κr in the region E = [0,L1]× [0,L2]. Each of the
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factories releases contaminants at the jump times of independent Poisson processes
N1(t), . . . ,Nr(t) with random magnitudes {Aji , j = 1,2, . . .} which are i.i.d. with
common distribution Fi(da). Upon release, the contaminants are distributed in the
area B(κi, ε) = {x : |x − κi | < ε} ⊂ (0,L1)× (0,L2) according to a proportional
function θi(x) satisfying

θi(x)≥ 0, suppθi ⊆ B(κi, ε) and
∫
B(κi ,ε)

θi(x) dx = 1.

We assume that θi is bounded and continuous on B(κi, ε) (i = 1,2, . . . , r). For
example, we can take

θi(x)= 1

πε2
1B(κi,ε)(x),

which is the uniformly distributed function in B(κi, ε) as used in Kallianpur and
Xiong (1994), or (letting | · | denote Euclidean distance)

θi(x)=
(∫

B(κi,ε)
exp

{
− 1

ε2 − |z− κi|2
}
dz

)−1

exp
{
− 1

ε2 − |x − κi |2
}
, x ∈E,

which is a smooth function with decay along radial lines inB(κi, ε). Once released,
the contaminants diffuse and drift through the sheet of water largely due to the
movement of the water itself. Also, there is the possibility of nonlinear reaction of
the contaminants due to births and deaths of bacteria or adsorption of chemicals,
which refers to adherence of a substance to the surface of the porous medium in
groundwater systems.

We define and abbreviate

∂1f (x1, x2) := ∂

∂x1
f (x1, x2)= lim

h→0
(x1+h,x2)∈E

f (x1 + h,x2)− f (x1, x2)

h
,

∂2 := ∂

∂x2
, � := ∂2

1 + ∂2
2 , ∇ := (∂1 ∂2)

T .

The stochastic model described as above can be written formally as follows:

∂

∂t
u(t, x)=D�u(t, x)− V · ∇u(t, x)+R(

u(t, x)
)

+
r∑
i=1

∞∑
j=1

A
j
i (ω)θi(x)1t=τji (ω), x ∈ [0,L1] × [0,L2],

(1.1)

subject to

∂1u(t,L1, x2)= ∂1u(t,0, x2)= 0, ∂2u(t, x1,L2)= ∂2u(t, x1,0)= 0,

u(0, x)= u0(x),
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where u(t, x) denotes the concentration of a dissolved or suspended substance,
D > 0 denotes the dispersion coefficient, V = (V1,V2) with V1 > 0, V2 = 0
denotes the water velocity, R(·) denotes the nonlinear reaction term, {τ ji , j ∈ Z+}
are the jump times of independent Poisson processes Ni(t) (i = 1,2, . . . , r) with
parameters ηi , and u0(x) denotes the initial concentration of the contaminants in
the region [0,L1] × [0,L2]. Here, we adopt the Neumann boundary condition
which means that the contaminant concentration is constant across the boundary
of the region [0,L1] × [0,L2]. All the random variables Aji and τ ji (or Ni(t))
are defined on some probability space (%,F ,P). Moreover, we assume R : [0,∞)

→ R is continuous with

R(0)≥ 0 and sup
u>0

R(u)

1 + u <∞,

and for some q ≥ 1, K > 0 as well as all u, v ∈ R+,

|R(u)−R(v)| ≤K|u− v|(1 + uq−1 + vq−1), |R(u)| ≤K(1 + uq).(1.2)

These assumptions amount to nonnegativity at 0, linear growth for the positive
part of R, a local Lipschitz condition and polynomial growth. We will interpret
solutions to (1.1) as mild solutions defined below (see Definition 1.3).

REMARK 1.1. Kurtz (1971) introduced the stochastic particle Markov chain
method of approximating differential equations. Arnold and Theodosopulu (1980),
Kotelenez (1986, 1988) and Blount (1991, 1994, 1996) studied Markov chain
approximation for a chemical reaction with diffusion provided that the nonlinear
reaction term is a polynomial with a negative leading coefficient. Our assumptions
on R are much weaker.

Let us define a differential operator A =D�− V · ∇ with Neumann boundary
conditions in both variables. We take the initial domain D0(A) of A to be
{f ∈ C2(E) : ∂1f (0, x2) = ∂1f (L1, x2) = ∂2f (x1,0) = ∂2f (x1,L2) = 0}, where
C2(E) denotes the twice continuously differentiable functions on E. Letting
ρ(x)= e−2cx1 and c= V1

2D , we can rewrite A as

A =D
[

1

ρ(x)

∂

∂x1

(
ρ(x)

∂

∂x1

)
+ ∂2

∂x2
2

]
.

For convenience, we define a Hilbert space H as follows.

DEFINITION 1.2. (H, 〈· , ·〉) is the Hilbert space L2(E,ρ(x) dx) with norm

‖f ‖ =
{∫
E
f 2(x)ρ(x) dx

}1/2

.
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(A,D0(A)) is symmetric on H and admits a unique self-adjoint extension
with domain D(A)= {f ∈H : |∇f |,�f ∈H and ∂1f (0, x2)= ∂1f (L1, x2)= 0,
∂2f (x1,0)= ∂2f (x1,L2)= 0}. We define a random process .(t, x) by

.(t, x)=
r∑
i=1

θi(x)

Ni(t)∑
j=1

A
j
i (ω),

and find (1.1) can be rewritten as

du(t, x)= [
Au(t, x)+R(

u(t, x)
)]
dt + d.(t, x), u(0)= u0.(1.3)

We consider a pathwise mild solution of our stochastic partial differential equation
(SPDE) (1.3). Let T (t) be the C0-semigroup generated by A.

DEFINITION 1.3. A process u(t), t ≥ 0 is a mild solution to (1.3) in H if it
satisfies

u(t)= T (t)u0 +
∫ t

0
T (t − s)R(

u(s)
)
ds +

∫ t

0
T (t − s) d.(s).(1.4)

For any separable Hilbert space V , CV [0, T ] and DV [0, T ] denote, respec-
tively, the V -valued continuous and càdlàg functions h such that h(t) ∈ V for all
0 ≤ t ≤ T . For càdlàg functions h, we define

h(τ−) .=
{

0, τ = 0,
lim
s↗τ h(s), 0< τ ≤ T .

We shall use the notation C,C(ω),C(N, l),C(T ) and so on, for finite constants
(depending on ω, resp. N, l, etc.), which may be different at various steps in the
proofs of our results in the paper.

In this paper, we discuss unique pathwise DH [0, T ]-valued solutions and
Markov chain approximations (i.e., distribution convergence) to SPDE (1.3). These
results are vital for application of filtering theory to pollution dispersion tracking
problems in the sense that the original signal can be replaced with a tractable
Markov chain approximation. [The reader is referred to Kushner (1977), Di
Masi and Runggaldier (1981) or Bhatt, Kallianpur and Karandikar (1999) for
justification about this substitution of signal for calculation purposes.] In this
manner, Monte Carlo and Kallianpur–Striebel based methods of filtering become
more feasible. Our Markov chain approximations employ improved rate schemes
over previous works of Kotelenez (1986, 1988) and Blount (1991, 1994, 1996),
resulting in far more efficient computer implementation of approximate solutions
to (1.3) and even a more general allowable class of reaction functions R in (1.3).

The contents of this paper are organized as follows. In Section 2, we shall
construct the Markov chain approximations to our pollution model (1.3) via the
stochastic particle method and the random time changes approach. In Section 3,
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we shall state and prove our main results establishing that there exists a pathwise
unique solution to (1.3) as well as a Markov chain approximation that converges
in probability to the solution of (1.3) for each fixed path of our Poisson source.
This later part is our quenched law of large numbers. As a corollary, we also
establish the annealed law of large numbers while considering the Poisson source
as a random medium of the Markov chains.

2. Construction of Markov chain via stochastic particle method. The
Markov chain approximation discussed in this paper is motivated by the stochastic
particle models of chemical reaction with diffusion studied by Arnold and
Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991, 1994, 1996).
In their models, the operator A is replaced by the Laplacian and only the
internal fluctuation caused by reaction and diffusion was considered. They proved
that a sequence of Markov chain approximations converges to the solution of
deterministic models weakly (in the distribution convergence sense). In our
models, we have two kinds of randomness, which are the external fluctuation
coming from the Poisson sources and the internal fluctuation in implementing
the reaction and diffusion. We also feature a new method of forming the Markov
chain approximations that is more efficient for computer implementation. Before
defining the stochastic particle models, we prepare some preliminaries concerning
the differential operator A and its discretization. Basic calculations will bear out
the following lemma whose proof is omitted.

LEMMA 2.1. The eigenvalues and eigenfunctions {(λp,φp)}p=(p1,p2)∈(N0)
2

of A are given by

λp = λ1
p1

+ λ2
p2
, φp(x)= φ1

p1
(x1)φ

2
p2
(x2), p1,p2 ∈ N0,

λ1
0 = 0, λ1

p1
=−D

(
p1π

L1

)2

−Dc2, p1 ∈ N,

λ2
0 = 0, λ2

p2
=−D

(
p2π

L2

)2

, p2 ∈ N;

φ1
0(x1)=

√
2c

1 − e−2cL1
, φ2

0(x2)=
√

1

L2
,

φ1
p1
(x1)=

√
2

L1
sin

{
p1πx1

L1
+ αp1

}
exp{cx1}, p1 ∈ N,

φ2
p2
(x2)=

√
2

L2
cos

{
p2πx2

L2

}
, p2 ∈ N,

where αp1 = tan−1(−p1π
L1c
), c = V1

2D .
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Now, we divide [0,L1)× [0,L2) into L1N ×L2N cells of size 1
N

× 1
N

:

Ik
.=
[
k1 − 1

N
,
k1

N

)
×

[
k2 − 1

N
,
k2

N

)
, k = (k1, k2),

k1 = 1,2, . . . ,L1N, k2 = 1,2, . . . ,L2N.

Let HN = {ϕ ∈ H :ϕ is constant on each Ik}. To facilitate the removal of the
discrete gradient as we did in the continuous limit case, we define the uncommon
discrete gradient in the first variable

∇V1
N f (x)=DN2(1 − e−c/N)

[
f

(
x + e1

N

)
− f (x)

]

+DN2(ec/N − 1)
[
f (x)− f

(
x − e1

N

)]
and the usual discrete Laplacian

�Nf (x)=N2
[
f

(
x + e1

N

)
+ f

(
x − e1

N

)
− 2f (x)

]

+N2
[
f

(
x + e2

N

)
+ f

(
x − e2

N

)
− 2f (x)

]
.=�Nx1f (x)+�Nx2f (x),

where e1 = (1,0) and e2 = (0,1). Now, we look at the discretized approximation:
AN .=D�N −∇V1

N . We define the following discrete gradients:

∇̃Nxif (x)=N

[
f

(
x + ei

2N

)
− f

(
x − ei

2N

)]
,

∇+
Nxi
f (x)=N

[
f

(
x + ei

N

)
− f (x)

]
and

∇−
Nxi
f (x)=N

[
f

(
x − ei

N

)
− f (x)

]
, i = 1,2.

In order to take the boundary conditions into account for the discretized
approximation scheme, we extend all function f ∈ HN to the region [− 1

N
,L1 +

1
N
] × [− 1

N
,L2 + 1

N
] by letting

f (x1, x2)= f

(
x1 + 1

N
,x2

)
, x1 ∈

[
− 1

N
,0

)
, x2 ∈ [0,L2];

f (x1, x2)= f

(
x1 − 1

N
,x2

)
, x1 ∈

[
L1,L1 + 1

N

)
, x2 ∈ [0,L2];

f (x1, x2)= f

(
x1, x2 + 1

N

)
, x1 ∈ [0,L1], x2 ∈

[
− 1

N
,0

)
;
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f (x1, x2)= f

(
x1, x2 − 1

N

)
, x1 ∈ [0,L1], x2 ∈

[
L2,L2 + 1

N

)
and denote this class of functions by HN

bc . Then, HN
bc is the domain of AN . Basic

calculations will give the following lemma whose proof is omitted.

LEMMA 2.2. (i) AN with domain HN
bc is self-adjoint and can be represented

as

ANf (x) :=D

[
1

ρ
∇̃Nx1(ρ∇̃Nx1)+�Nx2

]
f (x)

= −D
{

1

2ρ(x)

[
∇−
Nx1

(
ρ

(
· + e1

2N

)
∇+
Nx1

f

)
(x)

+ ∇+
Nx1

(
ρ

(
· − e1

2N

)
∇−
Nx1

f

)
(x)

]
+ 1

2
[∇−
Nx2

(∇+
Nx2

f )(x)+∇+
Nx2

(∇−
Nx2

f )(x)]
}
.

(2.1)

(ii) The eigenvalues and eigenfuntions {λNp ,φNp }(L1N−1,L2N−1)
p=(p1,p2)=(0,0) for AN are

given by

λNp = λ1,N
p1

+ λ2,N
p2
, φNp (x)= φ1,N

p1
(x1)φ

2,N
p2
(x2),

λ
1,N
0 = 0, λ1,N

p1
= 2DN2 cos

p1π

L1N
−DN2(ec/N + e−c/N) (p1 �= 0),

λ
2,N
0 = 0, λ2,N

p2
= 2DN2

(
cos

p2π

L2N
− 1

)
(p2 �= 0),

φ
1,N
0 (x1)=

√
2c

1 − e−2cL1
, φ

2,N
0 (x2)=

√
1

L2
,

φ1,N
p1
(x1)=

L1N−1∑
k1=0

√
4c

(1 − e−2c/N)L1N
sin

(
p1πk1

L1N
+ αNp1

)
eck1/N1k1(x1),

φ2,N
p2
(x2)=

L2N−1∑
k2=0

(
−

√
1 − cos(p2π/(L2N))

L2
sin

p2πk2

L2N

+ sin(p2π/(L2N))√
L2(1 − cos(p2π/(L2N)))

cos
p2πk2

L2N

)
1k2(x2),

where c = V1
2D , αNp1

∈ (−π
2 ,0) is given by

αNp1
= tan−1

(
− e−c/N cos(p1π/(L1N))

1 − e−c/N cos(p1π/(L1N))
tan

p1π

L1N

)
,
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and 1k1(x1), 1k2(x2) are the indicator functions on [k1
N
,
k1+1
N
), [k2

N
,
k2+1
N
), respec-

tively.

REMARK 2.3. Substituting cos(x)≈ 1− x2

2 for small |x| and ec/N + e−c/N −
2 ≈ c2

N2 for large N into the formula for λNp , we find that λNp ≈ λp for large N

and p1
N
,
p2
N

small. Applications of Taylor’s theorem yield 11
12 |λp| ≤ |λNp | ≤ |λp| for

N > π , which will be used in proving Lemma 3.6 and Theorem 3.1. Moreover,
one finds that limN→∞ λNp = λp .

Let T N(t) = exp(ANt). Then, φNp are eigenfunctions of T N(t) with eigenval-
ues exp{λNp t}. Now we describe the stochastic particle systems. Let l = l(N) be
a function such that l(N)→ ∞ as N → ∞. l−1 can loosely be thought of as
the “mass” or the “amount of concentration” of one particle. We let nk(t) de-
note the number of particles in cell k at time t for k = (k1, k2) ∈ {1, . . . ,L1N} ×
{1, . . . ,L2N} and also, to account for our Neumann boundary conditions, we set

n0,k2(t)= n1,k2(t), nL1N+1,k2(t)= nL1N,k2(t), k2 = 1, . . . ,L2N,

nk1,0(t)= nk1,1(t), nk1,L2N+1(t)= nk1,L2N(t), k1 = 1, . . . ,L1N.

Then {nk(t)} is modeled as a Markov chain with transition rates defined below.
First,

nk → nk ± 1 at rate lR±(nkl−1) for k ∈ {1, . . . ,L1N} × {1, . . . ,L2N},
where nk → nk+1 if R(nkl−1) > 0 and nk → nk−1 if R(nkl−1) < 0,R+ =R∨0
and R− = −(R ∧ 0). Next, we recall c = V1

2D and define the following drift–
diffusion mechanism:

(nk, nk+e1)→ (nk − 1,Nk+e1 + 1) at rate (DN2e−c/Nnk+e1 −DN2ec/Nnk)
−,

(nk, nk+e1)→ (nk + 1, nk+e1 − 1) at rate (DN2e−c/Nnk+e1 −DN2ec/Nnk)
+

for all k = (k1, k2) with k1 ∈ {0,1, . . . ,L1N}, k2 ∈ {0,1, . . . ,L2N + 1},
(nk,nk+e2)→ (nk − 1, nk+e2 + 1) at rate (DN2nk+e2 −DN2nk)

−,

(nk,nk+e2)→ (nk + 1, nk+e2 − 1) at rate (DN2nk+e2 −DN2nk)
+

for all k = (k1, k2) with k1 ∈ {0,1, . . . ,L1N + 1}, k2 ∈ {0,1, . . . ,L2N}.
We shall write δ1,N (nk) = DN2e−c/Nnk+e1 − DN2ec/Nnk and δ2,N (nk) =

DN2nk+e2 −DN2nk.

REMARK 2.4. Suppose R(x) = b(x) − d(x) = ∑m
i=0 cix

i be a polynomial
for x ∈ R, with cm < 0 and b(x), d(x) being polynomials of degree less than or
equal to m with nonnegative coefficients satisfying d(0)= 0. Then, the previous
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works apply to the case V ≡ 0, r = 0 and the usual diffusion mechanism as used
in Arnold and Theodosopulu (1980), Kotelenez (1986, 1988) and Blount (1991,
1994, 1996) would be

nk → nk + 1 at rate lb(nkl
−1),

nk → nk − 1 at rate ld(nkl
−1),

(nk,nk±ei )→ (nk − 1, nk±ei + 1) at rate DN2nk, i = 1,2

for all k in the ranges indicated above. In our new scheme we slow these rates
down significantly by comparing the number of particles in adjacent cells and
birth to death rates. This makes computation far more efficient and simplifies
implementation.

Finally, we incorporate the Poisson sources into the approximations. Let

KN
i
.=
{
k :

[
k1 − 1

N
,
k1

N

)
×

[
k2 − 1

N
,
k2

N

)
⊂ B(κi, ε)

}
, i = 1,2, . . . , r.

Then, we add source contamination according to

{nk}k∈KNi →{nk +  lθi(k)Aji (ω)+ 0.5!}k∈KNi
at time τ ji , i = 1,2, . . . , r, j ∈ Z+.

Now we use the aforementioned transition rates to construct our model in the
probabilistic setting. However, rather than immersing ourselves immediately in
the mathematics of model building we note that the same random numbers
would be supplied by the computer for the Markov chain approximation re-
gardless of the values of l and N . Naturally, more numbers would be uti-
lized for large l,N , but the most salient point is that any realistic modelling
scheme should exhibit a dependence between models with different values of
l,N . We provide one such scheme and note that different schemes will yield
different implementation algorithms and different precise rate of convergence re-
sults such as central limit theorems and laws of the iterated logarithm. We let
{Nk}∞k=0 be an increasing sequence in N such that Nk → ∞ as k → ∞. For
any N ∈ {Nk}∞k=0, there exists a unique n ∈ N such that 2n−1 < N ≤ 2n. We

recall that the Aji , τ
j
i are defined on (%,F ,P), note that the Poisson processes

in our Markov chain mechanism should be independent of {Aji , τ ji } and let
(%,F ,P) be another probability space on which is defined independent stan-
dard Poisson processes {Xk,R+,N ,X

k,R
−,N ,X

k,1
+,N ,X

k,1
−,N ,X

k,2
+,N ,X

k,2
−,N }(L1N,L2N)

k=(k1,k2)=(1,1),
{Xk,1+,N ,X

k,1
−,N , k = (0, k2)}L2N

k2=1 and {Xk,2+,N ,X
k,2
−,N , k = (k1,0)}L1N

k1=1 (see the
Appendix for a computer-workable construction). From the two probability spaces
(%,F ,P) and (%,F ,P), we define the product space

(%0,F0,P0)= (%×%,F ⊗ F ,P × P).
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In the sequel,  r! denotes the greatest integer not more than a real number r . We
let

nNk (0)=
⌊
l

(∫
Ik

ρ(x) dx

)−1 ∫
Ik

u(0, x)ρ(x) dx
⌋
,

k ∈ {
(1,1), . . . , (L1N,L2N)

}
.

(2.2)

Then, following Ethier and Kurtz [(1986), pages 326–328], for k ∈ {(1,1), . . . ,
(L1N,L2N)}, we let

nNk (t)= nNk (0)+Xk,R+,N
(
l

∫ t

0
R+(

nNk (s)l
−1)ds)

−Xk,R−,N
(
l

∫ t

0
R−(

nNk (s)l
−1)ds)

+
2∑
i=1

[
X
k,i
+,N

(∫ t

0
δ+i,N

(
nNk (s)

)
ds

)
−Xk,i−,N

(∫ t

0
δ−i,N

(
nNk (s)

)
ds

)]

−
2∑
i=1

[
X
k−ei ,i+,N

(∫ t

0
δ+i,N

(
nNk−ei (s)

)
ds

)

−Xk−ei ,i−,N
(∫ t

0
δ−i,N

(
nNk−ei (s)

)
ds

)]

+
r∑
i=1

∞∑
j=1

 lθi(k)Aji + 0.5!1
t≥τji 1k∈KNi .

(2.3)

Equation (2.3) provides a very explicit and powerful construction of our Markov
chain approximations to (1.3). Equation (2.3) can be implemented directly on a
computer. However, to exploit the mathematical richness of our representation,
we avail ourselves of the following lemma. In preparation for the statement
of this lemma, we define %̃ = ∏∞

m=0 %̃m, where %̃m = D
R
L1Nm×L2Nm∪{$}[0,∞)

and R
L1Nm×L2Nm ∪ {$} is the one-point compactification of R

L1Nm×L2Nm [see
page 165 of Ethier and Kurtz (1986)]. Set F̃ = ⊗∞

m=0 B(%̃m), which is the
σ -algebra generated by open sets under Skorohod J1 topology and countable
products. For each ω ∈ %, we let {GN,ωt }t≥0 be the smallest right continuous
filtration such that{

X
k,R
σ,N

(
l

∫ t

0
Rσ

(
nNk (s)l

−1)ds),
X
k,i
σ,N

(∫ t

0
δσi,N

(
nNk (s)

)
ds

)
, σ =+,−, i = 1,2

}(L1N,L2N)

k=(1,1)
,

{
X
k,1
σ,N

(∫ t

0
δσ1,N

(
nNk (s)

)
ds

)
, σ =+,−, k = (0, k2)

}L2N

k2=1
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and {
X
k,2
σ,N

(∫ t

0
δσ2,N

(
nNk (s)

)
ds

)
, σ =+,−, k = (k1,0)

}L1N

k1=1

are adapted to {GN,ωt } ⊂ F .

LEMMA 2.5. (i) nN(t) = {nNk (t)}(L1N,L2N)
k=(1,1) is well defined up to (possible)

explosion time τ∞ = inf{t :nN(t−)=$}, and for each ω ∈% there exists a unique
probability measure P̃

ω on (%̃, F̃ ) such that

P̄
(
ω̄ ∈ %̄ :nNm1 (ω̄,ω) ∈A1, . . . , n

Nmj (ω̄,ω) ∈Aj )
= P̃

ω(ω̃ ∈ %̃ : ω̃m1 ∈A1, . . . , ω̃mj ∈Aj)
(2.4)

for all Ai ∈ B(D
R
L1Nmi×L2Nmi ∪{$}[0,∞)), i = 1, . . . , j; j = 1,2, . . . . Moreover,

we have that for each B ∈ F̃ , ω → P̃
ω(B) is (%,F )-measurable, and ω →∫

%̃ f (ω, ω̃)P̃
ω(ω̃) is F -measurable for each bounded measurable function f .

(ii) We have τ∞ =∞ and for t ≥ 0,

nN(t, x)= nN(0, x)+
∫ t

0
ANnN(s, x) ds + l

∫ t

0
R
(
nN(s, x)l−1)ds

+
(L1N,L2N)∑
k=(1,1)

.̄Nk (t)1k(x)+
(L1N,L2N)∑
k=(1,1)

(
ZNk,R,+(t)+ZNk,R,−(t)

)
1k(x)

+
(L1N,L2N)∑
k=(1,1)

2∑
i=1

[
ZNk,i(t)−ZNk−ei ,i(t)

]
1k(x),

(2.5)

where nN(t, x) := nNk (t), ∀ x ∈ Ik , 1k(·) denotes the indicator function on Ik ,

.̄Nk (t)=
r∑
i=1

∞∑
j=1

 lθi(k)Aji + 0.5!1
t≥τji 1k∈KNi ,

and

ZNk,R,+(t)=X
k,R
+,N

(
l

∫ t

0
R+(

nNk (s)l
−1)ds)− l

∫ t

0
R+(

nNk (s)l
−1)ds,

ZNk,R,−(t)=−Xk,R−,N
(
l

∫ t

0
R−(

nNk (s)l
−1)ds)+ l

∫ t

0
R−(

nNk (s)l
−1)ds,

ZNk,i(t)=X
k,i
+,N

(∫ t

0
δ+i,N

(
nNk (s)

)
ds

)
−Xk,i−,N

(∫ t

0
δ−i,N

(
nNk (s)

)
ds

)
−

∫ t

0
δi,N

(
nNk (s)

)
ds, i = 1,2,

are L2-martingales with respect to {GN,ωt } under probability measure P̃
ω.
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REMARK 2.6. Since the proof of Lemma 2.5 is largely standard but technical,
we just sketch the basic ideas here. For the proof of part (i) of Lemma 2.5, we can
use Fubini’s theorem, Theorem D of Halmos (1950) and monotone convergence
theorem to show that P̃

ω is σ -additive and ω → P̃
ω(B) is measurable for each

B ∈ F̃ . Then, the monotone class theorem gives us the final claim. For the proof
of part (ii) of Lemma 2.5, we can employ a stopping argument, Hölder’s inequality,
the linear growth of R+, Burkholder’s inequality and Gronwall’s inequality to
show that for p ≥ 1,

Ẽ
ω

[
sup
t≤T

〈nN(t),1〉p
]
≤ C(N,T , l,ω).

This is enough to justify all the statements.

Note that P̃
ω is the probability measure for the quenched results. However,

to use the quenched results within the annealed ones we need to know that
ω→ P̃

ω(B) is measurable for each B ∈ F̃ . We can write

P0(dω0)= P̃
ω(dω̃)P(dω), ω0 = (ω, ω̃).

To get the density in each cell, we divide nNk (t) by l and consequently the
description of the stochastic particle model can be given by

ul,N(t, x)=
L1N∑
k1=1

L2N∑
k2=1

nNk (t)

l
1k(x).(2.6)

Now we set

Z
l,N
R+ (t)

.=
(L1N,L2N)∑
k=(1,1)

l−1ZNk,R,+(t)1k, Z
l,N
R− (t)

.=
(L1N,L2N)∑
k=(1,1)

l−1ZNk,R,−(t)1k,

Z
l,N
R (t)= Z

l,N
R+ (t)+Zl,NR− (t),

Z
l,N
D (t)

.=
(L1N,L2N)∑
k=(1,1)

2∑
i=1

l−1(ZNk,i(t)−ZNk−ei ,i (t))1k
and

.l,N (t, ·)=
r∑
i=1

Ni(t)∑
j=1

∑
k∈KNi

l−1 lθi(k)Aji (ω)+ 0.5!1k(·).

Then from (2.5), it follows that

ul,N (t)= ul,N(0)+
∫ t

0
ANul,N (s) ds +

∫ t

0
R
(
ul,N(s)

)
ds

+Zl,N
R+ (t)+Zl,NR− (t)+Zl,ND (t)+.l,N (t).

(2.7)
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By variation of constants and (2.7), it follows that ul,N (t)= ul,N(t,ω0) satisfies

ul,N(t)= T N(t)ul,N (0)+
∫ t

0
T N(t − s)R(

ul,N (s)
)
ds

+
∫ t

0
T N(t − s) dZl,N

R+ (s)+
∫ t

0
T N(t − s) dZl,N

R− (s)

+
∫ t

0
T N(t − s) dZl,ND (s)+

∫ t

0
T N(t − s) d.l,N (s).

(2.8)

In this section, we have constructed the Markov chain via stochastic particle
model. In the next section, we shall prove the laws of large numbers for ul,N .

3. Laws of large numbers. For f :E → R, let ‖f ‖∞ = supx∈E |f (x)|. We
need the following.

HYPOTHESES. For each fixed ω ∈ % and q as defined in (1.2), we suppose
that:

(i) ‖Ẽ
ω(ul,N (0))2q‖∞ ≤ C(ω) <∞.

(ii) (N, l(N)) is any sequence satisfying l(N)→∞ as N →∞.
(iii) ‖ul,N (0)− u0‖→ 0 in probability P̃

ω.
(iv) ‖ul,N (0)‖∞ ≤ C(N, l,ω) <∞.
(v) ‖u0‖∞ ≤ c0 <∞.

We note that ul,N (0) defined by (2.2) and (2.6) satisfies (i), (iii) and (iv) in
the Hypotheses. However, we do not necessarily assume that ul,N (0) is given
in this way and any ul,N(0) satisfying the Hypotheses will be fine. Through
Hypothesis(ii) our dependence on (l,N) is reduced to dependence only on N and
we will write uN for ul(N),N . Now we have the following quenched law of large
numbers.

THEOREM 3.1. Under the Hypotheses, there exists a pathwise unique solution
u to (1.3) and

sup
t≤T

‖uN(t,ω, ·)− u(t,ω)‖→ 0 in probability P̃
ω as N →∞.(3.1)

When Ni(t) and Aji are considered to be random variable (i.e., ω is no longer
fixed), the Markov chain ul,N evolves in this random medium. We can show
that there exists a unique DH [0, T ]-valued mild solution to (1.3) by reducing
our local Lipschitz condition to a global one (through temporary modification
of R), using Picard’s successive approximation, and stopping. Consequently,
(ω̄,ω)→ supt≤T ‖uN(t, ω̄,ω)− u(t,ω)‖ is jointly measurable. As a corollary of
Theorem 3.1, we have the following annealed law of large numbers.
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COROLLARY 3.2. Under the Hypotheses, there exist a unique mild solution u
to (1.3) and

sup
t≤T

‖uN(t)− u(t)‖→ 0

in probability P0 as N →∞.

PROOF. Applying the quenched result in Theorem 3.1 we have

Ẽ
ωf

(
sup
t≤T

‖uN(t,ω)− u(t,ω)‖
)
→ f (0),

for any bounded, continuous function f . Now, by dominated convergence theorem,
we obtain

E0f

(
sup
t≤T

‖uN(t)− u(t)‖
)
→ f (0).

This implies that supt≤T ‖uN(t) − u(t)‖ → 0 in distribution or equivalently in
probability P0. �

Before proving Theorem 3.1, we prepare some preliminary lemmas. For
convenience, we introduce the projective mapping PN :H →HN ,

f̃N = PNf =∑
k

(∫
Ik

ρ(x) dx

)−1 ∫
Ik

f (x)ρ(x) dx · 1k(·)(3.2)

and set ρN+ (·) = e−c/NρN(·), ρN− (·) = ec/NρN(·), where ρN(·) = ∑
k N

2 ∫
Ik
ρ(x)

× dx · 1k(·). The following lemma is used in Lemma 3.4 and Lemma 3.5.

LEMMA 3.3. Suppose ‖uN(0)‖∞ ≤C(N, l,ω) <∞ and f ∈H , then

Ẽ
ω[〈ZNR+(t), f 〉2] = 1

N2l
Ẽ
ω
∫ t

0

〈
R+(

uN(s)
)
, f̃N

2 · ρN 〉
ds,

Ẽ
ω[〈ZNR (t), f 〉2] = 1

N2l
Ẽ
ω
∫ t

0

〈|R|(uN(s)), f̃N 2 · ρN 〉
ds

and

Ẽ
ω[〈ZND(t), f 〉2] ≤ 1

N2l
Ẽ
ω
∫ t

0

4∑
i=1

αi
(
f,uN(s)

)
ds,

where for f ∈H ,

α1
(
f,uN(s)

) = 〈N2(e−2c/N − 1)2e2c/Nf̃N
2
ρN+ ,DuN(s)〉

+2〈N(e−2c/N − 1)(∇+
Nx1

f̃N )f̃Nρ
N+ ,DuN(s)〉
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+〈e−2c/N(∇+
Nx1

f̃N )
2 · ρN+ (·),DuN(s)〉,

α2
(
f,uN(s)

) = 〈N2(e2c/N − 1)2e−2c/Nf̃N
2
ρN− ,DuN(s)〉

+2〈N(e2c/N − 1)(∇−
Nx1

f̃N )f̃Nρ
N− ,DuN(s)〉

+〈e2c/N(∇−
Nx1

f̃N )
2 · ρN− (·),DuN(s)〉,

α3
(
f,uN(s)

) = 〈(∇+
Nx2

f̃N )
2ρN(·),DuN(s)〉

and
α4

(
f,uN(s)

)= 〈(∇−
Nx2

f̃N )
2ρN(·),DuN(s)〉.

PROOF. In as much as the proofs of the three parts follows the same steps,
we just show the first part. Now by the independence we have that the quadratic

covariation [Xk1,R
+,N ,X

k2,R
+,N ] = 0 for k1 �= k2 .= (k2

1, k
2
2). Moreover, s → nN

ki
(s) is

cadlag and hence [cf. Billingsley (1968), page 110] almost surely bounded on
[0, T ], so

∫ T
0 R

+(nN
ki
(s)l−1) ds <∞ almost surely. Therefore, by two applications

of Theorem II.22 in Protter (1990), we find that[
X
k1,R
+,N

(
l

∫ t

0
R+(

nN
k1(s)l

−1)ds ∧ ·
)
, X

k2,R
+,N

(
l

∫ t

0
R+(

nN
k2(s)l

−1)ds ∧ ·
)]

v

= [
X
k1,R
+,N ,X

k2,R
+,N

]
(l

∫ t
0 R

+(nN
k1 (s)l

−1) ds)∧(l ∫ t0 R+(nN
k2 (s)l

−1) ds)∧v = 0

(3.3)

and by the Kunita–Watanabe inequality,∣∣∣∣[Xk1,R
+,N

(
l

∫ t

0
R+(

nN
k1(s)l

−1)ds ∧ ·
)
,X

k2,R
+,N

(
l

∫ t

0
R+(

nN
k2(s)l

−1)ds ∧ ·
)]

v

∣∣∣∣
≤

([
X
k1,R
+,N

]
l
∫ t

0 R
+(nN

k1 (s)l
−1) ds

)1/2 ·
([
X
k2,R
+,N

]
l
∫ t

0 R
+(nN

k2 (s)l
−1) ds

)1/2
,

(3.4)

which is P̃
ω-integrable by Cauchy–Schwarz inequality and Lemma 2.5. Hence,

letting v→∞, and using (3.3), (3.4) and dominated convergence, we have that

Ẽ
ω
([
ZN
k1,R,+,Z

N
k2,R,+

]
t

)= 0 ∀ k1 �= k2, t ≥ 0.

Therefore, by the bilinear property of quadratic variation and the fact that
〈ZN
R+(t), f 〉 is a L2-martingale, one has that

Ẽ
ω
(〈ZN

R+(t), f 〉2) = Ẽ
ω

{[∑
k

l−1ZNk,R,+〈1k, f 〉
]
t

}
= ∑

k

l−2〈1k, f 〉2
Ẽ
ω[ZNk,R,+]t .

(3.5)

We let τk(t) = l
∫ t

0 R
+(nNk (s)l−1) ds. By Lemma 2.5, we know that τk(t) is

nondecreasing in t and {Xk,R+,N (τk(t))} is a pure-jump {GN,ωt }-semimartingale with
jump size 1. It follows that
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Ẽ
ω[ZNk,R,+]t = Ẽ

ω
[
X
k,R
+,N

(
τk(·))]t = Ẽ

ω
{
X
k,R
+,N

(
τk(t)

)}
= Ẽ

ω

{
l

∫ t

0
R+(

nNk (s)l
−1)ds}.(3.6)

Now, by (3.5) and (3.6), we have

Ẽ
ω
[〈ZNR+(t), f 〉2] = ∑

k

l−2〈1k, f 〉2
Ẽ
ω

{
l

∫ t

0
R+(

nNk (s)l
−1)ds}

= 1

N2l
Ẽ
ω
∫ t

0

〈
R+(

uN(s)
)
, f̃N

2 · ρN 〉
ds. �

For convenience, we put

YR+(t)=
∫ t

0
T N(t − s) dZNR+(s), YR(t)=

∫ t

0
T N(t − s) dZNR (s)(3.7)

and

YD(t)=
∫ t

0
T N(t − s) dZND(s), Y (t)= YN(t)= YR(t)+ YD(t).(3.8)

If J ∈ {D,R}, then by variation of constants we have

YJ (t)=
∫ t

0
ANYJ (s) ds +ZNJ (t).

We let YJ,p,ZJ,p denote 〈YJ ,φNp 〉, 〈ZJ ,φNp 〉 and use (3.7)–(3.8) to conclude that
ANYJ (s), φNp ∈HN , so it follows trivially that〈∫ t

0
ANYJ (s) ds,φ

N
p

〉
=

∫ t

0
〈ANYJ (s),φ

N
p 〉ds.

Indeed, we have by Lemma 2.2, the previous equation and Itô’s formula,
respectively,

YJ,p(t)=
∫ t

0
λNp YJ,p(s) ds +ZJ,p(t),(3.9)

Y 2
J,p(t)= 2λNp

∫ t

0
Y 2
J,p(s) ds + 2

∫ t

0
YJ,p(s−) dZJ,p(s)+

∑
s≤t

(
δZJ,p(s)

)2
.(3.10)

Using (3.9), (3.10) and Lemma 3.3 with f = φNp , stopping (3.10) to reduce
the local martingale and utilizing monotone convergence, Fatou’s lemma and
Gronwall’s inequality with an interchange of integration, one gets the following
lemma.
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LEMMA 3.4. Assume that ‖uN(0)‖∞ ≤ C(N, l,ω) <∞. Then:

(a) Ẽ
ω〈YD(t), φNp 〉2 ≤ (N2l)−1

Ẽ
ω
∫ t

0
∑4
i=1 αi(φ

N
p ,u

N(s)) exp{2λNp (t − s)}ds.
(b) Ẽ

ω〈YR(t),φNp 〉2=(N2l)−1
Ẽ
ω
∫ t

0 〈|R|(uN(s)), (φNp )2ρN 〉 exp{2λNp (t−s)}ds.
(c) 〈YD(t), φNp 〉2 ≤ A(φNp )(t), where A(φNp )(t)

.= 2
∫ t

0 YD,p(s−) dZD,p(s) +∑
s≤t (δZD,p(s))2 is a submartingale satisfying

Ẽ
ωA(φNp )(t)≤ (N2l)−1

Ẽ
ω
∫ t

0

4∑
i=1

αi
(
φNp ,u

N(s)
)
ds.

(d) 〈YR(t), φNp 〉2 ≤ B(φNp )(t), where B(φNp )(t) is a submartingale satisfying

Ẽ
ωB(φNp )(t)= (N2l)−1

Ẽ
ω
∫ t

0

〈|R|(uN(s)), (φNp )2ρN 〉
ds.

Next, we need to estimate the moments of uN(t). Motivated by Lemma 3.2 of
Kotelenez (1988), we have the following lemma.

LEMMA 3.5. For each fixed ω ∈% and 2β ≥ 1,

sup
s≤t

∥∥Ẽ
ω
(
uN(s)

)2β∥∥∞ ≤ C(
t, l,

∥∥Ẽ
ω
(
uN(0)

)2β∥∥∞,ω)
<∞,

where C is decreasing in l.

PROOF. Setting ξk = (
√
σN(k))

−11k(·) with σN(k)= ∫
Ik
ρ(x) dx, from (2.8)

and the fact that
∫ t

0 T
N(t − s) dZN

R−(s) − ∫ t
0 T

N(t − s)R−(uN(s)) ds ≤ 0, we
obtain that

uN(t, x)≤ 〈T N(t)uN(0), ξk〉 1√
σN(k)

+
〈∫ t

0
T N(t − s)R+(

uN(s)
)
ds, ξk

〉
1√
σN(k)

+
〈∫ t

0
T N(t − s) dZN

R+(s), ξk

〉
1√
σN(k)

+
〈∫ t

0
T N(t − s) dZND(s), ξk

〉
1√
σN(k)

+
〈∫ t

0
T N(t − s) d.N(s,ω), (σN(k))−1

1k

〉

(3.11)
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for x ∈ Ik . Therefore, for 2β ≥ 1 and x ∈ Ik , one has that

(
uN(t, x)

)2β ≤ 52β−1

{∣∣〈T N(t)uN(0), ξk〉(σN(k))−1/2∣∣2β
+

∣∣∣∣〈∫ t

0
T N(t − s)R+(

uN(s)
)
ds, ξk

〉
1√
σN(k)

∣∣∣∣2β
+|〈YR+(t), ξk〉|2β(σN(k))−β + |〈YD(t), ξk〉|2β(σN(k))−β

+
∣∣∣∣〈∫ t

0
T N(t − s) d.N(s,ω), (σN(k))−1

1k

〉∣∣∣∣2β
}
.

(3.12)

Using Tonelli’s theorem, Hölder’s inequality, the linear growth of R+(·) and
Minkowski’s integral inequality, we find that

Ẽ
ω

∣∣∣∣〈∫ t

0
T N(t − s)R+(

uN(s)
)
ds, ξk

〉
1√
σN(k)

∣∣∣∣2β
≤ t2β−1

∫ t

0
Ẽ
ω
∣∣〈R+(

uN(s)
)
, T N(t − s)ξk 〉(σN(k))−1/2∣∣2β ds

≤ t2β−1
∫ t

0

{∫
E

(
Ẽ
ω
∣∣R+(

uN(s, x)
) · T N(t − s)ξk(x)

× (
σN(k)

)−1/2∣∣2β)1/2β
ρ(x) dx

}2β

ds

≤ Ct2β−1
∫ t

0

{∫
E

(
Ẽ
ω|1 + uN(s, x)|2β)1/2β

× (
T N(t − s)ξk(x)(σN(k))−1/2)

ρ(x) dx

}2β

ds

≤ Ct2β−1
∫ t

0

(
1 + sup

v≤s
∥∥Ẽω(uN(v))2β∥∥∞)

× (〈T N(t − s)1, ξk〉(σN(k))−1/2)2β
ds

≤ Ct2β +Ct2β−1
∫ t

0
sup
v≤s

∥∥Ẽ
ω(uN(v))2β∥∥∞ ds.

(3.13)

Similarly, we can show that

Ẽ
ω
∣∣〈T N(t)uN(0), ξk〉(σN(k))−1/2∣∣2β ≤ ∥∥Ẽ

ω
(
uN(0)

)2β∥∥∞.(3.14)
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Now, following the arguments in the proof of Lemma 3.2 in Kotelenez (1988), for
fixed t > 0 and J ∈ {D,R+}, we define L2-martingales by

LJ (s, k)=


〈∫ s

0
T N(t − v) dZNJ (v), ξk

〉(
σN(k)

)−1/2
, s ≤ t,

LJ (t, k), s > t.

Then, by Lemma 3.3, the predictable quadratic variations of LR+(s, k) and
LD(s, k) are given by

〈〈LR+(·, k)〉〉s = 1

lN2σN(k)

∫ s

0

〈
R+(

uN(v)
)
,
(
T N(t − v)ξk)2

ρN
〉
dv(3.15)

and

〈〈LD(·, k)〉〉s ≤ 1

lN2σN(k)

∫ s

0

4∑
i=1

αi
(
T N(t − v)ξk, uN(v))dv.(3.16)

Note that by (2.3), the maximal jump size of LJ (s, k) is 1
l
. Then, by Burkholder’s

inequality, we have

Ẽ
ω|LJ (t, k)|2β ≤ CẼ

ω[LJ (·, k)]βt
≤ CẼ

ω[〈〈LJ (·, k)〉〉t + l−2]β

≤ CẼ
ω[〈〈LJ (·, k)〉〉βt ] +Cl−2β .

(3.17)

By (3.15) and (3.13), we find that

Ẽ
ω
[〈〈LR+(·, k)〉〉βt

]
≤ Cl−β Ẽ

ω

∣∣∣∣∫ t

0

〈
T N(t − s)R+(

uN(s)
)
, ξk

〉(
σN(k)

)−1/2
ds

∣∣∣∣β
≤ Cl−β

(
1 + t2β + t2β−1

∫ t

0
sup
v≤s

∥∥Ẽ
ω(uN(v))2β∥∥∞ ds

)
.

(3.18)

Setting EN(f ) =D[e−c/N(∇+
Nx1

f )2 + ec/N(∇−
Nx1

f )2 + (∇+
Nx2

f )2 + (∇−
Nx2

f )2]
for f ∈HN

bc , one finds that

4∑
i=1

αi
(
f,uN(s)

) ≤ C〈uN(s), f 2〉 +C〈uN(s),EN(f )〉.

Therefore, by (3.16), it follows that

Ẽ
ω[〈〈LD(·, k)〉〉βt ]

≤Cl−β Ẽ
ω

(∫ t

0

〈
uN(s),

(
T N(t − s)ξk)2〉

ds

)β
+ Cl−β Ẽ

ω

(∫ t

0

〈
uN(s),EN

(
T N(t − s)ξk)〉ds)β.

(3.19)
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Obviously, the first term on the right-hand side of (3.19) is dominated by the

same bound in (3.18) (up to some constant). For the second term on the right-

hand side of (3.19), by two applications of Minkowski’s inequality, and noting

that 〈EN(f ),1〉 = 〈−2ANf,f 〉, f ∈ HN
bc , and d〈T N (t−s)f,T N (t−s)f 〉

ds
= 〈−2AN

× T N(t − s)f,T N(t − s)f 〉, f ∈HN , we find that for β ≥ 1,

{
Ẽ
ω

(∫ t

0

〈
uN(s),EN

(
T N(t − s)ξk)〉ds)β}1/β

≤
∫ t

0

[
Ẽ
ω
(〈
uN(s),EN

(
T N(t − s)ξk)〉β)]1/β

ds

≤
∫ t

0

[∫
E

(
Ẽ
ω|uN(s, x)|β · ∣∣EN (

T N(t − s)ξk)(x)∣∣β)1/β
ρ(x) dx

]
ds

≤
{

sup
s≤t

∥∥Ẽ
ω(uN(s))β∥∥∞}1/β

·
∫ t

0

〈
EN

(
T N(t − s)ξk),1〉ds

≤
{

sup
s≤t

∥∥Ẽ
ω
(
uN(s)

)2β∥∥∞}1/2β

·
∫ t

0

〈−2ANT N
(
2(t − s))ξk, ξk 〉ds

≤
{

sup
s≤t

∥∥Ẽ
ω(uN(s))2β∥∥∞}1/2β

,

that is,

Ẽ
ω

(∫ t

0

〈
uN(s),EN

(
T N(t − s)ξk)〉ds)β ≤

{
sup
s≤t

∥∥Ẽ
ω
(
uN(s)

)2β∥∥∞}1/2

.(3.20)

Combining (3.15)–(3.20), we obtain that

Ẽ
ω
[|〈YR+(t), ξk〉|2β(σN(k))−β + |〈YD(t), ξk〉|2β(σN(k))−β ]
≤C

(
l−β

[
sup
v≤t

∥∥Ẽ
ω(uN(v))2β∥∥∞]1/2

+ l−2β
)

+ Cl−β
(

1 + t2β + t2β−1
∫ t

0
sup
v≤s

∥∥Ẽ
ω
(
uN(v)

)2β∥∥∞ ds).
(3.21)
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Next, the contraction property of T Nt yields∣∣∣∣〈∫ t

0
T N(t − s) d.N(ω, s), (σN(k))−1

1k

〉∣∣∣∣
=

r∑
i=1

Ni(t,ω)∑
j=1

〈
T N

(
t − τ ji (ω)

) ∑
k∈KNi

l−1 lθi(k)Aji (ω)+ 0.5!1k,

(
σN(k)

)−1
1k

〉
≤

r∑
i=1

Ni(t,ω)∑
j=1

(‖θi‖∞Aji (ω)+ l−1) .= c(t, l,ω).

(3.22)

Combining (3.12)–(3.14), (3.21) and (3.22), we find that

sup
s≤t

∥∥Ẽω(uN(s))2β∥∥∞
≤ 52β−1

{∥∥Ẽ
ω
(
uN(0)

)2β∥∥∞ +Ct2β

+Ct2β−1(1 + l−β)
∫ t

0
sup
v≤s

∥∥Ẽ
ω
(
uN(v)

)2β∥∥∞ ds
+Cl−β

(
sup
s≤t

∥∥Ẽω(uN(s))2β∥∥∞)1/2

+Cl−2β

+Cl−β(1 + t2β)+ c(t, l,ω)
}
.

Therefore, by Gronwall’s inequality and Cl−βa1/2 ≤ a
2 + C2l−2β , we conclude

that

sup
s≤t

∥∥Ẽω(uN(s))2β∥∥∞ ≤ C(
t, l,

∥∥Ẽ
ω
(
uN(0)

)2β∥∥∞,ω)
,

where C(·) is obviously decreasing in l and measurable in ω. �

Next, we employ the technique of Blount (1991, 1994) to derive some crucial
estimates. Let M = (logN)2 and consider 0 ≤ n ≤ √

2N/M . For an index
p ∈ {0,1,2, . . . ,L1N − 1} ⊗ {0,1, . . . ,L2N − 1}, let |p| = (p2

1 + p2
2)

1/2 and
let Bn = {p :nM ≤ |p| ≤ (n + 1)M}. For n ≥ 1, maxp∈Bn |p|/minp∈Bn |p| ≤
(n+ 1)/n≤ 2. Thus by Remark 2.3, there exists C > 0 such that

maxp∈Bn λNp
minp∈Bn λNp

≤ C
for n,N ≥ 1. If |Bn| denotes the cardinality of Bn, then |Bn| ≤ βn, where βn =
CM2(n+ 1). Thus βn/N2 ≤ C(logN)2/N → 0 as N →∞ and

∑[√2N/M]
n=1 βn ≤

CN2.
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LEMMA 3.6. (i) Let τ b be an {GN,ωt } stopping time such that supt≤T ‖uN
(t ∧ τ b−)‖ ≤ b <∞. Then there exist l0,N0, a > 0 such that for n ≥ 1, l ≥ l0,

N ≥N0 and d ∈ (0,1),

P̃
ω

(
sup
t≤T

( ∑
p∈Bn

〈YD(t ∧ τ b),φNp 〉2

)
≥ d2βn/N

2

)
≤ c(T )N2β1/2

n (ad2l/b)−β
1/2
n .

(ii) supt≤T ‖YD(t ∧ τ b)‖ → 0 in probability P̃
ω as N → ∞ for any b > 0,

where τ b is as in (i).
(iii) Assume that supN ‖Ẽ

ω(uN(0))q‖∞ < ∞. Then supt≤T ‖YR(t)‖ → 0 in
probability P̃

ω as N →∞.
(iv) supt≤T ‖YN(t)‖→ 0 in probability P̃

ω as N →∞.
(v) Assume that supN ‖Ẽ

ω(uN(0))2q‖∞ < ∞. Then the distributions of
{∫ ·

0 T
N(· − s)R(uN(s)) ds} on CH [0, T ] are relatively compact.

PROOF. The proof of (i) is almost the same as that of Lemma 3.21(b) in Blount
(1991). The only difference is the covariance structure of ZND(t) as determined in
Lemma 3.3, but all the estimates in the proof of Lemma 3.21 in Blount (1991) are
still valid by changing some notation and constants. We omit the details here. The
proofs of (ii)–(v) are similar to those of Lemma 3.5, Lemma 3.6, Lemma 4.1 and
Lemma 3.7 in Blount (1994). We refer to Blount (1994) for details. Here we only
point out that for the proof of (iv), although we do not assume that R(x) < 0 for
large x as Blount (1994) did, we can still use (3.11), the linear growth of R+ and
Gronwall’s inequality to prove that

sup
t≤T

‖uN(t ∧ σ)‖

≤ C(T )
(
‖uN(0)‖ + sup

t≤T

∥∥∥∥∫ t

0
T N(t − s) d.N(s,ω)

∥∥∥∥
+CT + a+ 1 + sup

t≤T
‖YR+(t)‖

)
,

(3.23)

where σ = inf{t :‖YD(t)‖ ≥ a > 0}. The first two terms in (3.23) are bounded by
Hypothesis (i) and Lemma 3.7 (to follow), so we can apply (iii) and the argument
of Blount (1994) to establish (iv) here. �

LEMMA 3.7. For each fixed ω ∈%,

sup
t≤T

∥∥∥∥∫ t

0
T N(t − s) d.N(s,ω)−

∫ t

0
T (t − s) d.(s,ω)

∥∥∥∥→ 0 as N →∞.
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PROOF. Basic calculation yields∥∥∥∥∫ t

0
T N(t − s) d.N(s,ω)−

∫ t

0
T (t − s) d.(s,ω)

∥∥∥∥
≤

r∑
i=1

Ni(t,ω)∑
j=1

l−1‖1B(κi ,ε)‖

+
r∑
i=1

Ni(t,ω)∑
j=1

A
j
i (ω)

∥∥T N (
t − τ ji (ω)

)
θNi − T (

t − τ ji (ω)
)
θi
∥∥,

(3.24)

where

θNi (·)=
∑
k∈KNi

θi(k)1k(·), i = 1,2, . . . , r.

By using the projection mapping PN defined in (3.2) and the contraction of T N(t),
we find that∥∥T N (

t − τ ji (ω)
)
θNi − T (

t − τ ji (ω)
)
θi
∥∥

= ∥∥T N (
t − τ ji (ω)

)
θNi − T N (

t − τ ji (ω)
)
PNθi

∥∥
+ ∥∥T N (

t − τ ji (ω)
)
PNθi − T (

t − τ ji (ω)
)
θi
∥∥

≤ ‖θNi − PNθi‖ + ∥∥T N (
t − τ ji (ω)

)
PNθi − T (

t − τ ji (ω)
)
θi
∥∥

:=GN1 +GN2 (t).

(3.25)

For GN1 , it is easy to see that

GN1 ≤ ‖θNi − θi‖ + ‖PNθi − θi‖,(3.26)

which tends to zero asN →∞. On the other hand, by Taylor’s theorem, it is easily
seen that ANPNf → Af strongly in H for f ∈ D0(A) (the dense subset of H
defined in Section 1). Thus, by the Trotter–Kato theorem, we find that GN2 (t)→ 0
uniformly in [0, T ]. Therefore, we have proved that

lim
N→∞ sup

t≤T
∥∥T N (

t − τ ji (ω)
)
θNi − T (

t − τ ji (ω)
)
θi
∥∥ = 0.(3.27)

Now (3.24) completes the proof. �

In the sequel, we always consider the Skorohod metric d on DH [0, T ] so that
(DH [0, T ], d) is a complete separable metric space [cf. Ethier and Kurtz (1986),
pages 116–118]. For convenience, we let

vN(t)= T N(t)uN(0)+
∫ t

0
T N(t − s)R(

uN(s)
)
ds + YN(t),

and γ N(t)= ∫ t
0 T

N(t − s) d.N(s). Then uN(t)= vN(t)+ γ N(t).
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LEMMA 3.8. (i) For each fixed ω, the distributions of {(uN, vN)} are
relatively compact in (DH [0, T ], d)2.

(ii) If {(uNm, vNm)} ⊂ {(uN, vN)} and (uNm, vNm)→ (ϕ, v) in distribution on
(DH [0, T ], d)2 as Nm → ∞, and (ϕ, v) is defined on some probability space
(%∗,F ∗,P∗), then for 1 ≤ β ≤ 2q ,

sup
t≤T

E
∗〈ϕβ(t,ω),1〉 ≤ C(T,ω) <∞.(3.28)

PROOF. (i) follows from Lemma 3.6(iv), (v), Lemma 3.7, (2.8) and the fact
that supt≤T ‖T N(t)uN(0)− T (t)u0‖ → 0 in probability P̃

ω by the Trotter–Kato
theorem and a subsequence argument.

(ii) We first consider vN(t) and notice sup0≤t≤T ‖vNm(t) − vNm(t−)‖ =
sup0≤t≤T ‖YNm(t)− YNm(t−)‖ → 0 in probability as m→∞ by Lemma 3.6(iv).
Therefore, by Theorem 3.10.2 of Ethier and Kurtz (1986), we find that v ∈
CH [0, T ]. Next, by Theorem 5.1 of Billingsley (1968) and Skorohod represen-
tation, there exist {v̂Nm(t)}, v̂(t) on some probability space (%̂, F̂ , P̂) such that
v̂Nm(t) = vNm(t), v̂(t) = v(t) in distribution, and v̂Nm(t) → v̂(t) in H a.s. for
each t ∈ [0, T ]. Let γ (t) = ∫ t

0 T (t − s) d.(s). By Lemma 3.7, γ Nm is determin-

istic when ω is fixed and γ Nm(t) → γ (t) in H . Therefore, we have ûNm(t) =
v̂Nm(t)+ γ Nm(t)→ ϕ̂(t)= v̂(t)+ γ (t) in H almost surely. However, this implies
that there exists a subsequence {Nj } ⊂ {Nm} such that (ûNj (t, x))β → (ϕ̂(t, x))β

a.e. x ∈ E almost surely. Then, we can use Fatou’s lemma, Tonelli’s theorem and
Lemma 3.5 to conclude that

E
∗
∫
E
ϕβ(t, x)ρ(x) dx = Ê

∫
E
ϕ̂β(t, x)ρ(x) dx

= Ê

∫
E

lim inf
j→∞

(
ûNj (t, x)

)β
ρ(x) dx

≤ lim inf
j→∞

∫
E

Ê
(
ûNj (t, x)

)β
ρ(x) dx

≤ L1L2 sup
m

sup
t≤T

∥∥Ẽ
ω
(
uNm(t)

)β∥∥∞ ≤ C(T,ω). �

Finally we are in a position to prove Theorem 3.1.

PROOF OF THEOREM 3.1. We use the notation directly above Lemma 3.8 and
find from the proof of Lemma 3.8 that v ∈ CH [0, T ]. Then we can use Skorohod
representation followed by Lemma 3.10.1 in Ethier and Kurtz (1986) to find
DH [0, T ]-valued random elements {v̂Nm}, v̂ on some probability space (%̂, F̂ , P̂)
such that v̂Nm = vNm , v̂ = v in distribution and

sup
t≤T

‖v̂Nm(t)− v̂(t)‖→ 0 a.s. P̂ as m→∞.(3.29)
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Then, it follows by Lemma 19 of Dawson and Kouritzin (1997) that there are
DH [0, T ]-valued processes {v̆Nm,m = 1,2, . . .}, v̆ and {Y̆ Nm,m = 1,2, . . .} on
some probability space (%̆, F̆ , P̆) such that

L(v̆, v̆N1, v̆N2, . . .)= L(v̂, v̂N1, v̂N2, . . .) on
∏
m∈N0

B(DH [0, T ]),(3.30)

L

(
v̆Nm

Y̆ Nm

)
= L

(
vNm

YNm

)
for all m= 1,2, . . . .(3.31)

Here, L(X) denotes the law of random variable X on a complete separable
metric space S. We define a measurable mapping GN :DH [0, T ] ×DH [0, T ] →
DH [0, T ] by

GN(φ,ψ)(t)= PNφ(t)− T N(t)(PNφ(0)+ γ N(0))
−

∫ t

0
T N(t − s)R(

PNφ(s)+ γ N(s))ds − PNψ(t).
Thus, from P̃

ω(GNm(v
Nm,YNm)= 0)= 1 and (3.31), it follows that

GNm(v̆
Nm, Y̆ Nm)= v̆Nm − T Nm(v̆Nm(0)+ γ Nm(0))

−
∫ t

0
T Nm(t − s)R(

v̆Nm(s)+ γ Nm(s))ds − Y̆ Nm(t)
= 0 a.s. P̆.

Then ŭNm = v̆Nm + γ Nm satisfies

ŭNm(t)= T Nm(t)ŭNm(0)+
∫ t

0
T Nm(t − s)R(

ŭNm(s)
)
ds

+ Y̆ Nm(t)+ γ Nm(t) a.s. P̆.

(3.32)

Using Lemma 3.6(iv), (3.29), (3.30) and (3.31), we find a subsequence {Nj } ⊂
{Nm} such that

sup
t≤T

‖v̆Nj (t)− v̆(t)‖→ 0 a.s. P̆ as j →∞(3.33)

and

sup
t≤T

‖Y̆ Nj (t)‖→ 0 a.s. P̆ as j →∞.(3.34)

Recalling supt≤T ‖γ Nj (t)− γ (t)‖→ 0 surely from Lemma 3.7, one finds

sup
t≤T

‖ŭNj (t)− ϕ̆(t)‖→ 0 a.s. P̆ as j →∞,(3.35)
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where ϕ̆(t) .= v̆(t)+γ (t). Now, we identify ϕ̆. By (3.32), we have with ϕ̆(0)= u0,

ϕ̆(t)= T (t)ϕ̆(0)+
∫ t

0
T (t − s)R(

ϕ̆(s)
)
ds +

∫ t

0
T (t − s) d.(s,ω)

+ ε̆1
Nj
(t)+ ε̆2

Nj
(t)+ ε̆3

Nj
(t),

(3.36)

where

ε̆1
Nj
(t)= ϕ̆(t)−

∫ t

0
T (t − s) d.(ω, s)−

(
ŭNj (t)−

∫ t

0
T Nj (t − s) d.Nj (s,ω)

)
,

ε̆2
Nj
(t)= (

T Nj (t)ŭNj (0)− T (t)ϕ̆(0))+ Y̆ Nj (t),
and

ε̆3
Nj
(t)=

∫ t

0
T Nj (t − s)R(

ŭNj (s)
)
ds −

∫ t

0
T (t − s)R(

ϕ̆(s)
)
ds.

By (3.35) and Lemma 3.7, it follows that

sup
t≤T

‖ε̆1
Nj
(t)‖→ 0 a.s. P̆ as j →∞.(3.37)

By the Trotter–Kato theorem and (3.34), we have

sup
t≤T

‖ε̆2
Nj
(t)‖→ 0 a.s. P̆ as j →∞.(3.38)

We let

ğNj (t)=
∫ t

0
T Nj (t − s)R(

ŭNj (s)
)
ds, ğ(t)=

∫ t

0
T (t − s)R(

ϕ̆(s)
)
ds

and consider

ε̆3
Nj
(t)= ∑

|p|≤n

[〈ğNj (t), φNjp 〉φNjp − 〈ğ(t), φp〉φp]
+ ∑

|p|>n
〈ğNj (t), φNjp 〉φNjp

− ∑
|p|>n

〈ğ(t), φp〉φp.

By applying the Cauchy–Schwarz inequality and Remark 2.3, we have, for |p| �= 0,

‖〈ğNj (t), φNjp 〉φNjp ‖2

=
∣∣∣∣∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)
, φ

Nj
p

〉
ds

∣∣∣∣2
≤

∫ t

0
exp

(
2λ
Nj
p (t − s))ds · ∫ t

0

〈
R
(
ŭNj (s)

)
, φ

Nj
p

〉2
ds

≤ C

|p|2
∫ t

0

〈
R
(
ŭNj (s)

)
, φ

Nj
p

〉2
ds.
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Thus, ∑
|p|>n

|〈ğNj (t), φNjp 〉|2

≤ C

n2

∫ t

0

∑
p

〈
R
(
ŭNj (s)

)
, φ

Nj
p

〉2
ds

≤ C

n2

∫ t

0

〈
1,R2(ŭNj (s))〉ds.

Therefore, by Hypothesis (i), (1.2) and Lemma 3.5, it follows that for some
constant C(T,ω) <∞,

Ĕ

[
sup
t≤T

∥∥∥∥∥ ∑
|p|>n

〈ğNj (t), φNjp 〉φNjp
∥∥∥∥∥

2]
≤ C(T,ω)

n2
.(3.39)

Similarly, by Lemma 3.8(ii), we find that

Ĕ

[
sup
t≤T

∥∥∥∥∥ ∑
|p|>n

〈ğ(t), φp〉φp
∥∥∥∥∥

2]
≤ C(T,ω)

n2 .(3.40)

It is easy to see that

〈ğNj (t), φNjp 〉φNjp − 〈ğ(t), φp〉φp
=

∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)
, φ

Nj
p

〉
dsφ

Nj
p

−
∫ t

0
exp

(
λp(t − s))〈R(

ϕ̆(s)
)
, φp

〉
dsφp

=
∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)
, φ

Nj
p

〉
ds(φ

Nj
p − φp)

+
∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)
, φ

Nj
p − φp〉dsφp

+
∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)−R(

ϕ̆(s)
)
, φp

〉
dsφp

+
∫ t

0

(
exp

(
λ
Nj
p (t − s))− exp

(
λp(t − s)))〈R(

ϕ̆(s)
)
, φp

〉
ds φp

:=
4∑
i=1

Ĕ
Nj
i (t).

Note that for fixed p,

|λNjp − λp| + ‖φNjp − φp‖∞ → 0 as j →∞
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and

sup
j,p

(‖φNjp ‖∞ + ‖φp‖∞)
<∞.

Therefore, by Lemma 3.5 and Lemma 3.8(ii), it follows that

Ĕ

[
sup
t≤T

‖ĔNji (t)‖∞
]
→ 0 as j →∞, i = 1,2,4.

For Ĕ
Nj
3 (t), we have by (1.2) and the Cauchy–Schwarz inequality,

sup
t≤T

‖ĔNj3 (t)‖∞

= sup
t≤T

∣∣∣∣∫ t

0
exp

(
λ
Nj
p (t − s))〈R(

ŭNj (s)
)−R(

ϕ̆(s)
)
, φp

〉
ds

∣∣∣∣ · ‖φp‖∞
≤

∫ T

0

∣∣〈R(
ŭNj (s)

)−R(
ϕ̆(s)

)
, φp

〉∣∣ds · ‖φp‖∞
≤ ‖φp‖2∞

∫ T

0

〈
1,

∣∣R(
ŭNj (s)

)−R(
ϕ̆(s)

)∣∣〉ds
≤√

3K‖φp‖2∞
∫ T

0
‖ŭNj (s)− ϕ̆(s)‖

×〈
1,1 + (

ŭNj (s)
)2(q−1)+ ϕ̆2(q−1)(s)

〉1/2
ds

≤√
3K‖φp‖2∞

(∫ T

0
‖ŭNj (s)− ϕ̆(s)‖2 ds

)1/2

×
(∫ T

0

〈
1,1 + (

ŭNj (s)
)2(q−1)+ ϕ̆2(q−1)(s)

〉
ds

)1/2

,

which tends to zero in probability by (3.35), Lemma 3.5 and Lemma 3.8(ii). Thus,
we have

sup
t≤T

‖ε̆3
Nj

‖→ 0(3.41)

in probability P̆. Combining (3.37), (3.38) and (3.41), we obtain

sup
t≤T

∥∥ε̆1
Nj
(t)+ ε̆2

Nj
(t)+ ε̆3

Nj
(t)

∥∥ → 0 in probability P̆ as j →∞.

It follows by (3.36) that

ϕ̆(t)= T (t)ϕ̆(0)+
∫ t

0
T (t − s)R(

ϕ̆(s)
)
ds +

∫ t

0
T (t − s) d.(s,ω) a.s. P̆.
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Therefore, almost sure convergence of ŭNj to a pathwise solution of (1.3) follows
from (3.35). We now show that the solution is unique. Let u(t) be a pathwise mild
solution of (1.3). Then we have

u(t, x)= T (t)u(0, x)+
∫ t

0
T (t − s)R(

u(s, x)
)
ds +

∫ t

0
T (t − s) d.(s, x)

≤ T (t)u(0, x)+
∫ t

0
T (t − s)R+(

u(s, x)
)
ds +

∫ t

0
T (t − s) d.(s, x)

≤ ‖u(0)‖∞ +Ct +C
∫ t

0
‖u(s)‖∞ ds +

r∑
i=1

Ni(t,ω)∑
j=1

‖θi‖∞Aji (ω).

By Gronwall’s inequality, it follows that supt≤T ‖u(t)‖∞ ≤ c(T ,ω) <∞. Now let
u1, u2 be two solutions of (1.3) such that u1(0)= u2(0)= u0. Then

u1(t)− u2(t)=
∫ t

0
T (t − s)[R(

u1(s)
)−R(

u2(s)
)]
ds.(3.42)

By (1.2) and the above estimate, we find that there exists C(T,ω) < ∞ such
that

‖u1(t)− u2(t)‖ ≤ C(T,ω)
∫ t

0
‖u1(s)− u2(s)‖ds.

By Gronwall’s inequality, it follows that u1(t)= u2(t) for any t ∈ [0, T ]. But T is
arbitrary, so u1(t) = u2(t) for any t > 0. Convergence in probability for uN then
follows from (3.31), the fact that ϕ = ϕ̆ = u is deterministic, and the arbitrariness
of the original {Nm}∞m=1. �

APPENDIX

Here, we give a computer-workable construction for the collection of indepen-
dent Poisson processes used in Section 2.

Assume that {(XR+,j ,XR−,j )}(L1,L2)
j=(j1,j2)=(1,1), {(X1+,j ,X1−,j ), j = (j1, j2), j1 = 0,

1, . . . ,L1, j2 = 1, . . . ,L2} and {(X2+,j , X2−,j ), j = (j1, j2), j1 = 1, . . . ,L1;
j2 = 0,1, . . . ,L2} are independent standard Poisson processes on (%,F ,P). Let

{(ξR,l,j+,m , ξ
R,l,j
−,m , ζ

R,l,j
+,m , ζ

R,l,j
−,m ), l = 1,2, . . . , n;m= 1,2, . . .}(L1,L2)

j=(j1,j2)=(1,1), {(ξ
1,l,j
+,m ,

ξ
1,l,j
−,m , ζ

1,l,j
+,m , ζ

1,l,j
−,m ), j ∈ {(j1, j2), j1 = 0,1, . . . ,L1, j2 = 1, . . . ,L2}, l = 1, . . . , n,

m = 1,2, . . .} and {(ξ2,l,j
+,m , ξ

2,l,j
−,m , ζ

2,l,j
+,m , ζ

2,l,j
−,m ), j ∈ {(j1, j2), j1 = 1, . . . ,L1,

j2 = 0,1, . . . ,L2}, l = 1, . . . , n, m = 1,2, . . .} be independent Bernoulli trials
with p = 1

2 on (%,F ,P). Now, we construct the Poisson processes that are used



1068 M. A. KOURITZIN AND H. LONG

to build our model in (2.3). For convenience, we let ξ̄R,l,j+,m = 1 − ξR,l,j+,m , etc. Then

we will think of ξR,l,j+,m as a one in the lth position and ξ̄R,l,j+,m as a zero. Thus,
we have one-to-one correspondence using the binary expansion of cell k − (1,1)
(1 ≤ k1 ≤N,1 ≤ k2 ≤N ), for example [for each j ∈ {(1,1), . . . , (L1,L2)}],

k1 − 1 ↔ (0,1, . . . ,1,1) ↔ ξ̄
R,n,j
+,m ξ

R,n−1,j
+,m · · · ξR,2,j+,m ξ

R,1,j
+,m ,

k2 − 1 ↔ (1,0, . . . ,0,1) ↔ ζ
R,n,j
+,m ζ̄

R,n−1,j
+,m · · · ζ̄ R,2,j+,m ζ

R,1,j
+,m

and we define the standard Poisson processes

X
R,j,N
+,k (t)=

XR+,j (4nt)∑
m=1

ξ̄
R,n,j
+,m ξ

R,n−1,j
+,m · · · ξR,2,j+,m ξ

R,1,j
+,m ζ

R,n,j
+,m ζ̄

R,n−1,j
+,m · · · ζ̄ R,2,j+,m ζ

R,1,j
+,m ,

X
R,j,N
−,k (t)=

XR−,j (4nt)∑
m=1

ξ̄
R,n,j
−,m ξ

R,n−1,j
−,m · · · ξR,2,j−,m ξ

R,1,j
−,m ζ

R,n,j
−,m ζ̄

R,n−1,j
−,m · · · ζ̄ R,2,j−,m ζ

R,1,j
−,m

and so on. If j ∈ {(1,1), . . . , (L1,L2)}, we construct {X1,j,N
+,k ,X

1,j,N
−,k ,X

2,j,N
+,k ,

X
2,j,N
−,k } for k ∈ {(1,1), . . . , (N,N)} by using the same procedure as above. If j ∈

{(0,1), . . . , (0,L2)}, we only construct {X1,j,N
+,k ,X

1,j,N
−,k } for k ∈ {(1,1), (1,2), . . . ,

(1,N)}. If j ∈ {(1,0), . . . , (L1,0)}, we only construct {X2,j,N
+,k ,X

2,j,N
−,k } for

k ∈ {(1,1), . . . , (N,1)}. Then, {XR,j,N+,k ,X
R,j,N
−,k , . . . ,X

2,j,N
−,k , k1, k2 = 1,2, . . . ,N ,

j1 = 1, . . . ,L1, j2 = 1,2, . . . ,L2}, {X1,j,N
+,k ,X

1,j,N
−,k , k1 = 1, k2 = 1, . . . ,N, j1 =

0, j2 = 1, . . . ,L2} and {X2,j,N
+,k ,X

2,j,N
−,k , k1 = 1, . . . ,N, k2 = 1, j1 = 1, . . . ,L1,

j2 = 0} are independent Poisson processes for fixed N . Next, to simplify notation,
we write Xk,N+,N (t) for XN,j,N+,i , Xk,N−,N (t) for XN,j,N−,i , where N = R,1,2 and k =
(k1, k2) := ((i1 − 1)L1 + j1, (i2 − 1)L2 + j2) ∈ {(1,1), . . . , (L1N,L2N)}, i1, i2 =
1, . . . ,N, j = (j1, j2) ∈ {(1,1), . . . , (L1,L2)}, and write X

k,1
+,N (t) for X1,j,N

+,i ,

X
k,1
−,N (t) for X1,j,N

−,i , where k = (k1, k2) := ((i1 − 1)L1 + j1, (i2 − 1)L2 + j2) ∈
{(0,1), . . . , (0,L2N)}, i1 = 1, i2 = 1, . . . ,N, j = (j1, j2) ∈ {(0,1), . . . , (0,L2)}
and Xk,2+,N (t) for X2,j,N

+,i , Xk,2−,N (t) for X2,j,N
−,i , where k = (k1, k2) := ((i1 − 1)

L1 + j1, (i2 − 1)L2 + j2) ∈ {(1,0), . . . , (L1N,0)}, i1 = 1, . . . ,N, i2 = 1, j =
(j1, j2) ∈ {(1,0), . . . , (L1,0)}. In this manner, we have constructed the collection
of independent Poisson processes as used in (2.3).
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